
Math 322 Fall 2014: Problem Set 2, due 18/9/2014

Practice and supplementary problems, and any problems specifically marked “OPT” (optional),
“SUPP” (supplemenetary) or “PRAC” (practice) are not for submission. It is possible that the
grader will not mark all problems.

Practice: modular arithmetic
P1. Evaluate:

(a) [3]6 +[5]6 +[9]6, [3]7 +[5]7 +[9]7, [2]13 · [5]13 · [7]13.
(b) ([3]8)

n (hint: start by finding ([3]8)
2).

P2. Linear equations.
(a) Use Euclid’s algorithm to solve [5]7x = [1]7.
(b) Solve [5]7y = [2]7 by multiplying both sides by the element from (a).

(c) Solve


2x+3y+4z = 1
x+ y = 3
x+2z = 6

in Z/7Z (imagine all numbers are surrounded by brackets).

Number Theory
1. (Modular arithmetic)

(a) Evaluate ([3]13)
n, n ∈ Z≥0.

– Check that 212 ≡ 1(13).
(b) Let k be the smallest positive integer such that 2k ≡ 1(13). Show that k|12 (hint: division

with remainder).
– Check that 26 ≡−1(13), 24 ≡ 3(13).
(c) Use the last check to show that k = 12.
(d) Show that 2i ≡ 2 j (13) iff i≡ j (12).

2. (The Chinese Remainder Theorem)
(a) Let p be an odd prime. Show that the equation x2 = [1]p has exactly two solutions in Z/pZ

(hint: what does it mean that x2 ≡ 1(p) for x ∈ Z?) (aside: what about p = 2?)
(b) We will find all solutions to the congruence x2 ≡ 1(91).

(i) Find a “basis” a,b such that a≡ 1(7), a≡ 0(13) and b≡ 0(7), b≡ 1(13).
(ii) Solve the congruence mod 7 and mod 13.
(iii) Find all solutions mod 91.

Permutation Groups
3. On the set Z/12Z consider the maps σ(a) = a+ [4] and τ(a) = [5]a (so σ([2]) = [6] and

τ([2]) = [10])
DEF ( f ◦g)(x) = f (g(x)) is composition of functions.
(a) Find maps σ−1,τ−1 such that σ ◦σ−1 = σ−1 ◦σ = τ ◦ τ−1 = τ−1 ◦ τ = id.
(b) Compute στ,τσ ,σ−1τ .
(c) For each a ∈ Z/12Z compute a,σ(a),σ(σ(a)) and so on until you obtain a again. How

many distinct cycles arise? List them.
RMK The relation “a,b are in the same cycle” is an equivalence relation.

SUPP [R1.29] On Z/11Z let f (x) = 4x2− 3x7. Show that f is a permutation and find its cycle
structure and its inverse.
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4. Let X be a set, i∈X . Say σ ∈ SX fixes i if σ(i) = i, and let Pi = StabSX (i) = {σ ∈ SX | σ(i) = i}
be the set of such permutations.
(a) Show that Pi is closed under composition and under inverses (if σ ,τ ∈ Pi then σ ◦ τ and

σ−1 ∈ Pi). (hint: given σ(i) = i and τ(i) = i, check that (σ ◦ τ)(i) = i)
— Suppose that ρ(i) = j for some ρ ∈ SX . Define f : SX → SX by f (σ) = ρ ◦σ ◦ρ−1.
(b) Show that f (στ) = f (σ) f (τ) for all σ ,τ ∈ SX (hint: what is the definition of f ?). Show

that f (σ−1) = ( f (σ))−1 (hint: PS1 problem 4(b))
(c) Show that if σ ∈ Pi then f (σ) ∈ Pj (hint: what’s ρ−1( j)?)
(d) Show that f is a bijection (“isomorphism”) between Pi and Pj (hint: find its inverse)

Operations in a set of sets
Let X be a set, P(X) (the “powerset”) the set of its subsets (so P({0,1})= { /0,{0} ,{1} ,{0,1}}.
The difference of A,B ∈ P(X) is the set A−B def

= {x ∈ A | x /∈ B} (so [0,2]− [−1,1] = (1,2]).

The symmetric difference is A∆B def
= (A−B)∪ (B−A) (so [0,2]∆ [−1,1] = [−1,0)∪ (1,2]).

5. (Checking that (P(X),E,∆) is a commutative group).
PRAC Show that A∆B is the set of x ∈ X which belong to exactly one of A,B. Note that this

shows the commutative law A∆B = B∆A.
(a) (associative law) Show that for all A,B,C ∈ X we have (A∆B)∆C = A∆(B∆C) .
(b) (neutral element) Find E ∈ P(X) such that A∆E = A for all A ∈ P(X).
(c) (negatives) For all A ∈ P(X) find a set Ā ∈ P(X) such that A∆Ā = E.

6. (A quotient construction) Fix N ∈P(X) and say that A,B∈P(X) agree away from N if A−N =
B−N. Denote this relation ∼ during this problem. For example, as subsets of R, the intervals
[−1,1] and [0,1] agree “away from the negative reals”.
PRAC Show that A∼ B iff for all x ∈ X−N either x belong to both A,B or to neither.
(a) Show that ∼ is an equivalence relation. We will use [A] to denote the equivalence class of

A⊂ X under ∼.
(b) Show that if A∼ A′, B∼ B′ then (A∆B)∼ (A′∆B′).

