MATH 100: MORE EXAMPLES FOR NEWTON'S LAW OF COOLING

(1) (Final 2011) A wealthy man was found murdered in his home at 10 pm at night. The temperature of his body was $33^{\circ} \mathrm{C}$, and of the room $21^{\circ} \mathrm{C}$. An hour later the temperature of the body was $31^{\circ} \mathrm{C}$. Assume the body cools after death according to Newton's Law of Cooling.
(a) Normal body temperature is $37^{\circ} \mathrm{C}$. When did the murder take place? Solution: Let $T(t)$ be the temperature of the body in degrees Celsius, t hours after 10 pm . Let $y(t)=T(t)-21$ be the temperature difference from the room. We then have $y(t)=C e^{-k t}$ for some C, k. We are given that $C=y(0)=33-21=12$ and $C e^{-k}=y(1)=31-21=$ 10 so $12 e^{-k}=10$, that is $\frac{12}{e^{k}}=10$ which means $e^{k}=\frac{12}{10}$. Taking $\operatorname{logarithms}$ we get $k=\log \frac{12}{10}=\log (1.2)$. We need to find t such that $y(t)=37-21=16$. This was t such that $12 e^{-k t}=16$ so $e^{-k t}=\frac{16}{12}$. Taking logarithms we find

$$
-k t=\log \frac{16}{12}
$$

and using $k=\log (1.2)$ that

$$
-t_{\text {death }}=\frac{\log \left(1 \frac{1}{3}\right)}{\log \left(1 \frac{1}{5}\right)}
$$

In short, the murder took $\frac{\log (4 / 3)}{\log (6 / 5)}$ hours before 10 pm .
(b) Did the murder occur before 9pm? Justify your answer.

Straightforward solution: the logarithm is a monotone function, so $0=\log 1<\log \left(1 \frac{1}{5}\right)<\log \left(1 \frac{1}{3}\right)$. It follows that

$$
\frac{\log \left(1 \frac{1}{3}\right)}{\log \left(1 \frac{1}{5}\right)}>1
$$

so the death occured more than an hour before 10 pm , that is before 9 pm .
Over-complicated solution: We need to approximate $\frac{\log \left(1+\frac{1}{3}\right)}{\log \left(1+\frac{1}{5}\right)}$. For this let $f(x)=\log (1+x)$. Then $f(0)=\log 1=0$ and $f^{\prime}(x)=\frac{1}{1+x}$ so $f^{\prime}(0)=1$ and the linear approximation to f at 0 is $f(x)=x$. We therefore guess $\log \left(1+\frac{1}{3}\right) \approx \frac{1}{3}, \log \left(1+\frac{1}{5}\right) \approx \frac{1}{5}$ so the death happened about $\frac{1 / 3}{1 / 5}=\frac{5}{3}$ hours before 10 pm , which would have been before 9 pm . To justify this we show that our approximation is not too big. The second derivative $f^{\prime \prime}(x)=-\frac{1}{(1+x)^{2}}$ is negative, so the error in the linear approximation (which is $\frac{f^{\prime \prime}(c)}{2} x^{2}$ for some c) is negative,
that islog $\left(1+\frac{1}{5}\right) \leq \frac{1}{5}$, which means

$$
\frac{1}{\log \left(1+\frac{1}{5}\right)} \geq 5
$$

We also note that $f^{\prime \prime}(0)=-1$ so the quadratic approximation to \log is $\log (1+x) \approx x-\frac{1}{2} x^{2}$ and now the error term involves $f^{\prime \prime \prime}(x)=\frac{2}{(1+x)^{3}}>$ 0 . It follows that the quadratic approximation is an under-estimate: that

$$
\log \left(1+\frac{1}{3}\right) \geq \frac{1}{3}-\frac{1}{2}\left(\frac{1}{3}\right)^{2}=\frac{1}{3}-\frac{1}{18}=\frac{5}{18} .
$$

Multiplying the two estimates gives:

$$
-t_{\text {death }}=\frac{\log \left(1 \frac{1}{3}\right)}{\log \left(1 \frac{1}{5}\right)} \geq \frac{5 / 18}{1 / 5}=\frac{25}{18}>1
$$

