Change of language: Worksheet for Math 223 Lecture 1, 11/1/2021

We study real-valued functions on a fixed interval [a,b].

EXAMPLE. From calculus we know "If f, g are continuous functions and α is a real number then the functions f + g and αf are continuous as well".

Problem: Rewrite this as a statement about the set C(a, b) of continuous functions on the interval.

Solution: The statement literally reads "if $f,g \in C(a,b)$ then $f + g, \alpha f \in C(a,b)$ " and it can be rewritten as "The set C(a,b) is closed under addition of functions and under multiplying functions by real numbers".

THEOREM (Calculus). Let $f, g \in \mathbb{R}^{[a,b]}$ and let $\alpha \in \mathbb{R}$.

(1) If f, g are differentiable at x_0 then so are f + g and αf .

(2) If f, g are Riemann-integrable on [a,b] then so are f + g and αf .

(3) If f, g have finite H^1 Sobolev norm, then so do f + g and αf .

FACT (Physics). 4. Let ϕ , ψ be possible states of a quantum-mechanical system, and let $a \in \mathbb{C}$. Then $\phi + \psi$ and $a\phi$ are also quantum states.

PROBLEM. Convert the four claims to statements about the set $D_{x_0}(a,b)$ of functions which are differentiable at x_0 , the set R(a,b) of functions which are Riemann-integrable, the Sobolev space $H^1(a,b)$, and the set \mathcal{H} of quantum states. Follow the template above.

(1)

(2)

(3)

(4)

Extra credit: Deduce from example 1 and the Theorem a similar statement about the set $C^{1}(a,b)$ of functions on [a,b] whose derivative is continuous.

EXAMPLE. Let $f, g \in C(a, b)$ be continuous functions and let $\alpha \in \mathbb{R}$. Then at any point $x_0 \in [a, b]$, $(f+g)(x_0) = f(x_0) + g(x_0), (\alpha f)(x_0) = \alpha (f(x_0))$.

Problem: Rewrite this as a statement about the *evaluation map* that takes a function to its values.

Solution: "Evaluation of a sum of function gives the sum of the values; evaluation of a rescaled fuction gives a rescaled value".

THEOREM (Calculus).

(1) If f, g are differentiable at x_0 then

$$(\alpha f + \beta g)'(x_0) = \alpha \left(f'(x_0) \right) + \beta \left(f'(x_0) \right)$$

(2) If f, g are differentiable on [a, b] then

$$(\alpha f + \beta g)' = \alpha f' + \beta g'$$

(3) If f, g are integrable on [a, b] then

$$\int_{a}^{b} (\alpha f + \beta g)(x) \, \mathrm{d}x = \alpha \int_{a}^{b} f(x) \, \mathrm{d}x + \beta \int_{a}^{b} g(x) \, \mathrm{d}x$$

PROBLEM. In each case identify (a) the space of functions on which the operation is defined; (b) the space of *results* for the operation.

(1)

(2)

(3)

REMARK. A *quantum observable* is a map \hat{A} from the space \mathcal{H} of quantum states to itself such that $\hat{A}(a\phi + b\psi) = a\hat{A}(\phi) + b\hat{A}(\psi)$ for all states ϕ, ψ and all complex numbers a, b.