Math 412: Problem Set 4 (due 5/10/2016)

Practice

- P1. Let U, V be vector spaces and let $U_1 \subset U, V_1 \subset V$ be subspaces.
 - (a) "Naturally" embed $U_1 \otimes V_1$ in $U \otimes V$.
 - (b) Is $(U \otimes V) / (U_1 \otimes V_1)$ isomorphic to $(U/U_1) \otimes (V/V_1)$?
- P2. Let (\cdot,\cdot) be a non-degenerate bilinear form on a finite-dimensional vector space U, defined by the isomorphism $g\colon U\to U'$ via $(\underline{u},\underline{v})\stackrel{\mathrm{def}}{=} (g\underline{u})\,(\underline{v})$.

 (a) For $T\in\mathrm{End}(U)$ define $T^\dagger=g^{-1}T'g$ where T' is the dual map. Show that $T^\dagger\in\mathrm{End}(U)$
 - (a) For $T \in \text{End}(U)$ define $T^{\dagger} = g^{-1}T'g$ where T' is the dual map. Show that $T^{\dagger} \in \text{End}(U)$ satisfies $(\underline{u}, T\underline{v}) = (T^{\dagger}\underline{u}, \underline{v})$ for all $\underline{u}, \underline{v} \in V$.
 - (b) Show that $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$.
 - (c) Show that the matrix of T^{\dagger} wrt an (\cdot, \cdot) -orthonormal basis is the transpose of the matrix of T in that basis.

Bilinear forms

In problems 1,2 we assume 2 is invertible in F, and fix F-vector spaces V, W.

- 1. (Alternating pairings and symplectic forms) Let V, W be vector spaces, and let $[\cdot, \cdot]: V \times V \to W$ be a bilinear map.
 - (a) Show that $(\forall \underline{u}, \underline{v} \in V : [\underline{u}, \underline{v}] = -[\underline{v}, \underline{u}]) \leftrightarrow (\forall \underline{u} \in V : [\underline{u}, \underline{u}] = 0)$ (Hint: consider $\underline{u} + \underline{v}$). DEF A form satisfying either property is *alternating*. We now suppose $[\cdot, \cdot]$ is alternating. PRAC Show that the *radical* $R = \{\underline{u} \in V \mid \forall \underline{v} \in V : [\underline{u}, \underline{v}] = 0\}$ of the form is a subspace.
 - (b) The form $[\cdot, \cdot]$ is called *non-degenerate* if its radical is $\{\underline{0}\}$. Show that setting $[\underline{u} + R, \underline{v} + R] \stackrel{\text{def}}{=} [\underline{u}, \underline{v}]$ defines a non-degenerate alternating bilinear map $(V/R) \times (V/R) \to W$. RMK Note that you need to justify each claim, starting with "defines".
- 2. (Darboux's Theorem) Suppose now that V is finite-dimensional, and that $[\cdot,\cdot]:V\times V\to F$ is a non-degenerate alternating form.

DEF The *orthogonal complement* of a subspace $U \subset V$ is a set $U^{\perp} = \{\underline{v} \in V \mid \forall \underline{u} \in U : [\underline{u},\underline{v}] = 0\}$. PRAC Show that U^{\perp} is a subspace of V.

- (b) Show that the restriction of $[\cdot,\cdot]$ to U is non-degenerate iff $U\cap U^{\perp}=\{\underline{0}\}$.
- (*c) Suppose that the conditions of (b) hold. Show that $V = U \oplus U^{\perp}$, and that the restriction of $[\cdot,\cdot]$ to U^{\perp} is non-degenerate.
- (d) Let $\underline{u} \in V$ be non-zero. Show that there is $\underline{u}' \in V$ such that $[\underline{u},\underline{u}'] \neq 0$. Find a basis $\{\underline{u}_1,\underline{v}_1\}$ to $U = \operatorname{Span}\{\underline{u},\underline{u}'\}$ in which the matrix of $[\cdot,\cdot]$ is $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
- (e) Show that $\dim_F V = 2n$ for some n, and that V has a basis $\{\underline{u}_i, \underline{v}_i\}_{i=1}^n$ in which the matrix of $[\cdot, \cdot]$ is block-diagonal, with each 2×2 block of the form from (d).

RECAP Only even-dimensional spaces have non-degenerate alternating forms, and up to choice of basis, there is only one such form.

Tensor products

42

- 3. (Preliminary step) Let U, V be finite-dimensional.
 - (a) Construct a natural isomorphism $\operatorname{End}(U \otimes V) \to \operatorname{Hom}(U, U \otimes \operatorname{End}(V))$.
 - SUPP Generalize this to a natural isomorphism $\operatorname{Hom}(U \otimes V_1, U \otimes V_2) \to \operatorname{Hom}(U, U \otimes \operatorname{Hom}(V_1, V_2))$.

