Lior Silberman's Math 412: Problem Set 5 (due 15/10/2019)

Practice

- P1. Let $U = \text{Span}_F \{\underline{u}_1, \underline{u}_2\}$ be two-dimensional. Show that the element $\underline{u}_1 \otimes \underline{u}_1 + \underline{u}_2 \otimes \underline{u}_2 \in U \otimes U$ is not a pure tensor, that is not of the form $\underline{u} \otimes \underline{v}$ for any $\underline{u}, \underline{v} \in U$.
- P2. Let $\iota: U \times V \to U \otimes V$ be the standard inclusion map $(\iota(\underline{u}, \underline{v}) = \underline{u} \otimes \underline{v})$. Show that $\iota(\underline{u}, \underline{v}) = 0$ iff $\underline{u} = \underline{0}_U$ or $\underline{v} = \underline{0}_V$ and that for non-zero vectors we have $\iota(\underline{u}, \underline{v}) = \iota(\underline{u}', \underline{v}')$ iff $\underline{u}' = \alpha \underline{u}$ and $\underline{v}' = \alpha^{-1} \underline{v}$ for some $\alpha \in F^{\times}$.
- P3. Let U, V be finite-dimensional spaces and let $A \in \text{End}(U), B \in \text{End}(V)$.
 - (a) Construct a map $A \oplus B \in \text{End}_F(U \oplus V)$ restricting to A, B on the images of U, V in $U \oplus V$.
 - (b) Show that $\operatorname{Tr}(A \oplus B) = \operatorname{Tr}(A) + \operatorname{Tr}(B)$.
 - (c) Evaluate det $(A \oplus B)$.

Tensor products of maps

- 1. Let U, V be finite-dimensional spaces, and let $A \in \text{End}(U)$, $B \in \text{End}(V)$.
 - (a) Show that $(\underline{u}, \underline{v}) \mapsto (A\underline{u}) \otimes (B\underline{v})$ is bilinear, and obtain a linear map $A \otimes B \in \text{End}(U \otimes V)$.
 - (b) Suppose A, B are diagonable. Using an appropriate basis for U ⊗ V, Obtain a formula for det(A ⊗ B) in terms of det(A) and det(B).
 - (c) Extending (a) by induction, show for any $A \in \text{End}_F(V)$, the map $A^{\otimes k}$ induces maps $\text{Sym}^k A \in \text{End}(\text{Sym}^k V)$ and $\bigwedge^k A \in \text{End}(\bigwedge^k V)$.
 - (*d) Show that the formula of (b) holds for all A, B.
 - SUPP (Notation continued from supplement to PS4) Let $V_K = K \otimes_F V$ be an extension of scalars. For $T \in \text{End}_F(V)$ let $T_K = \text{Id}_K \otimes T_K$. Show that $T_K \in \text{End}_K(V_K)$, and that the natural inclusions $\text{Ker}(T), \text{Im}(T) \subset V$ extend to identifications $(\text{Ker}(T))_K = \text{Ker}(T_K)$ and $(\text{Im}(T))_K = \text{Im}(T_K)$.
- 2. Suppose $\frac{1}{2} \in F$, and let *U* be finite-dimensional. Construct isomorphisms

{ symmetric bilinear forms on U} \leftrightarrow (Sym²U)['] \leftrightarrow Sym²(U').

Extension of scalars

- 3. (extension of scalars for linear maps) Let K/F be an extension of fields. For $T \in \text{Hom}_F(U,V)$ let $T_K = \text{Id}_K \otimes_F T \in \text{Hom}_F(U_K, V_K)$.
 - (a) Show that T_K exists as an *F*-linear map (this is a slightly more general version of 1(a)).
 - (b) Show that $T_K \in \text{Hom}_K(U_K, V_K)$ (i.e. that it is actually K-linear not only F-linear).
 - (c) (Functoriality) Show that $\operatorname{Id}_{U_K} = (\operatorname{Id}_U)_K$. For $S \in \operatorname{Hom}_F(V, W)$. Show that $(S \circ T)_K = S_K \circ T_K$.
 - (d) (Linear algebra) If $U \subset V$ we identify U_K with a subspace of V_K via the inclusion map. Show that (with this identification) we have $\operatorname{Ker} T_K = (\operatorname{Ker} T)_K$ and $\operatorname{Im} T_K = (\operatorname{Im} T)_K$.
 - (e) Let B_U, B_V be bases of U, V respectively. Show that the matrix of T_K with respect to the corresponding bases of U_K, V_K is the same as the matrix of T with respect to the original bases.

- 4. (extension of scalars and constructions) Construct "natural" isomorphisms:
 - (a) $\bigoplus_{i \in I} (V_i)_K \to (\bigoplus_{i \in I} V_i)_K$
 - (b) $U_K/V_K \rightarrow (U/V)_K$.
 - (c) $U_K \otimes_K V_K \to (U \otimes_F V)_K$.
 - HINT in each case show that both sides satisfy the appropriate universal property for Kvectorspaces.
 - (*d) Show that the natural map $(\prod_{i \in I} V_i)_K \to \prod_{i \in I} (V_i)_K$ is, in general, not surjective.

