MATH 100: MORE EXAMPLES OF INEQUALITIES

(1) Show that $\sqrt{1+x}<1+\frac{x}{2}$ for all $x>0$.

Solution 1: (scratchwork) $\sqrt{1+x}<1+\frac{x}{2} \Longleftrightarrow \sqrt{1+x}-1<+\frac{x}{2} \Longleftrightarrow$ $\frac{\sqrt{1+x}-1}{x}<\frac{1}{2}$ AHA!
(solution) Let $f(u)=\sqrt{u}$. Then we need to compare $f(1+x)$ and $f(1)$. By the MVT we there os

$$
\frac{\sqrt{1+x}-1}{x}=\frac{f(1+x)-f(1)}{1+x-1}=f^{\prime}(c)
$$

for some $c \in(1,1+x)$ (since $x>0,1+x>1$). But $f^{\prime}(c)=\frac{1}{2 \sqrt{c}}<\frac{1}{2}$ since $c>1$, so

$$
\frac{\sqrt{1+x}-1}{x}<\frac{1}{2} .
$$

Multiplying by $x>0$ we get

$$
\sqrt{1+x}-1<\frac{x}{2}
$$

and adding 1 we finally see

$$
\sqrt{1+x}<1+\frac{x}{2} .
$$

Solution 2: Let $g(x)=\sqrt{1+x}$. Then $g^{\prime}(x)=\frac{1}{2 \sqrt{1+x}}$ so $g(0)=1$, $g^{\prime}(0)=\frac{1}{2}$ and $T_{1}(x)=1+\frac{x}{2}$ is the linear approximation to $g(x)$ near $a=0$. By the Lagrange Remainder Formula there is c in $(0, x)$ such that

$$
g(x)-T_{1}(x)=R_{1}(x)=\frac{g^{\prime \prime}(c)}{2!} x^{2}=-\frac{1}{4(1+c)^{3 / 2}} x^{2}<0
$$

it follows that

$$
\sqrt{1+x}=g(x)<T_{1}(x)=1+\frac{x}{2}
$$

Solution 3: Let $h(x)=1+\frac{x}{2}-\sqrt{1+x}$. We have $h(0)=1+\frac{0}{2}-\sqrt{1+0}=$ 0 . Also, h is differentiable on $(-1, \infty)$ with and

$$
h^{\prime}(x)=\frac{1}{2}-\frac{1}{2 \sqrt{1+x}}=\frac{1}{2}\left[1-\frac{1}{\sqrt{1+x}}\right] .
$$

Now for $x>0, \sqrt{1+x}>1$ so $\frac{1}{\sqrt{1+x}}<1$ and $h^{\prime}(x)>0$. It follows that h is strictly increasing on $(0, \infty)$ so that $h(x)>0$ if $x>0$. But this means

$$
1+\frac{x}{2}-\sqrt{1+x}>0
$$

SO

$$
1+\frac{x}{2}>\sqrt{1+x}
$$

