Math 538: Problem Set 1 (due 16/1/2017)

Do a good amount of problems; choose problems based on what you already know and what you need to practice.

Review

- 1. (Rings) All rings are commutative with identity unless specified otherwise (in particular, every subring contains the identity element). Let R be a ring and let $P \triangleleft R$ be a proper prime ideal.
 - (a) Suppose that *P* is of finite index in *R*. Show that *P* is a maximal ideal.
 - (b) Suppose that S is a subring of R. Show that $P \cap S$ is a proper prime ideal of S.
- 2. (Field and Galois Theory) Let L/K be a finite separable extension of fields, and let $\alpha \in L$. Let M_{α} be the map of multiplication by α , thought of as a K-linear endomorphism of L.
 - (a) Show that M_{α} is diagonable, and that its spectrum over a fixed algebraic closure \bar{K} of K consists of the numbers $\{\iota(\alpha)\}_{\iota\in \operatorname{Hom}_K(L,\bar{K})}$.
 - (b) Show that $\operatorname{Tr}_{K}^{L} \alpha = \operatorname{Tr} M_{\alpha}, N_{K}^{L} \alpha = \det M_{\alpha}$.

Quadratic fields

- 3. (The Gaussian Integers)
 - (a) Show that $\mathbb{Z}[i]$ is a Euclidean domain, hence a UFD (hint: show that rounding the real and complex parts of $\frac{z}{w}$ gives a number $q \in \mathbb{Z}[i]$ so that |z - qw| < |w|)
 - (b) Show that $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}.$
 - (c) Let $a, b, c \in \mathbb{Z}$ be pairwise relatively prime and satisfy $a^2 + b^2 = c^2$. Show that $a + bi \in \mathbb{Z}[i]$ is of the form εz^2 for $z \in \mathbb{Z}[i]$, $\varepsilon \in \mathbb{Z}[i]^{\times}$ and obtain the classification of Pythagorean triples.
 - (d) Let p be a rational prime and consider the ring $\mathbb{Z}[i]/p\mathbb{Z}[i]$ (verify that it has order p^2). Verify that the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Z}[i]$ induces an embedding $\mathbb{Z}/p\mathbb{Z} \hookrightarrow \mathbb{Z}[i]/p\mathbb{Z}[i]$, and hence a homomorphism $\mathbb{F}_p[x]/(x^2+1) \to \mathbb{Z}[i]/p\mathbb{Z}[i]$ where *x* maps to $i+p\mathbb{Z}[i]$.
 - (e) Show that this map is an isomorphism. Check that $\mathbb{F}_p[x]/(x^2+1)$ is a field iff $p \equiv 3(4)$ and obtain a different proof that a rational prime is inert in $\mathbb{Q}(i)$ iff it is 3 mod 4.
- 4. (The Eisenstein Integers) Let $\omega = \frac{-1+\sqrt{-3}}{2}$ be a primitive cube root of unity, $K = \mathbb{Q}(\omega)$,
 - (a) Show that $\mathbb{Z}[\omega]$ is the set of algebraic integers in *K*.

 - (b) Check that $N_{\mathbb{Q}}^{K}(a+b\omega) = a^2 ab + b^2$. (c) Realizing $\mathbb{Z}[\omega]$ as a lattice in \mathbb{C} let $\mathcal{F} = \{z \in \mathbb{C} \mid \forall \alpha \in \mathbb{Z}[\omega] : |z| \le |z-\alpha|\}$ be the set of complex numbers closer to zero than to any other element of the lattice. Verify that: (i) \mathcal{F} is closed, and is a polygon hence equal to the closure of its interior.
 - (ii) $\mathbb{C} = \bigcup_{\alpha \in \mathbb{Z}[\omega]} \mathcal{F} + \alpha$.
 - (iii) For any non-zero $\alpha \in \mathbb{Z}[\omega]$, $\mathcal{F} \cap (\mathcal{F} + \alpha) \subset \partial \mathcal{F}$ (hint: if z is in the intersection it is equally close to $0, \alpha$)..
 - (d) Show that for any $z \in \mathcal{F}$, $|z| = \sqrt{Nz} < 1$. Conclude that $\mathbb{Z}[\omega]$ is a Euclidean domain, hence a UFD.
 - (e) Show that $\mathbb{Z}[\boldsymbol{\omega}]^{\times} = \{\pm 1, \pm \boldsymbol{\omega}, \pm \boldsymbol{\omega}^2\}.$ (continued)

