Math 538: Problem Set 3

Review: Ideals and primes

Fix a ring *R*

- 1. (The product operation on ideals)
 - (a) Show that the operation of multiplication of ideals in *R* is commutative and associative, and has the identity element *R*. If *R* is an integral domain show that $IJ \neq (0)$ unless I = (0) or J = (0).
 - (b) Now let P, I, J be ideals of R with P prime and $P \supset IJ$. Show that $P \supset I$ or $P \supset J$.
 - (c) Extend (b) to the case of $P \supset \prod_{i=1}^{n} I_i$ where I_i is a finite set of ideals.
- 2. (The CRT)
 - (a) Let I_1, \ldots, I_k be ideals, and suppose that $I_i + I_j = R$ where $i \neq j$. Show that $\prod_{i=1}^k I_i = \bigcap_{i=1}^k I_i$ and that the natural map $R / \bigcap_{i=1}^k I_i \to \bigoplus_{i=1}^k R / I_i$ is a well-defined isomorphism of rings.
 - (b) Suppose that $\sum_{i=1}^{k} I_i = R$, and let $n_i \in \mathbb{Z}_{\geq 1}$. Show that $\sum_{i=1}^{k} I_i^{n_i} = R$.

Unique factorization

Let L/K be an extension of number fields.

- 3. (Primes above and below)
 - (a) Let $\mathfrak{A} \triangleleft \mathcal{O}_L$ be a non-zero proper ideal. Show that $\mathfrak{A} \cap K = \mathfrak{A} \cap \mathcal{O}_K$ and that this is a non-zero proper ideal of \mathcal{O}_K .
 - (b) Let $\mathfrak{P} \triangleleft \mathcal{O}_L$ be a non-zero prime ideal. Show that $\mathfrak{p} = \mathfrak{P} \cap \mathcal{O}_K$ is a prime ideal of \mathcal{O}_K . We say that \mathfrak{P} *lies above* \mathfrak{p} and write $\mathfrak{P}|\mathfrak{p}$.
 - (c) Show that \mathfrak{P} lies above \mathfrak{p} iff $\mathfrak{P}|\mathfrak{p}\mathcal{O}_L$ as ideals of \mathcal{O}_L .
- 4. The map $\mathfrak{a} \mapsto \mathfrak{a} \mathcal{O}_K$.
 - (a) Let $\mathfrak{a} \triangleleft \mathcal{O}_K$ be a proper ideal. Show that there is $\gamma \in K \setminus \mathcal{O}_K$ such that $\gamma \mathfrak{a} \subset \mathcal{O}_K$, and conclude that $\mathfrak{a}\mathcal{O}_L$ is a proper ideal of \mathcal{O}_L .
 - (b) Let $\mathfrak{a}, \mathfrak{b}$ be (fractional) ideals of \mathcal{O}_K . Show that $(\mathfrak{ab})\mathcal{O}_L = (\mathfrak{a}\mathcal{O}_L)(\mathfrak{b}\mathcal{O}_L)$.
 - (c) Let $\mathfrak{a}, \mathfrak{b}$ be ideals of \mathcal{O}_K . Comparing prime factorizations in $\mathcal{O}_K, \mathcal{O}_L$ show that $\mathfrak{a}\mathcal{O}_L | \mathfrak{b}\mathcal{O}_L \Rightarrow \mathfrak{a}|\mathfrak{b}$. Conclude that the map $\mathfrak{a} \to \mathfrak{a}\mathcal{O}_L$ is injective on fractional ideals.
 - (d) Let \mathfrak{a} be an ideal of \mathcal{O}_K . Show that $\mathfrak{a}\mathcal{O}_L \cap \mathcal{O}_K = \mathfrak{a}$.

Localization

- 5. (Localization at a prime) Let $\mathfrak{p} \triangleleft \mathcal{O}_K$ be a prime of *K*.
 - (a) Show that $\mathcal{O}_{K,\mathfrak{p}} = \left\{ \frac{\alpha}{s} \mid \alpha, s \in \mathcal{O}_K, s \notin \mathfrak{p} \right\}$ is a subring of *K*. It is called the *localization* of \mathcal{O}_K at \mathfrak{p} .
 - (b) Show that $\mathfrak{p}\mathcal{O}_{K,\mathfrak{p}}$ is an ideal in $\mathcal{O}_{K,\mathfrak{p}}$, and that its complement consists of $(\mathcal{O}_{K,\mathfrak{p}})^{\times}$. Conclude that $\mathcal{O}_{K,\mathfrak{p}}$ is a *local ring*: it has a unique maximal ideal.

