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Introduction

Lior Silberman, lior@Math.UBC.CA, http://www.math.ubc.ca/~lior
Office: Math Building 229B
Phone: 604-827-3031

0.1. Cold open

• Theory of “numbers”, mainly meaning whole numbers, that is the integers.

Cryptography.
• Do you use the internet?
• Can use number theory to establish identity (“The person who knows the factorization

N = pq”)
– Key (1): There are arithmetic problems that only the person who knows the factor-

ization can solve.
– Key (2): I can prove to you that I know to factor N without revealing this number.

• How do you know that https://www.yourbank.ca is really controlled by your bank?
Roughly speaking:

– The manufacturer of your browser equips it with a list of 230 numbers and told to
trust those people who know how to factor them. Those people are called “certificate
authorities”. For simplicity assume there was only one CA, with its number NCA
built into the browser.

– Your bank creates a number Nbank for itself. It goes to the CA and gets a “digital
certificate”, which says: “the people who know how to factor NCA say that the server
at https://www.yourbank.ca knows how to factor the number Nbank”. Moreover,
the certificate includes a number calculated using the details in it and also pCA,qCA
– so it cannot be forged.

– When you access https://www.yourbank.ca, the website provides your browser
with the certificate. Your computer can verify the signature using the number NCA
that it knows. If this is ok it then challenges the machine on the other side to prove
that it can really factor the number Nbank specified in the certificate.

– If that works too the browser is happy.
– (I’m Lying a little here) When you type your password on https://www.yourbank.
ca, what your browser sends is not simply the characters you type (that would be bad
if there were eavesdroppers). What it sends instead is the result of a calculation
involving the number Nbank. The calculation is done in such a way that the bank can
check that you typed the correct password using its secret knowledge (pbank, qbank)
– whereas the eavesdropper (who only knows Nbank) can’t learn what the password
was.
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There are practical problems with this scheme, but we won’t discuss internet security. What we
will discuss is the number theory that makes secure websites possible.

Summary for those reading the notes:
• Underlying fact of life: arithmetic is “easy” but solving equations is “hard”.
• There is a method for me to convince others that I know p,q without revealing them. This

allows me to prove my identity (“I’m the person who knows to factor N”). But prevents
forgery
• The method extends to verifiable signatures (“This email was written by the person who

knows how to factor N”). No-one can forge my signature, but they can check I’m the
person who signed (signing requires knowing p,q but checking only requires knowing
N).
• The method extends to secure communication: you can take a message m and send me

F(m,N). Knowing p,q solving F(m,N) =C is actually easy. But it is believed impossible
to solve the equation knowing only N.
• We will discuss how to do all these things (signature protocol, secure communications

protocol).
Other examples

• Software “product activation” key verification.

0.2. Administrivia

Syllabus distributed. Other key points:
• Webwork will be posted in the proper place.
• Problem sets will be posted on the course website. Solutions will be posted on a secure

system (email explanation will be sent).
– Depending on time, the grader may only mark selected problems. Solutions will be

complete.
• Absolutely essential to

– Read ahead according to the posted schedule. Lectures after the first will assume that
you had done your reading.

– Do homework.
• Office hours on Wednesdays and Thursdays after class. Also by appointment.
• Course website is important. Contains notes, problem sets, announcements, reading as-

signments etc.

0.3. More on problems of number theory

Some arithmetic.
• It is now 10am. What hour will it be 5 hours from now?
• Today is Tuesday, May 15th. What day was it 4 days ago?

– What day of the week did 15/5/2017 fall on? Hint: 365 = 52 ·7+1.
– What about July 1st, 1867? [don’t wait for answer]

Properties of individual numbers.
• Can we find integers a,b so that

(a
b

)2
= 2?
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• We want to at least find integers a,b so that a
b is close to

√
2. How well can we do this

without taking b too large?
• Consider the decimal expansion of π (or e, or your favourite number). Do all the digits

0,1, . . . ,9 appear 1
10 th of the time? What about all sequences 00,01, . . . ,99?

• We already saw that primes are useful. We need to make primes.
– How many primes are there? Are they easy to find?
– Specifically: how does one tell if a given number n is prime?

Main focus: finding integer solutions to equations.
• All integer solutions to x2 + y2 = z2 known to the Greeks (lots!)

