
Lior Silberman’s Math 539: Problem Set 3 (due 30/3/2016)

Convergence Dirichlet Series

1. (Convergence of Dirichlet series) Let D(s) = ∑n≥1 ann−s be a formal Dirichlet series. We will
study the convergence of this series as s varies in C.
(a) Suppose that D(s) converges absolutely at some s0 = σ0 + it. Show that D(s) converges

uniformly absolutely in the closed half-plane ℜ(s) = σ ≥ σ0.
(b) Conclude that there is an abcissa of absolute convergence σac ∈ [−∞,+∞] such that one

of the following holds: (1) (σac = ∞) D(s) does not converge absolutely for any s ∈C; (2)
(σac ∈ (−∞,+∞))D(s) converges absolutely exactly in the half-plane σ > σac or σ ≥ σac;
(3) (σac =−∞) D(s) converges absolutely in C. In cases (2),(3) the convergence is uniform
in any half-plane whose closure is a proper subset of the domain of convergence.

(c) Suppose that D(s) converges at some s0. Show that D(s) converges in the open half-plane
σ > σ0, locally uniformly in every half-plane of the form σ ≥ σ1 > σ0, and that D(s)
converges absolutely in the half-plane σ > σ0 +1.

(d) Conclude that there is an absicssa of convergence σc ∈ [−∞,∞] such that on of the follow-
ing holds: (1) (σc = ∞) D(s) does not converge for any s ∈ C; (2) (σc ∈ (−∞,+∞))D(s)
converges in the open half-plane σ > σc and diverges in the open half-plane σ < σc;
the convergence is locally uniform in any half-plane σ ≥ σ1 > σc (3) (σac = −∞) D(s)
converges absolutely in C. In cases (2) the convergence is uniform in any half-plane. Fur-
thermore, σc and σac are either both −∞, both +∞, or both finite, and in the latter case
σc ≤ σac ≤ σc +1.

2. Let D(s) have abcissa of absolute convergence σac.
(a) Suppose σac ≥ 0. Show that ∑n≤x |an| �ε xσac+ε .
(b) Suppose σac < 1. Show that ∑n>x |an|n−1�ε xσac+ε .

3. (Convergence of sums and products) Let D1(s) = ∑n≥1 ann−s and D2(s) = ∑n≥1 bnn−s, and let
(D1 +D2)(s) = ∑n≥1 (an +bn)n−s, (D1 ·D2)(s) = ∑n≥1 cnn−s where c = a∗b is the Dirichlet
convolution.
(a) Show that the domain of absolute convergence of D1 +D2 and D1D2 is at least the inter-

section of the domains of absolute convergence of D1,D2.
(**b) (Mertens) Suppose that D1,D2 have abcissa of convergence σc. Show that D1D2 has

abcissa of convergence at most σc +
1
2 .

4. (Uniqueness of Dirichlet series) Suppose that D(s) = ∑n≥1 ann−s converges somewhere.
(a) Suppose that an = 0 if n < N and aN 6= 0. Show that limℜ(s)→∞ NsD(s) = aN .
(b) Suppose that D2(s) = ∑n≥1 bnn−s also converges somewhere, and that D(sk) = D2(sk)

for {sk} in the common domain of convergence such that limk→∞ ℜ(sk) = ∞. Show that
an = bn for all n.
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5. (Landau’s Theorem; proof due to K. Kedlaya) Let D(s) = ∑n≥1 ann−s have non-negative coef-
ficients.
(a) Show that σc = σac for this series.
(b) Suppose that D(s) extends to a holomorphic function in a small ball |s−σc| < ε . Show

that if s < σc < σ and s,σ are close enough to σc then s is in the domain of convergence
of the Taylor expansion of D at σ .

(c) Using that D(k)(σ) = ∑
∞
n=1 an(− logn)kn−σ , write D(s) as the sum of a two-variable series

with positive terms.
(d) Changing the order of summation, show that D(s) converges at s, a contradiction to the

definition of σc.
(e) Obtain Landau’s Theorem: if D(s) has positive coefficients, has abcissa of convergence

σc, and agrees with a holomorphic function in some punctured neighbourhood of σc then
the singularity at s = σc is not removable.

Hadamard’s Three-Line Theorem and the convexity bound

6. Let f be continuous in the strip a≤ℜ(z)≤ b, holomorphic in the interior of the strip. Suppose
that | f (x+ iy)|= eo(y2) as y→ ∞ in the strip.
(a) (Simple version) Suppose that M0 = sup{| f (z)| : ℜ(z) = a} and M1 = sup{| f (z)| : ℜ(z) = b}

as finite. Show that for xt = (1− t)a+ tb (t ∈ [0,1]) we have

| f (xt + iy)| ≤M1−t
0 Mt

1 .

(Hint: apply the maximum principle to the function

gε(z) = f (z)M
z−b
b−a
0 M

z−a
a−b
1 e−εz2

).

(b) ( f growing) Suppose now that | f (a+ iy)| � |y|m0 , | f (b+ iy)| � |y|m1 where m0,m1 ≥ 0.
Show that

| f (xt + iy)| � |y|mt

where mt =(1−t)m0+tm1. (Hint: multiply and divide by functions of the form Γ(αz+β )
for appropriate α,β ).

7. (Application to functional analysis) Let (Ω,µ) be a measure space and 1 < p,q < ∞ satisfy
1
p +

1
q = 1. Show that for f ∈ Lp(µ), g ∈ Lq(µ) we have Hölder’s inequality,∫

| f g|dµ ≤ ‖ f‖p ‖g‖q .

(Hint: Consider F(z) =
∫

Ω
| f (ω)|pz |g(ω)|q(1−z) dµ(ω) on the strip 0≤ x≤ 1).
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Counting with Dirichlet Series

The following problems apply Theorem 113 of the notes.
8. PS1, problems 3, 4.

(a) Estimate (with error terms) ∑n≤x φ(n), ∑n≤x
φ(n)

n , ∑n≤x
φ(n)
n2 .

(b) Show 1
x ∑n≤x dk(n) = Pk(logx)+O(x−

1
k ) where Pk is a polynomial of degree k−1.

(c) Show that ∑n≤x σα(n) =Cx1+α +O(xβ ) for some β < α .

9. PS1, problem 8,9.
(a) Let ap ∈ C satisfy

∣∣ap
∣∣ ≤ p−σ and let f (n) def

= ∏p|n (1+ap). Show that ∑n≤x f (n) =

cx+O(x1−σ ) where c = ∏p

(
1+ ap

p

)
.

(b) An denote a set of representative for the isomorphism classes of abelian groups of order n,
An = #An the number of isomorphism classes. Show that ∑n≤x An = cx+O

(
x1/2

)
where

c = ∏
∞
k=2 ζ (k).

10. (2014 Miklós Schweitzer competition) For n≥ 2 let f (n) be the number of representations of
n as a product of an ordered tuple of integers at least 2 and set f (1) = 1. Show that

∑
n≤x

f (n) =Cxα + lower order ,

where α > 1 satisfies ζ (α) = 2.

50


