MATH 100: MORE EXAMPLES OF TAYLOR EXPANSIONS

1. Finding the expansions

(1) $f(x)=x^{3}+3 x+1$, to third order. $f^{\prime}(x)=3 x^{2}+3, f^{\prime \prime}(x)=6 x, f^{\prime \prime \prime}(x)=6$, all further derivatives are zero.
(a) Expand about $x=1: f(1)=5, f^{\prime}(1)=6, f^{\prime \prime}(1)=6, f^{\prime \prime \prime}(1)=6$. Get (actual equality since f is a polynomial)

$$
\begin{aligned}
f(x) & =5+6(x-1)+\frac{6}{2!}(x-1)^{2}+\frac{6}{3!}(x-1)^{3} \\
& =5+6(x-1)+3(x-1)^{2}+(x-1)^{3}
\end{aligned}
$$

(b) Expand about $x=5: f(5)=141, f^{\prime}(1)=78, f^{\prime \prime}(1)=30, f^{\prime \prime \prime}(1)=6$. Get (actual equality since f is a polynomial)

$$
\begin{aligned}
f(x) & =141+78(x-1)+\frac{30}{2!}(x-1)^{2}+\frac{6}{3!}(x-1)^{3} \\
& =141+78(x-1)+15(x-1)^{2}+(x-1)^{3}
\end{aligned}
$$

(2) Let's try $\sin \left(11 x+x^{2}\right)$ to third order. We know $\sin (u) \approx u-\frac{u^{3}}{3!}$ to third order. Now $11 x+x^{2}$ vanishes at zero so we can plug in and get:

$$
\begin{aligned}
\sin \left(11 x+x^{2}\right) & \approx\left(11 x+x^{2}\right)-\frac{\left(11 x+x^{2}\right)^{3}}{3!} \\
& =11 x+x^{2}-\frac{1}{6}\left(11^{3} x^{3}+3(11 x)^{2} x^{2}+3(11 x)\left(x^{2}\right)^{2}+\left(x^{2}\right)^{3}\right) \\
& \approx 11 x+x^{2}-\frac{1331}{6} x^{3}
\end{aligned}
$$

to third order (the x^{4}, x^{5}, x^{6} terms are negligible when working to third order).
(3) Let's try $\sin (11 x+5)$ to third order. (aside: $11^{2}=121,11^{3}=1331$).
(a) About $x=-\frac{5}{11}$ this reads $\sin \left(11\left(x-\left(-\frac{5}{11}\right)\right)\right)$ we plug in: $11(x-a)-$ $\frac{(11(x-a))^{3}}{3!}=11\left(x+\frac{5}{11}\right)+\frac{1331}{6}\left(x+\frac{5}{11}\right)^{3}$.
(b) About $x=0$, using derivatives. The first three are $11 \cos (11 x+$ 5), $-11^{2} \sin (11 x+5),-11^{3} \cos (11 x+5)$ at 0 we get $\sin (5), 11 \cos (5),-121 \sin (5),-1331 \cos (5)$ so to third order about $x=0$,

$$
\sin (11 x+5) \approx \sin (5)+11 \cos (5) \cdot x-\frac{121 \sin (5)}{2} x^{2}-\frac{1331 \cos (5)}{6} x^{3}
$$

(c) About $x=0$, using addition formula and substitution. Recall $\sin (11 x+5)=$ $\sin (5) \cos (11 x)+\cos (5) \sin (11 x)$. To third order, $\cos (u)=1-\frac{u^{2}}{2}$, $\sin (u)=u-\frac{u^{3}}{3}$ so

$$
\begin{aligned}
\sin (11 x+5) & \approx \sin (5)\left[1-\frac{(11 x)^{2}}{2}\right]+\cos (5)\left[(11 x)-\frac{(11 x)^{3}}{3!}\right] \\
& =\sin (5)+11 \cos (5) \cdot x-\frac{121 \sin (5)}{2} x^{2}-\frac{1331 \cos (5)}{6} x^{3}
\end{aligned}
$$

after rearranging.
(4) $E(v)=\frac{m c^{2}}{\sqrt{1-v^{2} / c^{2}}}$, the expression for the energy of a relativistic particle of mass m and velocity v. Let's expand to second order, to see what happens at velocities much smaller than the speed of light c.
(a) By the chain rule, $E^{\prime}(v)=m c^{2}\left(-\frac{1}{2}\right)\left(1-\frac{v^{2}}{c^{2}}\right)^{-3 / 2}\left(-\frac{2 v}{c^{2}}\right)=m v\left(1-\frac{v^{2}}{c^{2}}\right)^{-3 / 2}$ so $E^{\prime}(0)=0$. Next, by the quotient rule