– Only obvious integer solutions to x4 + y4 = z4 (Fermat)
– Only obvious solutions to x3 + y3 = z3 (Euler)
– ...
– Only obvious solutions to xn + yn = zn, n≥ 3 (Ribet, Wiles)

• Other equations to solve:
– xy = N (“factorization”). Very important – we will discuss this.
– y = x+d, z = x+2d, w = x+3d (“arithmetic progression”)

∗ Szemeredi: if A⊂{1, . . . ,N} is large enough then for some d 6= 0, A it contains
x,y,z,w solving the above equation.
∗ Green, Green-Tao: can take A to be the set of primes, or even a “dense subset”

of the primes.
– p1− p2 = 2 (“twin primes”)
– p1 + p2 = 2N (“Goldbach Conjecture”)

• Counting solutions to equations
– #{1≤ p≤ x | p prime} ≈ x

logx (Hadamard, de la Vallée-Poussin 1896 following Rie-
mann 1859)

–
∣∣∣#{1≤ p≤ x | p prime}− x

logx

∣∣∣≤C
√

x(logx)100 (“Riemann hypothesis”)

Much more.
• Not for today.

0.4. Course plan (subject to revision)

• The integers
– Definition: induction and the well-ordering principle;
– Multiplication: divisibility and the GCD, primes and unique factorization.

• Congruences [major point of the course]
• Algebra: primitive roots

– The multiplicative group
– Primality testing
– Discrete log cryptosystems

• Application: public-key cryptography, RSA
• Multiplicative functions
• Quadratic reciprocity
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References. Any book with the title “Elementary Number Theory” or “Introduction to Number
Theory” will cover the material. I will generally follow the textbook “Elementary Number Theory
and its applications” by K. Rosen.
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CHAPTER 1

The Integers

1.1. The axioms; the well-ordering principle; induction

We record here the usual properties of the integers.

DEFINITION 1. The integers are the sextuple (Z,+, ·,0,1,<) satisfying:
• + : Z×Z→ Z (“addition”) and · : Z×Z→ Z (“multiplication”) are binary operations;

0,1 ∈ Z are elements (“zero”, “one”) and < is a binary relation (“less than”).
• Addition is commutative and associative; a+0 = a and for all a ∈ Z there is (−a) ∈ Z so

that a+(−a) = 0.
• Multiplication is commutative and associative; a ·1 = a.
• The relation < is transitive, and for all a,b ∈ Z exactly one of a < b, a = b, b > a holds.
• For a,b > 0 we have a+b,a ·b > 0.
• Well-ordering property: every non-empty subset A⊂ N= Z≥0 has a least element.

Note that we interchangeably write N or Z≥0 for the set of natural numbers, those being the
non-negative integers (0 is a natural number for us). Some books also uses the notation Z+ for the
set Z>0 = Z≥1 of positive integers.

The most important property is the last one. We illustrate it with several calculations. We first
justify the last equality:

LEMMA 2. (Discreteness) There is no integer b satisfying 0 < b < 1.

PROOF. Let A = {n ∈ Z | 0 < n < 1} ⊂ Z≥0. Assume by contradiction that A is non-empty
and let a be its minimal element. Then 0 < a < 1. Multiplying both sides by a we find that
0< a2 < a< 1. But then a2 is an integer satisfying 0< a2 < 1 so a2 ∈ A and a2 < a, a contradiction
to a being the smallest member of A. �

COROLLARY 3. For any integer n there is no integer a satisfying n < a < n+1.

PROOF. If a existed set b = a−n. Then 0 < b < 1. �

THEOREM 4. (Principles of induction)
(1) (Weak induction) Let P ⊂ N. Assume that 0 ∈ P and that for any number n, n ∈ P⇒

n+1 ∈ P. Then P = N.
(2) (Strong induction) Let P⊂ N. Assume that for any n ∈ N, {a ∈ N | a < n} ⊂ P⇒ n ∈ P.

Then P = N.

PROOF. (1) Assume by contradiction that P 6= N. Then the set A = N\P of counterexamples
is non-empty. Let m be its minimal element. Then m 6= 0 (0 ∈ P) so m ≥ 1 and m−1 ∈ N. Since
m was minimal, m−1 /∈ A so m−1 ∈ P. But then m = (m−1)+1 ∈ P, a contradiction.

