
Lior Silberman’s Math 412: Problem Set 5 (due 15/10/2019)

Practice

P1. Let U = SpanF {u1,u2} be two-dimensional. Show that the element u1⊗u1+u2⊗u2 ∈U⊗U
is not a pure tensor, that is not of the form u⊗ v for any u,v ∈U .

P2. Let ι : U ×V →U ⊗V be the standard inclusion map (ι(u,v) = u⊗ v). Show that ι(u,v) = 0
iff u = 0U or v = 0V and that for non-zero vectors we have ι(u,v) = ι(u′,v′) iff u′ = αu and
v′ = α−1v for some α ∈ F×.

P3. Let U,V be finite-dimensional spaces and let A ∈ End(U), B ∈ End(V ).
(a) Construct a map A⊕B ∈ EndF (U⊕V ) restricting to A,B on the images of U,V in U⊕V .
(b) Show that Tr(A⊕B) = Tr(A)+Tr(B).
(c) Evaluate det(A⊕B).

Tensor products of maps

1. Let U,V be finite-dimensional spaces, and let A ∈ End(U), B ∈ End(V ).
(a) Show that (u,v) 7→ (Au)⊗ (Bv) is bilinear, and obtain a linear map A⊗B ∈ End(U⊗V ).
(b) Suppose A,B are diagonable. Using an appropriate basis for U ⊗V , Obtain a formula for

det(A⊗B) in terms of det(A) and det(B).
(c) Extending (a) by induction, show for any A∈EndF(V ), the map A⊗k induces maps Symk A∈

End(Symk V ) and
∧k A ∈ End(

∧k V ).
(*d) Show that the formula of (b) holds for all A,B.
SUPP (Notation continued from supplement to PS4) Let VK = K ⊗F V be an extension of

scalars. For T ∈ EndF(V ) let TK = IdK⊗TK . Show that TK ∈ EndK(VK), and that the
natural inclusions Ker(T ), Im(T )⊂V extend to identifications (Ker(T ))K = Ker(TK) and
(Im(T ))K = Im(TK).

2. Suppose 1
2 ∈ F , and let U be finite-dimensional. Construct isomorphisms

{ symmetric bilinear forms on U}↔
(
Sym2U

)′↔ Sym2 (U ′) .
Extension of scalars

3. (extension of scalars for linear maps) Let K/F be an extension of fields. For T ∈HomF(U,V )
let TK = IdK⊗FT ∈ HomF(UK,VK).
(a) Show that TK exists as an F-linear map (this is a slightly more general version of 1(a)).
(b) Show that TK ∈ HomK(UK,VK) (i.e. that it is actually K-linear not only F-linear).
(c) (Functoriality) Show that IdUK = (IdU)K . For S ∈ HomF(V,W ). Show that (S◦T )K =

SK ◦TK .
(d) (Linear algebra) If U ⊂ V we identify UK with a subspace of VK via the inclusion map.

Show that (with this identification) we have KerTK = (KerT )K and ImTK = (ImT )K .
(e) Let BU ,BV be bases of U,V respectively. Show that the matrix of TK with respect to the

corresponding bases of UK,VK is the same as the matrix of T with respect to the original
bases.
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4. (extension of scalars and constructions) Construct “natural” isomorphisms:
(a)

⊕
i∈I (Vi)K → (

⊕
i∈I Vi)K

(b) UK/VK → (U/V )K .
(c) UK⊗K VK → (U⊗F V )K .
HINT in each case show that both sides satisfy the appropriate universal property for K-

vectorspaces.
(*d) Show that the natural map (∏i∈I Vi)K →∏i∈I (Vi)K is, in general, not surjective.

Extra credit: Nilpotence

5. Let U ∈ Mn(F) be strictly upper-triangular, that is upper triangular with zeroes along the
diagonal. Show that Un = 0 and construct such U with Un−1 6= 0.

6. Let V be a finite-dimensional vector space, T ∈ End(V ).
(*a) Show that the following statements are equivalent:

(1) ∀v ∈V : ∃k ≥ 0 : T kv = 0; (2) ∃k ≥ 0 : ∀v ∈V : T kv = 0.
DEF A linear map satisfying (2) is called nilpotent. Example: see problem 3.
SUPP For any infinite-dimensional V find an example of T ∈ End(V ) satisfying (1) but not

(2). Such maps are called locally nilpotent.
(b) Find nilpotent A,B ∈M2(F) such that A+B isn’t nilpotent.
(c) Suppose that A,B ∈ End(V ) are nilpotent and that A,B commute. Show that A+ B is

nilpotent.

Extra credit: duality

7. Let U be finite-dimensional.
(a) Construct an isomorphism V ⊗U ′→ HomF(U,V ).
(b) Define a map Tr : U⊗U ′→ F extending the evaluation pairing U×U ′→ F .
DEF The trace of T ∈ HomF(U,U) is given by identifying T with an element of U ⊗U ′ via

(a) and then applying the map of (b).
(c) Let T ∈ EndF(U), and let A be the matrix of T with respect to the basis {ui}

n
i=1⊂U . Show

that TrT = ∑
n
i=1 Aii.

RMK This shows that similar matrices have the same trace!
(d) Solve P3(b) from this point of view.

Supplementary problems

A. (The tensor algebra) Fix a vector space U .
(a) Extend the bilinear map ⊗ : U⊗n ×U⊗m → U⊗n ⊗U⊗m ' U⊗(n+m) to a bilinear map
⊗ :

⊕
∞
n=0U⊗n×

⊕
∞
n=0U⊗n→

⊕
∞
n=0U⊗n.

(b) Show that this map ⊗ is associative and distributive over addition. Show that 1F ∈ F '
U⊗0 is an identity for this multiplication.

DEF This algebra is called the tensor algebra T (U).
(c) Show that the tensor algebra is free: for any F-algebra A and any F-linear map f : U → A

there is a unique F-algebra homomorphism f̄ : T (U)→ A whose restriction to U⊗1 is f .
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B. (The symmetric algebra). Fix a vector space U .
(a) Endow

⊕
∞
n=0 SymnU with a product structure as in 3(a).

(b) Show that this creates a commutative algebra Sym(U).
(c) Fixing a basis {ui}i∈I ⊂U , construct an isomorphism F

[
{xi}i∈I

]
→ Sym∗U .

RMK In particular, Sym∗ (U ′) gives a coordinate-free notion of “polynomial function on U”.
(d) Let ICT (U) be the two-sided ideal generated by all elements of the form u⊗ v− v⊗u ∈

U⊗2. Show that the map Sym(U)→ T (U)/I is an isomorphism.
RMK When the field F has finite characteristic, the correct definition of the symmetric algebra

(the definition which gives the universal property) is Sym(U)
def
= T (U)/I, not the space of

symetric tensors.

C. Let V be a (possibly infinite-dimensional) vector space, A ∈ End(V ).
(a) Show that the following are equivalent for v ∈V :

(1) dimF SpanF {Anv}∞

n=0 < ∞;
(2) there is a finite-dimensional subspace v ∈W ⊂V such that AW ⊂W .

DEF Call such v locally finite, and let Vfin be the set of locally finite vectors.
(b) Show that Vfin is a subspace of V .
(c) Call A locally nilpotent if for every v ∈V there is n≥ 0 such that Anv = 0 (condition (1) of

5(a)). Find a vector space V and a locally nilpotent map A∈End(V ) which is not nilpotent.
(*d) A is called locally finite if Vfin = V , that is if every vector is contained in a finite-

dimensional A-invariant subspace. Find a space V and locally finite linear maps A,B ∈
End(V ) such that A+B is not locally finite.
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