$$
\begin{aligned}
E^{\prime \prime}(v) & =m \frac{1 \cdot\left(1-\frac{v^{2}}{c^{2}}\right)^{3 / 2}+v \frac{3}{2}\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2}\left(-\frac{2 v}{c^{2}}\right)}{\left(1-\frac{v^{2}}{c^{2}}\right)^{3}} \\
& =m \frac{1}{\left(1-\frac{v^{2}}{c^{2}}\right)^{3 / 2}}-3 m \frac{v^{2} / c^{2}}{\left(1-\frac{v^{2}}{c^{2}}\right)^{5 / 2}}
\end{aligned}
$$

We get $E^{\prime \prime}(0)=m$. The second-order expansion is therefore

$$
E(v) \approx m c^{2}+\frac{1}{2} m v^{2}
$$

recovering the classical kinetic energy at low velocities.
(b) Different approach: let $u=\frac{v^{2}}{c^{2}}$. Get $E(u)=m c^{2}(1-u)^{-1 / 2}$. Again $E(0)=m c^{2}$, also

$$
\begin{aligned}
\frac{\mathrm{d} E}{\mathrm{~d} u} & =m c^{2} \frac{1}{2}(1-u)^{-3 / 2} \\
\frac{\mathrm{~d}^{2} E}{\mathrm{~d} u^{2}} & =m c^{2} \frac{1}{2} \frac{3}{2}(1-u)^{-5 / 2} \\
\frac{\mathrm{~d}^{3} E}{\mathrm{~d} u^{3}} & =m c^{2} \frac{1}{2} \frac{3}{2} \frac{5}{2}(1-u)^{-7 / 2}
\end{aligned}
$$

and so on. Get:

$$
E(u)=m c^{2}\left[1+\frac{1}{2} u+\frac{1}{2!} \cdot \frac{1 \cdot 3}{2 \cdot 2} u^{2}+\frac{1}{3!} \frac{1 \cdot 3 \cdot 5}{2 \cdot 2 \cdot 2} u^{3}+\cdots\right]
$$

so plugging in $u=\frac{v^{2}}{c^{2}}$, get

$$
\begin{aligned}
E(v) & =m c^{2}\left[1+\frac{1}{2} \frac{v^{2}}{c^{2}}+\frac{3}{8}\left(\frac{v^{2}}{c^{2}}\right)^{2}+\frac{5}{16}\left(\frac{v^{2}}{c^{2}}\right)^{3}+\cdots\right] \\
& =m c^{2}+\frac{1}{2} m v^{2}+m c^{2}\left[\frac{3}{8}\left(\frac{v^{2}}{c^{2}}\right)^{2}+\frac{5}{16}\left(\frac{v^{2}}{c^{2}}\right)^{3}+\cdots\right]
\end{aligned}
$$

Remark: It is very useful to keep the rest of the series in terms of the small parameter $\frac{v^{2}}{c^{2}}$ instead of in terms of v^{2}. We get the series of relativistic corrections to the classical Newtonian formula $\frac{1}{2} m v^{2}$.
(5) Example: suppose we know $f^{\prime}(x)=f(x)$ and $f(0)=1$. What is the Taylor expansion?

Solution: If $f^{\prime}(x)=f(x)$ then $f^{\prime \prime}(x)=f^{\prime}(x)=f(x)$ and $f^{(k+1)}(x)=$ $\frac{d}{d x} f^{(k)}(x)=\frac{d}{d x} f(x)=f(x)$ by induction. So $f^{(k)}(0)=1$ for all k. So

$$
f(x) \approx 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots
$$

Remark: this looks silly: we know that $f^{\prime}(x)=e^{x}$. But the same approach applies to $f^{\prime}(x)=f(x)+f^{2}(x)$. Then $f^{\prime}(0)=2$, and

$$
f^{\prime \prime}(x)=f^{\prime}(x)+2 f(x) f^{\prime}(x)=f(x)+f^{2}(x)+2 f(x)\left(2\left(f(x)+f^{2}(x)\right)=f(x)+3 f^{2}(x)+2 f^{3}(x)\right.
$$ so $f^{\prime \prime}(0)=6$ and we get to second order $f(x) \approx 1+2 x+3 x^{2}$ with no formula for f.

