PI1.

P2.

P3.

Lior Silberman’s Math 412: Problem Set 5 (due 15/10/2019)

Practice

Let U = Spany {u;,u, } be two-dimensional. Show that the element u; @ u; +u, Qu, € U QU
is not a pure tensor, that is not of the form u ® v for any u,v € U.

Let1: U xV — U ®YV be the standard inclusion map (1(«,v) = u®y). Show that 1(u,v) =0
iff u = 0 or v = 0y, and that for non-zero vectors we have 1(u,v) = 1(«',)) iff &' = au and
v = a 'y for some o € F*.

Let U,V be finite-dimensional spaces and let A € End(U ), B € End(V).
(a) Constructamap A® B € Endr (U ®V) restricting to A, B on the images of U,V in U ®V.
(b) Show that Tr(A@® B) = Tr(A) + Tr(B).
(c) Evaluate det(A @ B).
Tensor products of maps

Let U,V be finite-dimensional spaces, and let A € End(U), B € End(V).

(a) Show that (u,v) — (Au) ® (By) is bilinear, and obtain a linear map A® B € End(U ® V).

(b) Suppose A, B are diagonable. Using an appropriate basis for U ® V, Obtain a formula for
det(A ® B) in terms of det(A) and det(B).

(c) Extending (a) by induction, show for any A € End(V ), the map A®* induces maps Sym* A €
End(Sym‘V) and A¥A € End(AFV).

(*d) Show that the formula of (b) holds for all A, B.

SUPP (Notation continued from supplement to PS4) Let Vx = K ®F V be an extension of
scalars. For T € Endp(V) let Tx = Idg ®Tx. Show that Tx € Endg(Vk), and that the
natural inclusions Ker(7"),Im(7) C V extend to identifications (Ker(7')), = Ker(7x) and
(Im(T))c = Im(Ti).

Suppose % € F, and let U be finite-dimensional. Construct isomorphisms

{ symmetric bilinear forms on U} < (Sym2 U )/ + Sym? (u').

Extension of scalars

(extension of scalars for linear maps) Let K/F be an extension of fields. For T € Homp (U,V)

let Tx = Idg QpT € HomF(UK,VK).

(a) Show that T exists as an F-linear map (this is a slightly more general version of 1(a)).

(b) Show that Tx € Homg (Uk, Vk) (i.e. that it is actually K-linear not only F-linear).

(c) (Functoriality) Show that Idy, = (Idy)g. For S € Homg(V,W). Show that (SoT), =
S K © TK.

(d) (Linear algebra) If U C V we identify Ux with a subspace of Vx via the inclusion map.
Show that (with this identification) we have KerTx = (KerT), and ImTx = (ImT).

(e) Let By,By be bases of U,V respectively. Show that the matrix of Tx with respect to the
corresponding bases of Uk, Vk is the same as the matrix of 7" with respect to the original
bases.
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(extension of scalars and constructions) Construct “natural” isomorphisms:

@ Dics (Vi)g = (DierVidg

() Uk/Vk = (U/V)g.

(c) Uk @k Vk = (URFV)g.

HINT in each case show that both sides satisfy the appropriate universal property for K-
vectorspaces.

(*d) Show that the natural map ([T;c;Vi)x — [Tics (Vi) is, in general, not surjective.

Extra credit: Nilpotence

Let U € M, (F) be strictly upper-triangular, that is upper triangular with zeroes along the
diagonal. Show that U” = 0 and construct such U with U"~! #£ 0.

Let V be a finite-dimensional vector space, T € End(V).

(*a) Show that the following statements are equivalent:
(D) WeV:3k>0:Trv=0; 2)3k>0:YveV:Th=0.

DEF A linear map satisfying (2) is called nilpotent. Example: see problem 3.

SUPP For any infinite-dimensional V find an example of T € End(V) satisfying (1) but not
(2). Such maps are called locally nilpotent.

(b) Find nilpotent A, B € M(F) such that A + B isn’t nilpotent.

(c) Suppose that A,B € End(V) are nilpotent and that A, B commute. Show that A + B is
nilpotent.

Extra credit: duality

Let U be finite-dimensional.

(a) Construct an isomorphism V @ U" — Hompg (U, V).

(b) Define a map Tr: U ® U’ — F extending the evaluation pairing U x U’ — F.

DEF The frace of T € Homp(U,U) is given by identifying T with an element of U @ U’ via
(a) and then applying the map of (b).

(c) LetT € Endp(U), and let A be the matrix of T with respect to the basis {u;}"_; C U. Show
that Tr7 =Y | Aji.

RMK This shows that similar matrices have the same trace!

(d) Solve P3(b) from this point of view.

Supplementary problems

. (The tensor algebra) Fix a vector space U.

(a) Extend the bilinear map ®@: U®" x U®™ — U®" @ U®™ ~ UM (o a bilinear map
R: P U" X Py U — Py UP".

(b) Show that this map ® is associative and distributive over addition. Show that 1p € F ~
U%Y is an identity for this multiplication.

DEF This algebra is called the tensor algebra T (U).

(c) Show that the tensor algebra is free: for any F-algebra A and any F-linearmap f: U — A
there is a unique F-algebra homomorphism f: T (U) — A whose restriction to U®! is f.
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B. (The symmetric algebra). Fix a vector space U.
(a) Endow @),_,Sym" U with a product structure as in 3(a).
(b) Show that this creates a commutative algebra Sym(U).
(c) Fixing a basis {u;};., C U, construct an isomorphism F [{x;},.,;] — Sym*U.
RMK In particular, Sym* (U’) gives a coordinate-free notion of “polynomial function on U™
(d) Let I T(U) be the two-sided ideal generated by all elements of the form u®v—v®u €
U%?. Show that the map Sym(U) — T(U)/I is an isomorphism.
RMK When the field F' has finite characteristic, the correct definition of the symmetric algebra

(the definition which gives the universal property) is Sym(U) def T(U)/I, not the space of
symetric tensors.

C. LetV be a (possibly infinite-dimensional) vector space, A € End(V).
(a) Show that the following are equivalent for v € V:
(1) dimp Spang {A"v}" ;) < co;
(2) there is a finite-dimensional subspace v € W C V such that AW C W.
DEF Call such v locally finite, and let Vg, be the set of locally finite vectors.
(b) Show that Vj, is a subspace of V.
(c) Call A locally nilpotent if for every v € V there is n > 0 such that Ay = 0 (condition (1) of
5(a)). Find a vector space V and a locally nilpotent map A € End(V') which is not nilpotent.
(*d) A is called locally finite if Vi, =V, that is if every vector is contained in a finite-
dimensional A-invariant subspace. Find a space V and locally finite linear maps A,B €
End(V) such that A + B is not locally finite.
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