(2) Let Q be the set of n ∈ N such that {a ∈ N | a < n} ⊂ P. Then 0 ∈ Q (the set of natural
numbers smaller than zero is empty). Also, if n ∈ N then {a ∈ N | a < n} ⊂ P so n ∈ P. But then
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{a ∈ N | a < (n+1)}= {a ∈ N | a < n}∪{n} ⊂ P so n+1 ∈Q. By part (1) it follows that Q =N.
Now for any n ∈ N we have that n+1 ∈ Q and so that n ∈ P. �

DEFINITION 5. Call an integer n even if it is of the form n = 2k for some k ∈ Z. Call it odd
otherwise.

THEOREM 6. (Division by 2) Among every two consecutive natural numbers at least one is
even.

PROOF USING WELL-ORDERING. Let A be the set of n ≥ 0 such that n,n+ 1 are both odd,
and let m be a minimal member of A. Then both m,m+ 1 are odd so m > 0 (zero is even!) and
m− 1 ≥ 0. Since m is minimal, m− 1 /∈ A, one of m− 1,m is even. m is odd so m− 1 = 2k for
some k ∈ Z. But then m+1 = (m−1)+2 = 2(k+1) is even, a contradiction. Since A cannot have
a least member it is empty. �

PROOF USING WEAK INDUCTION. Let P be the set of n ≥ 0 such that at least one of n,n+1
is even. 0 ∈ P since it is even. Assume that n ∈ P. If n+1 is even then one of n+1,n+2 is even
so n+1 ∈ P. Otherwise n must be even, so n+2 is also even and again n+1 ∈ P. �

Example in how to use well-ordering:

THEOREM 7. (Division with remainder) Let n,a∈Z with a > 0. Then there are unique q,r ∈Z
with 0≤ r < a such that

n = qa+ r .

PROOF. Let T = {m ∈ N | ∃k ∈ Z : m = n− ka}. In other words, T is the set of all natural
numbers which differ from n by a multiple of a. T is non-empty, since by taking k sufficiently
negative we can make n− ka as large as we want (e.g. take k = −|n|). By the well-ordering
principle there is r = minT . By definition of T , we have 0 ≤ r and there is q ∈ Z such that
r = n−qa. Assume that r≥ a. Then r−a≥ 0 and r−a= n−(q+1)a so r−a∈ T , a contradiction.
It follows that n = qa+ r for some q,r as claimed.

Assume next that also n = q′a+ r′. Then

q′a+ r′ = n = qa+ r .

Assume first that r′ > r. Then
r′− r = (q−q′)a ,

so by the Lemma, a > r′ ≥ r′− r≥ a, a contradiction. By symmetry we can’t have r > r′ either, so
r = r′. It follows that (q−q′)a = 0 and since a 6= 0 this means q = q′. �

COROLLARY 8. An integer n is odd iff it can be written in the form n = 2k+1 for some k ∈ Z.

1.2. Divisibility and the GCD

1.2.1. Divisibility.

DEFINITION 9. Let a,b ∈ Z. We say a divides b (and that b is a multiple of a) if there is c ∈ Z
such that b = ac. When this holds we write a|b. Otherwise we say a does not divide b and write
a - b.

REMARK 10. Another way to phrase a|b is that the equation ax = b has a solution in Z.
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NOTATION 11. If a|b with a 6= 0 we write b
a for the (unique) integer x such that a · x = b. Note

that if a - b we don’t give b
a any meaning.

EXAMPLE 12. 1|b for all b. 0|b iff b = 0. 15|120. For any a,b ∈ Z we have (a−b)|(a2−b2).
In particular, 22n−1 | 22n+1−1.

LEMMA 13. Let a 6= 0 and let a|b. Then |b| ≥ |a|.

PROOF. If b = ac we have |b|= |a| |c|. Also, |c| ≥ 1 since c 6= 0 so |a| |c| ≥ |a|. �

LEMMA 14 (Euclid). If a divides b and c then a divides b± c.

PROOF. We have a
(b

a ±
c
a

)
=
(
a · b

a

)
±
(
a · c

a

)
= b± c so the equations a · x = b± c have an

integer solution. �

COROLLARY 15. Let n≥ 1. Then the only positive common divisor of n,n+1 is 1.

LEMMA 16. If a|b and b|c then a|c.