RMK This means the operation [A] ∆̃[B] def
= [A∆B] is well-defined: it does not depend on the

choice of representatives.
(c) Show that every equivalence class has a unique element which also belongs to P(X −N)

(that is, exactly one element of the class is a subset of X−N).
(d) Show that P(X −N) ⊂ P(X) is non-empty and closed under ∆ (it is automatically closed

under the “bar” operation of 5(c))
RMK It follows that

(
P(X)/∼, [ /0] , ∆̃

)
and (P(X−N), /0,∆) are essentially the same algebraic

structure (there is an operation-preserving bijection between them). We say “they are
isomorphic”.
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Supplementary Problems I: The Fundamental Theorem of Arithmetic
If you haven’t seen this before, you must work through problem A.

A. By definition the empty product (the one with no factors) is equal to 1, and a product with one
factor is equal to that factor.
(a) Let n be the smallest positive integer which is not a product of primes. Considering the

possilibities that n = 1, n is prime, or that n is neither, show that n does not exist. Conclude
that every positive integer is a product of primes.

(b) Let {pi}r
i=1,

{
q j
}s

j=1 be sequences of primes, and suppose that ∏
r
i=1 pi = ∏

s
j=1 q j. Show

that pr occurs among the
{

q j
}

(hint: pr divides a product ...)
(c) Call two representations n = ∏

r
i=1 pi = ∏

s
j=1 q j of n≥ 1 as a product of primes essentially

the same if r = s and the sequences only differ in the order of the terms. Let n be the
smallest integer with two essentially different representations as a product of primes. Show
that n does not exist.

The following problem is for your amusement only; it is not relevant to Math 322 in any way.
B. (The p-adic absolute value)

(a) Show that every non-zero rational number can be written in the form x = a
b pk for some

non-zero integers a,b both prime to p and some k∈Z. Show that k is unique (only depends
on x). By convention we set k = ∞ if x = 0 (“0 is divisible by every power of p”).

DEF The p-adic absolute value of x ∈Q is |x|p = p−k (by convention p−∞ = 0).

(b) Show that for any x,y ∈ Q, |x+ y|p ≤ max
{
|x|p, |y|p

}
≤ |x|p + |y|p and |xy|p = |x|p |y|p

(this is why we call |·|p an “absolute value”).
(c) Show that the relation x ∼ y ⇐⇒ |x− y|p ≤ R is an equivalence relation on Q. The

equivalence classes are called “balls of radius R” and are usually denoted B(x,R) (compare
with the usual absolute value).

(d) Show that B(0,R) =
{

x
∣∣ |x|p ≤ R

}
is non-empty and closed under addition and subtrac-

tion. Show that B(0,1) =
{

x
∣∣ |x|p ≤ 1

}
is also closed under multiplication.

Supplementary Problem II: Permutations and the pigeon-hole principle

C. (a) Prove by induction on n≥ 0: Let X be any finite set with n elements, and let f : X → X be
either surjective or injective. Then f is bijective.
(b) conclude that if X ,Y are sets of the same size n and f : X → Y and g : Y → X satisfy

f ◦g = idY then g◦ f = idX and the functions are inverse.
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Supplementary Problem II: Cartesian products and the CRT

NOTATION. For sets X ,Y we write XY for the set of functions from Y to X .

D. Let I be an index set, Ai a family of sets indexed by I (in other words, a set-valued function
with domain I). The Cartesian product of the family is the set of all touples such that the ith
element is chosen from Ai, in other words:

∏
i∈I

Ai =

a ∈

(⋃
i∈I

Ai

)I ∣∣∣∀i ∈ I : a(i) ∈ Ai


(we usually write ai rather than a(i) for the ith member of the touple).
(a) Verify that for i = {1,2}, A1×A2 is the set of pairs.
(b) Give a natural bijection (

∏
i∈I

Ai

)B

↔∏
i∈I

(
AB

i
)
.

(you have shown: a vector-valued function is the same thing as a vector of functions).
(b) Let {Vi}i∈I be a family of vector spaces over a fixed field F (say F = R). Show that

pointwise addition and multiplication endow ∏iVi with the structure of a vector space.
DEF This vector space is called the direct product of the vector spaces {Vi}.
RMK Recall that, if W is another vector space, then the set HomF(W,V ) of linear maps from

W to V is itself a vector space.
(*c) Let W be another vector space. Show that the bijection of (a) restricts to an isomorphism

of vector spaces

HomF

(
W,∏

i∈I
Vi

)
→∏

i∈I
HomF (W,Vi) .

E. (General CRT) Let {ni}r
i=1 be divisors of n≥ 1.

(a) Construct a map

f : Z/nZ→
r

∏
i=1

(Z/niZ) ,

generalizing the case r = 2 discussed in class.
(b) Show that f respects modular addition and multiplication.
(*c) Suppose that n = ∏

r
i=1 ni and that the ni are pairwise relatively prime (for each i 6= j,

gcd
(
ni,n j

)
= 1. Show that f is an isomorphism.
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