Lior Silberman's Math 539: Problem Set 3 (due 30/3/2016)

Convergence Dirichlet Series

- 1. (Convergence of Dirichlet series) Let $D(s) = \sum_{n \ge 1} a_n n^{-s}$ be a formal Dirichlet series. We will study the convergence of this series as *s* varies in \mathbb{C} .
 - (a) Suppose that D(s) converges absolutely at some $s_0 = \sigma_0 + it$. Show that D(s) converges uniformly absolutely in the closed half-plane $\Re(s) = \sigma \ge \sigma_0$.
 - (b) Conclude that there is an *abcissa of absolute convergence* σ_{ac} ∈ [-∞, +∞] such that one of the following holds: (1) (σ_{ac} = ∞) D(s) does not converge absolutely for any s ∈ C; (2) (σ_{ac} ∈ (-∞, +∞))D(s) converges absolutely exactly in the half-plane σ > σ_{ac} or σ ≥ σ_{ac}; (3) (σ_{ac} = -∞) D(s) converges absolutely in C. In cases (2),(3) the convergence is uniform in any half-plane whose closure is a proper subset of the domain of convergence.
 - (c) Suppose that D(s) converges at some s_0 . Show that D(s) converges in the open half-plane $\sigma > \sigma_0$, locally uniformly in every half-plane of the form $\sigma \ge \sigma_1 > \sigma_0$, and that D(s) converges absolutely in the half-plane $\sigma > \sigma_0 + 1$.
 - (d) Conclude that there is an *absicssa of convergence* σ_c ∈ [-∞,∞] such that on of the following holds: (1) (σ_c = ∞) D(s) does not converge for any s ∈ C; (2) (σ_c ∈ (-∞, +∞))D(s) converges in the open half-plane σ > σ_c and diverges in the open half-plane σ < σ_c; the convergence is locally uniform in any half-plane σ ≥ σ₁ > σ_c (3) (σ_{ac} = -∞) D(s) converges absolutely in C. In cases (2) the convergence is uniform in any half-plane. Furthermore, σ_c and σ_{ac} are either both -∞, both +∞, or both finite, and in the latter case σ_c ≤ σ_{ac} ≤ σ_c ≤ σ_c + 1.
- 2. Let D(s) have abcissa of absolute convergence σ_{ac} .
 - (a) Suppose $\sigma_{ac} \ge 0$. Show that $\sum_{n \le x} |a_n| \ll_{\varepsilon} x^{\sigma_{ac} + \varepsilon}$.
 - (b) Suppose $\sigma_{ac} < 1$. Show that $\sum_{n>x} |a_n| n^{-1} \ll_{\varepsilon} x^{\sigma_{ac}+\varepsilon}$.
- 3. (Convergence of sums and products) Let $D_1(s) = \sum_{n \ge 1} a_n n^{-s}$ and $D_2(s) = \sum_{n \ge 1} b_n n^{-s}$, and let $(D_1 + D_2)(s) = \sum_{n \ge 1} (a_n + b_n) n^{-s}$, $(D_1 \cdot D_2)(s) = \sum_{n \ge 1} c_n n^{-s}$ where c = a * b is the Dirichlet convolution.
 - (a) Show that the domain of absolute convergence of $D_1 + D_2$ and D_1D_2 is at least the intersection of the domains of absolute convergence of D_1, D_2 .
 - (**b) (Mertens) Suppose that D_1, D_2 have abcissa of convergence σ_c . Show that D_1D_2 has abcissa of convergence at most $\sigma_c + \frac{1}{2}$.
- 4. (Uniqueness of Dirichlet series) Suppose that $D(s) = \sum_{n>1} a_n n^{-s}$ converges somewhere.
 - (a) Suppose that $a_n = 0$ if n < N and $a_N \neq 0$. Show that $\lim_{\Re(s) \to \infty} N^s D(s) = a_N$.
 - (b) Suppose that $D_2(s) = \sum_{n \ge 1} b_n n^{-s}$ also converges somewhere, and that $D(s_k) = D_2(s_k)$ for $\{s_k\}$ in the common domain of convergence such that $\lim_{k\to\infty} \Re(s_k) = \infty$. Show that $a_n = b_n$ for all n.