Extra credit: Nilpotence

- 5. Let $U \in M_n(F)$ be strictly upper-triangular, that is upper triangular with zeroes along the diagonal. Show that $U^n = 0$ and construct such U with $U^{n-1} \neq 0$.
- 6. Let V be a finite-dimensional vector space, $T \in \text{End}(V)$.
 - (*a) Show that the following statements are equivalent:

(1) $\forall v \in V : \exists k \ge 0 : T^k v = 0;$ (2) $\exists k \ge 0 : \forall v \in V : T^k v = 0.$

DEF A linear map satisfying (2) is called *nilpotent*. Example: see problem 3.

- SUPP For any infinite-dimensional V find an example of $T \in \text{End}(V)$ satisfying (1) but not (2). Such maps are called *locally nilpotent*.
- (b) Find nilpotent $A, B \in M_2(F)$ such that A + B isn't nilpotent.
- (c) Suppose that $A, B \in \text{End}(V)$ are nilpotent and that A, B commute. Show that A + B is nilpotent.

Extra credit: duality

- 7. Let *U* be finite-dimensional.
 - (a) Construct an isomorphism $V \otimes U' \to \operatorname{Hom}_F(U, V)$.
 - (b) Define a map Tr: $U \otimes U' \to F$ extending the evaluation pairing $U \times U' \to F$.
 - DEF The trace of $T \in \text{Hom}_F(U, U)$ is given by identifying T with an element of $U \otimes U'$ via (a) and then applying the map of (b).
 - (c) Let $T \in \text{End}_F(U)$, and let A be the matrix of T with respect to the basis $\{\underline{u}_i\}_{i=1}^n \subset U$. Show that $\operatorname{Tr} T = \sum_{i=1}^{n} A_{ii}$.

RMK This shows that similar matrices have the same trace!

(d) Solve P3(b) from this point of view.

Supplementary problems

- A. (The tensor algebra) Fix a vector space U.
 - (a) Extend the bilinear map ⊗: U^{⊗n} × U^{⊗m} → U^{⊗n} ⊗ U^{⊗m} ≃ U^{⊗(n+m)} to a bilinear map ⊗: ⊕_{n=0}[∞] U^{⊗n} × ⊕_{n=0}[∞] U^{⊗n} → ⊕_{n=0}[∞] U^{⊗n}.
 (b) Show that this map ⊗ is associative and distributive over addition. Show that 1_F ∈ F ≃
 - $U^{\otimes 0}$ is an identity for this multiplication.

DEF This algebra is called the *tensor algebra* T(U).

(c) Show that the tensor algebra is *free*: for any *F*-algebra *A* and any *F*-linear map $f: U \to A$ there is a unique *F*-algebra homomorphism $\overline{f}: T(U) \to A$ whose restriction to $U^{\otimes 1}$ is *f*.

- B. (The symmetric algebra). Fix a vector space U.
 - (a) Endow $\bigoplus_{n=0}^{\infty} \text{Sym}^n U$ with a product structure as in 3(a).
 - (b) Show that this creates a commutative algebra Sym(U).
 - (c) Fixing a basis $\{\underline{u}_i\}_{i \in I} \subset U$, construct an isomorphism $F[\{x_i\}_{i \in I}] \to \operatorname{Sym}^* U$.
 - RMK In particular, $Sym^*(U')$ gives a coordinate-free notion of "polynomial function on U".
 - (d) Let $I \triangleleft T(U)$ be the two-sided ideal generated by all elements of the form $\underline{u} \otimes \underline{v} \underline{v} \otimes \underline{u} \in U^{\otimes 2}$. Show that the map $\operatorname{Sym}(U) \to T(U)/I$ is an isomorphism.
 - RMK When the field F has finite characteristic, the correct definition of the symmetric algebra (the definition which gives the universal property) is $\text{Sym}(U) \stackrel{\text{def}}{=} T(U)/I$, not the space of symmetric tensors.
- C. Let *V* be a (possibly infinite-dimensional) vector space, $A \in End(V)$.
 - (a) Show that the following are equivalent for $\underline{v} \in V$:
 - (1) dim_{*F*} Span_{*F*} $\{A^n\underline{\nu}\}_{n=0}^{\infty} < \infty;$
 - (2) there is a finite-dimensional subspace $\underline{v} \in W \subset V$ such that $AW \subset W$.
 - DEF Call such <u>v</u> locally finite, and let V_{fin} be the set of locally finite vectors.
 - (b) Show that V_{fin} is a subspace of V.
 - (c) Call *A* locally nilpotent if for every $\underline{v} \in V$ there is $n \ge 0$ such that $A^n \underline{v} = \underline{0}$ (condition (1) of 5(a)). Find a vector space *V* and a locally nilpotent map $A \in \text{End}(V)$ which is not nilpotent.
 - (*d) *A* is called *locally finite* if $V_{\text{fin}} = V$, that is if every vector is contained in a finitedimensional *A*-invariant subspace. Find a space *V* and locally finite linear maps $A, B \in$ End(V) such that A + B is not locally finite.