PROOF. By the associative law, a ·
(b

a ·
c
b

)
=
(
a · b

a

)
· c

b = b · c
b = c. �

LEMMA 17 (Units). a|b iff (−a)|b.

Because of this, we will only consider positive divisors.

First problem of factorization.

PROBLEM 18. Find all divisors of a given integer.

This turns out to be really hard. We don’t know an efficient way to do this.

1.2.2. The GCD, Two integers. Let a,b∈Z be non-zero. Let D be the set of common divisors
of a and b (non-empty since 1 ∈D). D is bounded since every divisor of a is no larger than |a|. Let
M be the set of positive common multiples of a,b (non-empty since |ab|=±ab ∈M).

DEFINITION 19. (a,b) def
= gcd{a,b}=maxD ; [a,b] def

= lcm{a,b}=minM. Also, for all a∈Z,
set (a,0) = a and [a,0] = 0.

FACT 20. Every common divisor of a,b divides (a,b). Every common multiple of a,b is divisi-
ble by [a,b].

PROBLEM 21. Given a,b find (a,b) and [a,b].

ALGORITHM 22. (Naive) Try all elements of the finite sets D,M.

Entirely impractical since finding the divisors is hard. Euclid discussed a much better idea:

LEMMA 23 (Euclid). Let a,b ∈ Z. Then (a,b) = (a−b,b).

PROOF. We prove that both pairs have the same set of common divisors. Indeed, let d divide
b. If d also divides a then By Lemma 14 d divides a− b. Conversely, if d divides a− b then by
that Lemma d divides a = (a−b)+b. �
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Since (a,0) = a for all a, and since changing the signs of a,b does not change their gcd (why?)
we get a method for calculating the gcd of any two integers. For example:

(24,−153) = (153,24)
= (129,24)
= (105,24)
= (81,24)
= (57,24)
= (33,24)
= (24,9)
= (15,9)
= (9,6)
= (6,3)
= (3,3)
= (3,0)
= 3 .

ALGORITHM 24 (Euclid). Given two integers a,b, output their gcd:
(1) Replace a with |a|, b with |b|.
(2) If a < b exchange a and b.
(3) If b = 0, terminate and output a.
(4) Else, replace a with a−b and go to step 2.

THEOREM 25. The algorithm terminates after finitely many steps and outputs the gcd of (a,b).

PROOF. Consider the changes in the quantity |a|+ |b| during the course of the algorithm. Every
time we reach step 4, we know that a≥ b> 0. It follows that at the conclusion of step 4, the quantity
has decreased by at least b ≥ 1. Since there is no infinite strictly decreasing sequence of natural
numbers (well-ordering), we can reach step 4 only finitely many times. In particular, at some point
b = 0 and we terminate. Finally, by Lemma 23, the replacements and exchanges never change the
gcd of the two numbers. �

In fact, more can be said.

CLAIM 26 (Bezout). Every intermediate value considered by Euclid’s Algorithm is of the form
xa+ yb for some x,y ∈ Z.

PROOF. We prove this by induction on the steps of the algorithm. Certainly this is true at the
start, and also changing signs and exchanging a,b doesn’t matter. Now assume that at the nth time
we reach step 3, we are looking at the numbers a′ = xa+yb > b′ = za+wb≥ 0, where a,b are the
initial values and x,y,z,w ∈ Z. At step 4 we will then replace a′ with

a′−b′ = (x− z)a+(y−w)b

which is indeed also of this form, so the situation will hold when we reach step 3 for the (n+1)st
time. �

We have thus proven (by algorithm) the following fact:
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THEOREM 27 (Bezout). Given a,b ∈ Z the exist x,y ∈ Z such that (a,b) = xa+ yb.

Bezout’s theorem admits a direct proof:

PROOF. If a = b = 0 there is nothing to prove, so we assume that at least one of a,b is non-
zero, and let I = {ax+by | a,b ∈ Z}. Note that I is closed under addition and under multiplication
by elements of Z: (ax+by)+q(cx+dy) = (a+qc)x+(b+qd)y ∈ I.

