1.

Lior Silberman’s Math 539: Problem Set 3 (due 30/3/2016)

Convergence Dirichlet Series

(Convergence of Dirichlet series) Let D(s) = ¥,,~ a,n~* be a formal Dirichlet series. We will

study the convergence of this series as s varies in C.

(a) Suppose that D(s) converges absolutely at some so = 0p + it. Show that D(s) converges
uniformly absolutely in the closed half-plane R(s) = ¢ > 0y.

(b) Conclude that there is an abcissa of absolute convergence G,c € [—oo,+o0] such that one
of the following holds: (1) (G, = o) D(s) does not converge absolutely for any s € C; (2)
(Oac € (—o0,+00))D(s) converges absolutely exactly in the half-plane ¢ > G, or G > Oyc;
(3) (0yc = —o0) D(s) converges absolutely in C. In cases (2),(3) the convergence is uniform
in any half-plane whose closure is a proper subset of the domain of convergence.

(c) Suppose that D(s) converges at some so. Show that D(s) converges in the open half-plane
o > 0y, locally uniformly in every half-plane of the form ¢ > o] > 0y, and that D(s)
converges absolutely in the half-plane o > oy + 1.

(d) Conclude that there is an absicssa of convergence O, € |—oo, 00| such that on of the follow-
ing holds: (1) (0. = ) D(s) does not converge for any s € C; (2) (0, € (—o0,+0))D(s)
converges in the open half-plane ¢ > o, and diverges in the open half-plane ¢ < o;
the convergence is locally uniform in any half-plane 6 > 0] > 0, (3) (G = —0) D(s)
converges absolutely in C. In cases (2) the convergence is uniform in any half-plane. Fur-
thermore, o. and o, are either both —oo, both +oo, or both finite, and in the latter case
Oc < Oyc < O+ .

Let D(s) have abcissa of absolute convergence .
(a) Suppose Gy > 0. Show that ¥, < [an| < ¢ x%<E.

(b) Suppose Oac < 1 ShOW that Zn>x ’an| n_l <<£ xcac‘i‘g.

(Convergence of sums and products) Let D1(s) = Y,,>;a,n~* and Do (s) = Y,,>1 bpn™*, and let

(D1 +D3) (s) =Yu>1 (an+by)n™*, (D1-D2)(s) = ¥,>1 can~* Where ¢ = a x b is the Dirichlet

convolution.

(a) Show that the domain of absolute convergence of D| + D, and D1D; is at least the inter-
section of the domains of absolute convergence of Dy, D,.

(**b) (Mertens) Suppose that Dy, D, have abcissa of convergence 6.. Show that D{D; has
abcissa of convergence at most o, + %

(Uniqueness of Dirichlet series) Suppose that D(s) = },,~ a,n~* converges somewhere.

(a) Suppose that a, = 0if n < N and ay # 0. Show that limg ;) ., N°D(s) = an.

(b) Suppose that D,(s) = Y~ byn~* also converges somewhere, and that D(s;) = Da(sy)
for {s;} in the common domain of convergence such that limy_,.. R(s;) = c. Show that
a, = b, for all n.
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5.

(Landau’s Theorem; proof due to K. Kedlaya) Let D(s) = Y,,~1 a,n~* have non-negative coef-

ficients.

(a) Show that 6. = o, for this series.

(b) Suppose that D(s) extends to a holomorphic function in a small ball |s — .| < €. Show
that if s < 0, < 0 and s, 0 are close enough to o, then s is in the domain of convergence
of the Taylor expansion of D at ©.

(c) Using that DW(c) =Y, a,(—logn)*n=°, write D(s) as the sum of a two-variable series
with positive terms.

(d) Changing the order of summation, show that D(s) converges at s, a contradiction to the
definition of o.

(e) Obtain Landau’s Theorem: if D(s) has positive coefficients, has abcissa of convergence
O, and agrees with a holomorphic function in some punctured neighbourhood of o, then
the singularity at s = O is not removable.

Hadamard’s Three-Line Theorem and the convexity bound

Let f be continuous in the strip a < R(z) < b, holomorphic in the interior of the strip. Suppose

that |f(x+iy)| = ¢°0") ag y — oo in the strip.

(a) (Simple version) Suppose that My = sup {|f(z)| : R(z) = a} and M| =sup{|f(z)| : R(z) =
as finite. Show that for x, = (1 —t)a+1b (¢t € [0, 1]) we have

|+ iy)| < MM}
(Hint: apply the maximum principle to the function
z=b  z=a
8¢ (Z) — f(Z)MObfaMlafbe—ezz )

(b) (f growing) Suppose now that |(a-+iy)| < [y|™, | f(b+iv)| < |y|™ where mg,m; > 0.
Show that

|f G+ iy) | < [y ™
where m; = (1 —t)mg+tm;. (Hint: multiply and divide by functions of the form I'(az+ 3)
for appropriate o, f3).

(Application to functional analysis) Let (Q, 1) be a measure space and 1 < p,q < oo satisfy
119 + (l] = 1. Show that for f € LP(u), g € LY(u) we have Holder’s inequality,

[ 1seldu <171, gl

(Hint: Consider F(z) = [, |f(®)]"*]g(®)]?" " du(w) on the strip 0 < x < 1).
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Counting with Dirichlet Series

The following problems apply Theorem [I13|of the notes.

8.

10.

PS1, problems 3, 4.

(a) Estimate (with error terms) Y, ¢(n), <, @, Yo<x %

(b) Show 1Y, di(n) = Pi(logx)+ O(x’%) where P is a polynomial of degree k — 1.
(¢) Show that ¥, 0¢(n) = Cx! 7% + O(xP) for some B < a.

PS1, problem 8,9.

(a) Let a, € C satisfy |a,| < p~© and let f(n)
cx+ 0()(3176) where ¢ =[], (1 + %)

(b) A, denote a set of representative for the isomorphism classes of abelian groups of order n,
A, = #A, the number of isomorphism classes. Show that } ,, -, A, = cx+ O (xl/ 2) where

c= Hf:z C(k)

(2014 Mikl6s Schweitzer competition) For n > 2 let f(n) be the number of representations of
n as a product of an ordered tuple of integers at least 2 and set f(1) = 1. Show that

Y. f(n) = Cx*+lower order ,

n<x

where a > 1 satisfies { (o) = 2.

déf Hp\n (1 +ap)' Show that Z"SXf(n) -
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