4. Let U,V be vector spaces with U finite-dimensional, and let $A \in \text{Hom}(U,U \otimes V)$. Given a basis $\{\underline{u}_j\}_{j=1}^{\dim U}$ of U let $\underline{v}_{ij} \in V$ be defined by $A\underline{u}_j = \sum_i \underline{u}_i \otimes \underline{v}_{ij}$ and define $\text{Tr}A = \sum_{i=1}^{\dim U} \underline{v}_{ii}$. Show that this definition is independent of the choice of basis.

Extra credit

- 5. (Partial traces) Let U,V real vector spaces be equipped with non-degenerate inner products.
 - (a) Show that $\langle u_1 \otimes v_1, u_2 \otimes v_2 \rangle_{U \otimes V} \stackrel{\text{def}}{=} \langle u_1, u_2 \rangle_U \langle v_1, v_2 \rangle_V$ extends to an inner product on $U \otimes V$.
 - (b) Let $A \in \text{End}(U)$, $B \in \text{End}(V)$. Show that $(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}$ (for a definition of the adjoint see practice problem P2).
 - (c) Let $P \in \text{End}(U \otimes V)$, interpreted as an element of $\text{Hom}(U, U \otimes \text{End}(V))$ as in 3(a). Show that $(\text{Tr}_U P)^{\dagger} = \text{Tr}_U (P^{\dagger})$.
 - (*d) [Thanks to J. Karczmarek] Let $\underline{w} \in U \otimes V$ be non-zero, and let $P_{\underline{w}} \in \operatorname{End}(U \otimes V)$ be the orthogonal projection on \underline{w} . It follows from 3(a) that $\operatorname{Tr}_U P_{\underline{w}} \in \operatorname{End}(V)$ and $\operatorname{Tr}_V P_{\underline{w}} \in \operatorname{End}(U)$ are both Hermitian. Show that their non-zero eigenvalues are the same.

Supplementary problems

- A. (Extension of scalars) Let $F \subset K$ be fields. Let V be an F-vectorspace.
 - (a) Considering K as an F-vectorspace (see PS1), we have the tensor product $K \otimes_F V$ (the subscript means "tensor product as F-vectorspaces"). For each $x \in K$ set $x(\alpha \otimes \underline{v}) \stackrel{\text{def}}{=} (x\alpha) \otimes \underline{v}$. Show that this extends to an F-linear map $K \otimes_F V \to K \otimes_F V$ giving $K \otimes_F V$ the structure of a K-vector space. This construction is called "extension of scalars"
 - (b) Let $B \subset V$ be a basis. Show that $\{1 \otimes \underline{v}\}_{\underline{v} \in B}$ is a basis for $K \otimes_F V$ as a K-vectorspace. Conclude that $\dim_K (K \otimes_F V) = \dim_F V$.
 - (c) Let $V_N = \operatorname{Span}_{\mathbb{R}} \left(\{1\} \cup \{\cos(nx), \sin(nx)\}_{n=1}^N \right)$. Then $\frac{d}{dx} : V_N \to V_N$ is not diagonable. Find a different basis for $\mathbb{C} \otimes_{\mathbb{R}} V_N$ in which $\frac{d}{dx}$ is diagonal. Note that the elements of your basis are not "pure tensors", that is not of the form af(x) where $a \in \mathbb{C}$ and $f = \cos(nx)$ or $f = \sin(nx)$.
- B. DEF: An *F-algebra* is a triple $(A, 1_A, \times)$ such that *A* is an *F*-vector space, $(A, 0_A, 1_A +, \times)$ is a ring, and (compatibility of structures) for any $a \in F$ and $x, y \in A$ we have $a \cdot (x \times y) = (a \cdot x) \times y = x \times (a \cdot y)$. Because of the compatibility from now on we won't distinguish the multiplication in *A* and scalar multiplication by elements of *F*.
 - (a) Verify that \mathbb{C} is an \mathbb{R} -algebra, and that $M_n(F)$ is an F-algebra for all F.
 - (b) More generally, verify that if R is a ring, and $F \subset R$ is a subfield then R has the structure of an F-algebra. Similarly, that $\operatorname{End}_F(V)$ is an F-algebra for any vector space V.
 - (c) Let A, B be F-algebras. Give $A \otimes_F B$ the structure of an F-algebra.
 - (d) Show that the map $F \to A$ given by $a \mapsto a \cdot 1_A$ gives an embedding of F-algebras $F \hookrightarrow A$.
 - (e) (Extension of scalars for algebras) Let K be an extension of F. Give $K \otimes_F A$ the structure of a K-algebra.
 - (f) Show that for *V* finite-dimensional, $K \otimes_F \operatorname{End}_F(V) \simeq \operatorname{End}_K(K \otimes_F V)$.
- C. The center Z(A) of a ring is the set of elements that commute with the whole ring.
 - (a) Show that the center of an F-algebra is an F-subspace, containing the subspace $F \cdot 1_A$.
 - (b) Show that the image of $Z(A) \otimes Z(B)$ in $A \otimes B$ is exactly the center of that algebra.