- 5. (Landau's Theorem; proof due to K. Kedlaya) Let $D(s) = \sum_{n \ge 1} a_n n^{-s}$ have non-negative coefficients.
 - (a) Show that $\sigma_c = \sigma_{ac}$ for this series.
 - (b) Suppose that D(s) extends to a holomorphic function in a small ball $|s \sigma_c| < \varepsilon$. Show that if $s < \sigma_c < \sigma$ and s, σ are close enough to σ_c then *s* is in the domain of convergence of the Taylor expansion of *D* at σ .
 - (c) Using that $D^{(k)}(\sigma) = \sum_{n=1}^{\infty} a_n (-\log n)^k n^{-\sigma}$, write D(s) as the sum of a two-variable series with positive terms.
 - (d) Changing the order of summation, show that D(s) converges at *s*, a contradiction to the definition of σ_c .
 - (e) Obtain *Landau's Theorem*: if D(s) has positive coefficients, has abcissa of convergence σ_c , and agrees with a holomorphic function in some punctured neighbourhood of σ_c then the singularity at $s = \sigma_c$ is not removable.

Hadamard's Three-Line Theorem and the convexity bound

- 6. Let *f* be continuous in the strip $a \le \Re(z) \le b$, holomorphic in the interior of the strip. Suppose that $|f(x+iy)| = e^{o(y^2)}$ as $y \to \infty$ in the strip.
 - (a) (Simple version) Suppose that $M_0 = \sup \{|f(z)| : \Re(z) = a\}$ and $M_1 = \sup \{|f(z)| : \Re(z) = b\}$ as finite. Show that for $x_t = (1-t)a + tb$ ($t \in [0,1]$) we have

$$|f(x_t+iy)| \leq M_0^{1-t}M_1^t$$
.

(Hint: apply the maximum principle to the function

$$g_{\varepsilon}(z) = f(z)M_0^{\frac{z-b}{b-a}}M_1^{\frac{z-a}{a-b}}e^{-\varepsilon z^2})$$

(b) (f growing) Suppose now that $|f(a+iy)| \ll |y|^{m_0}$, $|f(b+iy)| \ll |y|^{m_1}$ where $m_0, m_1 \ge 0$. Show that

$$|f(x_t+iy)|\ll |y|^{m_t}$$

where $m_t = (1-t)m_0 + tm_1$. (Hint: multiply and divide by functions of the form $\Gamma(\alpha z + \beta)$ for appropriate α, β).

7. (Application to functional analysis) Let (Ω, μ) be a measure space and $1 < p, q < \infty$ satisfy $\frac{1}{p} + \frac{1}{q} = 1$. Show that for $f \in L^p(\mu)$, $g \in L^q(\mu)$ we have *Hölder's inequality*,

$$\int |fg| \,\mathrm{d}\mu \leq \|f\|_p \,\|g\|_q \,.$$

(Hint: Consider $F(z) = \int_{\Omega} |f(\omega)|^{pz} |g(\omega)|^{q(1-z)} d\mu(\omega)$ on the strip $0 \le x \le 1$).

Counting with Dirichlet Series

The following problems apply Theorem 113 of the notes.

- 8. PS1, problems 3, 4.
 - (a) Estimate (with error terms) $\sum_{n \le x} \phi(n)$, $\sum_{n \le x} \frac{\phi(n)}{n}$, $\sum_{n \le x} \frac{\phi(n)}{n^2}$. (b) Show $\frac{1}{x} \sum_{n \le x} d_k(n) = P_k(\log x) + O(x^{-\frac{1}{k}})$ where P_k is a polynomial of degree k-1. (c) Show that $\sum_{n \le x} \sigma_{\alpha}(n) = Cx^{1+\alpha} + O(x^{\beta})$ for some $\beta < \alpha$.
- 9. PS1, problem 8,9.
 - (a) Let $a_p \in \mathbb{C}$ satisfy $|a_p| \leq p^{-\sigma}$ and let $f(n) \stackrel{\text{def}}{=} \prod_{p|n} (1+a_p)$. Show that $\sum_{n < x} f(n) =$ $cx + O(x^{1-\sigma})$ where $c = \prod_p \left(1 + \frac{a_p}{p}\right)$.
 - (b) A_n denote a set of representative for the isomorphism classes of abelian groups of order *n*, $A_n = #\mathcal{A}_n$ the number of isomorphism classes. Show that $\sum_{n \le x} A_n = cx + O(x^{1/2})$ where $c = \prod_{k=2}^{\infty} \zeta(k).$
- 10. (2014 Miklós Schweitzer competition) For $n \ge 2$ let f(n) be the number of representations of *n* as a product of an ordered tuple of integers at least 2 and set f(1) = 1. Show that

$$\sum_{n \le x} f(n) = Cx^{\alpha} + \text{lower order},$$

where $\alpha > 1$ satisfies $\zeta(\alpha) = 2$.