(f) Classify the primes of $\mathbb{Z}[\omega]$ following the argument for the Gaussian integers. To check which rational primes remain prime in this ring use both the argument from class (using congruence conditions to rule out $p = a^2 - ab + b^2$ in one case, and the cube root of unity mod *p* to show that *p* does factor in the other) and the argument from 3(d),(e) (examine the ring $\mathbb{Z}[\omega]/p\mathbb{Z}[\omega]$ to see if it is a field).

The following exercise is of central importance.

- 5. Let K/\mathbb{Q} be a quadratic extension.
 - (a) Show that $K = \mathbb{Q}\left(\sqrt{d}\right)$ for a unique square-free integer $d \neq 1$.
 - (b) Show that $\mathcal{O} = \mathbb{Z} \oplus \mathbb{Z}\sqrt{d} \subset K$ is a subring generated by a Q-basis of *K* (an "order"), and that all its elements are algebraic integers.
 - (c) Let $a, b \in \mathbb{Q}$. Show that $a + b\sqrt{d}$ is an algebraic integer iff $2a, a^2 db^2 \in \mathbb{Z}$, and that this forces $2b \in \mathbb{Z}$.
 - (d) Show that $\mathcal{O}_K = \mathbb{Z} \oplus \mathbb{Z} \sqrt{d}$ unless $d \equiv 1$ (4), in which case $\mathcal{O}_K = \mathbb{Z} \oplus \mathbb{Z} \frac{1+\sqrt{d}}{2} = \left\{ \frac{a+b\sqrt{d}}{2} \mid a, b \in \mathbb{Z}, a \equiv b$ (2)
 - (e) Show that if d < -3, \mathcal{O}_K has no units except for ± 1 .
 - (f) Let p be an odd rational prime not dividing d. Find a representation of $\mathcal{O}_K/p\mathcal{O}_K$ a-la 3(e) and conclude that $p\mathcal{O}_K$ is a prime ideal iff d is not a square mod p. Now apply quadratic reciprocity to get a criterion for the splitting or primes.
 - RMK In fact, it is possible to prove the law of quadratic reciprocity starting from this observation.

The following exercize is less important.

- 6. (The "other" quadratic extension) Let A detnote the ring $\mathbb{Q} \oplus \mathbb{Q}$, with pointwise addition and multiplication (this is the case d = 1 of problem 5).
 - (a) Find a zero-divisor in A it is not a field.
 - (b) Show that the subring O = Z ⊕ Z is precisely the set of x ∈ A which are integral over Z. (Hint: find the minimal polynomial of (a,b) ∈ A).
 - (c) Let $P \triangleleft \mathcal{O}$ be a prime ideal of finite index. Show that *P* is of the form $p\mathbb{Z} \oplus \mathbb{Z}$ or $\mathbb{Z} \oplus p\mathbb{Z}$ for a rational prime *p* (hint: consider the idempotents in \mathcal{O}).
 - (d) Show that \mathcal{O} has non-zero prime ideals of infinite index. In fact, find proper prime ideals P, Q such that $(0) \subsetneq P \subsetneq Q \subsetneq A$.

Cubic example

7. Let $K = \mathbb{Q}(\sqrt[3]{2})$. Show by hand that $\mathcal{O}_K = \mathbb{Z}[\sqrt[3]{2}]$.