RMK The localization of any ring at a prime ideal is a local ring.

(c) Let $x \in K^{\times}$. By considering the prime factorization of the fractional ideal (*x*) show that at least one of $x, x^{-1} \in \mathcal{O}_{K,p}$.

DEF A subring of a field satisfying the property of (c) is called a valuation ring.

(**d) Show that every ideal of $\mathcal{O}_{K,\mathfrak{p}}$ is of the form $(\mathfrak{p}\mathcal{O}_{K,\mathfrak{p}})^k$ for some $k \ge 0$.

(e) Let *L* be a finite extension of *K*. Show that $\{\frac{x}{s} \mid x \in \mathcal{O}_L, s \in \mathcal{O}_K \setminus \mathfrak{p}\}$ is a subring of *L* (the localization of \mathcal{O}_L at \mathfrak{p}), finitely generated as an $\mathcal{O}_{K,\mathfrak{p}}$ -module, and use the structure theory of modules over a PID to conclude that it is of the form $\mathcal{O}_{K,\mathfrak{p}}^n$ where n = [L:K].

Completion

- 6. Let (X,d) be a metric space, (\hat{X},\hat{d}) its metric completion. Let (Y,d_Y) be a complete metric space.
 - (a) Let $f: X^n \to Y$ be uniformly continuous on balls: Given $z \in X$ and $\varepsilon, R > 0$ there is $\delta > 0$ such that if $\underline{x}, \underline{x}' \in \mathbb{R}^n$ satisfy for all *i* that $d(x_i, x'_i) < \delta$ for $d(z, x_i), d(z, x'_i) \leq R$ then

$$d_Y(f(\underline{x}), f(\underline{x}')) < \varepsilon$$

Show that *f* extends uniquely to a continuous function $\hat{f}: \hat{X}^n \to Y$.

- (b) Suppose that X is also a group, and that the map $(x,x') \to x^{-1}x'$ is uniformly continuous. Show that \hat{X} has a unique group structure continuosly extending that of X.
- (c) In the setting of (b), let H < X be a subgroup. Show that the closure of H in \hat{X} is a subgroup, and that if H is normal in X then the closure is normal in \hat{X} .
- 7. (Completion of a ring) Let *R* be a ring, $I \triangleleft R$ an ideal. Suppose that $\bigcap_{n \ge 1} I^n = (0)$. Let $\hat{R}_I = \{(x_n) \in \prod_{n \ge 1} R/I^n \mid \forall n \ge m : (x_n x_m) \in I^m\}$, and let $\pi_n : \hat{R}_I \to R/I^n$ be the projection on the *n*th coordinate.
 - (a) For $n \ge 2$, let $f_n : R/I^n \to R/I^{n-1}$ be the natural quotient map. Show that $f_{n+1} \circ \pi_{n+1} = \pi_n$ for all $n \ge 1$.
 - (b) Let *S* be a ring equipped with a system of ring homomorphisms $\varphi_n \colon S \to R/I^n$ such that $f_{n+1} \circ \varphi_{n+1} = \varphi_n$. Show that there exists a unique homomorphism $F \colon S \to \hat{R}_I$ such that $\varphi_n = \pi_n \circ F$ for all *n*.
 - (c) Show that a pair $(\hat{R}_I, (\pi_n)_{n=1}^{\infty})$ satisfying (a),(b) is unique up to a unique isomorphism. It is called the *completion* of *R* at the ideal *I*.
 - (d) Show that the "diagonal map" $\Delta: R \to \hat{R}_I$ where $\pi_n \circ \Delta$ is the quotient map $R \to R/I^n$ is an injective ring homomorphism. Conclude that π_n is surjective.
 - (e) Show that \hat{R}_I equipped with the metric $d((x_n), (y_n)) = e^{-\min\{n|x_n \neq y_n\}}$ is the metric completion of R with respect to the metric $d(x, y) = e^{-\max\{n|(x-y)\in I^n\}}$. Here we take the conventions that $I^0 = R$, that the minimum of the empty set and the maximu of \mathbb{N} are infinity and that $e^{-\infty} = 0$.