By assumption I contains positive numbers (at least one of |a|, |b| is positive), so let m be
the smallest positive element of I. Every common divisor of a,b divides every element of I; in
particular (a,b) | m. Conversely, we prove that m divides every element of I. Since a,b ∈ I it will
follow that m is a common divisor of a,b, hence the greatest common divisor. Let n ∈ I. Dividing
with remainder (Theorem 7), we can write n = qm+ r for some 0≤ r < m and q ∈ Z. Then

r = n−qm ∈ I .

It must be the case that r = 0 (else we’d have a positive member of I smaller than m). Then n = qm
and m divides n. �

COROLLARY 28. Every common divisor of a,b divides their GCD.

PROOF. Let d divide both a,b. Then for any x,y ∈ Z d|xa and d|yb so d|xa+ yb. Now choose
x,y so that the xa+ yb = (a,b). �

EXERCISE 29. (PS2) If g = (a,b) then
(

a
g ,

b
g

)
= 1. Similarly if (a,c) = 1 then (a,bc) = (a,b).

1.2.3. The LCM.

DEFINITION 30. Say a,b are relatively prime if (a,b) = 1.

PROPOSITION 31. If a,b are relatively prime then [a,b] = |ab|.

PROOF. By Bezout’s Theorem there exist x,y such that xa+ yb = 1. Say that az is also a
multiple of b. Then z = z ·1 = z(xa+ yb) = x(az)+(zy)b so z is a multiple of b. It follows that az
is a multiple of ab, so |ab| is the least positive common multiple. �

LEMMA 32. [da,db] = d [a,b].

PROOF. If m is a common multiple of a,b then dm is a common multiple of da,db. Conversely,
if m is a common multiple of da,db then m is divisible by d, and m

d is a common multiple of
a,b. �

THEOREM 33. Let a,b be non-zero. Then (a,b) [a,b] = ab.

PROOF. We have [a,b] =
[
(a,b) a

(a,b) ,(a,b)
b

(a,b)

]
= (a,b)

[
a

(a,b) ,
b

(a,b)

]
= (a,b) ab

(a,b)2 . �

1.2.4. Sets of integers.

DEFINITION 34. Let S be non-empty finite set of integers. We say that a ∈ Z is a common
divisor of S if a divides every member of S. We say that a ∈ Zis a common multiple of S if it is a
multiple of every element of S.

EXAMPLE 35. For any non-empty S, 1 is a common divisor for the elements of S and the
products of the elements of S is a multiple of all of them.

13



DEFINITION 36. Assume that S is finite and has a non-zero member. The greatest common
divisor of S, written gcd(S) is the largest integer which is a common divisor of S. The least
common multiple of S, written lcm(S) is the smallest positive integer which is a multiple of all
elements of S.

NOTATION 37. If a1, . . . ,ak are integers we also write (a1, . . . ,ak) for their GCD and [a1, . . . ,ak]
for their LCM.

Note that every common divisor of {a1, . . . ,ak} is at most |a1|, so only finitely many integers
can be the GCD. Similarly, the least common multiple is somewhere between zero and ∏

k
j=1

∣∣a j
∣∣.

LEMMA 38. (a1, . . . ,ak+1) = ((a1, . . . ,ak) ,ak+1).

PROOF. Let d be a common divisor of ak+1 and (a1, . . . ,ak). Then d divides each of a1, . . . ,ak
(it divides a common divisor of theirs) so d|(a1, . . . ,ak+1). It follows that ((a1, . . . ,ak) ,ak+1) |(a1, . . . ,ak+1).
Conversely, let d =(a1, . . . ,ak+1). Then d is a common divisor of a1, . . . ,ak so d|(a1, . . . ,ak). Also,
d|ak+1. It follows that d is a common divisor of both (a1, . . . ,ak) ,ak+1 and hence that d divides
their GCD, that is that (a1, . . . ,ak+1) |((a1, . . . ,ak) ,ak+1). Now two positive integers that divide
each other are equal. �

COROLLARY 39. Algorithm to find the GCD of a list of numbers.

1.3. Primes

1.3.1. Irreducibles.

DEFINITION 40. Call p ∈ Z>1 prime if in every factorization p = ab, one of a,b is 1.

EXAMPLE 41. 1 has the property, but is specifically excluded. 2,3,5 are have the property.
4 = 2×2 doesn’t.

THEOREM 42. Every positive integer can be written as a product of primes.

PROOF. Let n be the smallest positive integer which cannot be written as a product of positive
primes. Then n itself is not irreducible (nor 1), so n = ab with 1 < a,b < n. But then both a,b are
product of irreducibles, hence so is n. �

EXAMPLE 43. 60 = 5 ·12 = 5 ·4 ·3 = 5 ·2 ·2 ·3.

THEOREM 44 (Euclid). There are infinitely many primes.

PROOF. Consider n+1 where n is the product of all primes. �

REMARK 45. This only shows that there are about C log logx primes up to x.

We can rephrase this using an algorithm.

ALGORITHM 46 (Euclid’s prime-generating algorithm). (1) Set P = {2}.
(2) Let n = ∏p∈P.
(3) Factor n+1, and add all its prime divisors to P.
(4) Return to step (2).

By Theorem 42, n+1 has prime factor. Since n,n+1 are relatively prime, none of these factors
belongs to P. It follows that every time around the loop the set P increases, and we eventually
obtain infinitely many primes. The first few loops are:

14



• P = {2}, n+1 = 2+1 = 3.
• P = {2,3}, n+1 = 2 ·3+1 = 6+1 = 7.
• P = {2,3,7}, n+1 = 6 ·7+1 = 42+1 = 43.
• P = {2,3,7,43}, n+1 = 42 ·43+1 = 1806+1 = 1807 = 13 ·139.
• P = {2,3,7,13,43,139}, n+1 = 1806 ·1807+1 = 3,263,443.
• P= {2, 3, 7, 13, 43, 139, 3,263,443}, n+1= 3,263,442·3,263,443+1= 10650056950807=

547 ·607 ·1033 ·31051.
• P = {2, 3, 7, 13, 43, 139, 547, 607, 1033, 31,051, 3,263,443} and so on

LEMMA 47. If n≥ 1 is reducible, it has a proper factor≤
√

n.

PROOF. This is true about any non-trivial factorization. �

COROLLARY 48. Factorization (and primality testing) by trial division.

EXAMPLE 49. 126 = 2 ·63 = 2 ·3 ·21 = 2 ·3 ·3 ·7.

1.3.2. Primes.

THEOREM 50. Let p ∈ Z>1 be prime. Then if p|ab then p divides at least one of a,b.

REMARK 51. This is equivalent to the implication: for all a,b we have p - a, p - b⇒p - ab.
It is more natural to remove the requirement that p be positive, but it is not traditional to do so.

EXAMPLE 52. 2 is prime.

PROOF. Assume that a,b are odd. Then there are k, l ∈ Z such that a = 2k+ 1, b = 2l + 1 so
ab = (2k+1)(2l +1) = 2(2kl + k+ l)+1 is also odd. �

EXAMPLE 53. 3 is prime.

PROOF. Let a,b ∈ Z not be divisible by 3. Then a = 3q+ r and b = 3q′+ r′ for some q,q′ ∈ Z
and r,r′ ∈ Z with 1 ≤ r,r′ < 3. Then r,r′ ∈ {1,2}. Since ab = 3(3qq′+ r′q+ rq′)+ rr′ we have
3 | ab iff 3|rr′. But rr′ equals one of 1,2,4 and neither is divisible by 3. �

PROOF OF THEOREM 50. Conversely, let p be a prime which divides the product ab. Assume
that p - a and consider the GCD d = (a, p). Since d|p, d = 1 or d = p. Since p does not divide a,
d 6= p so d = 1. It follows that there exist x,y such that xp+ ya = 1, at which point

b = xpb+ yab .

Then p divides b since it divides both xpb and yab. �

REMARK 54. Conversely, let p be a number such that p|ab implies p|a or p|b. Then either p
is a unit or prime. Indeed, if p = ab then p divides one of the factors, so without loss of generality
we have p | a. This forces |p| ≤ |a| and hence |b| ≤ 1. It follows that |b|= 1 so b is a unit.

THEOREM 55. (“Fundamental Theorem of Arithmetic”) Every positive integer has a factor-
ization into primes, unique up to reordering the factors.

PROOF. What we need to show is: assume that n = ∏
I
i=1 pi = ∏

J
j=1 q j with {pi} ,

{
q j
}

primes.
Then I = J and there is a permutation π ∈ Sn for which pi = qπ(i). Let n be the smallest positive
integer for which this fails. Let p be a prime divisor of n. Then there is i such that pi = p and j
such that q j = p ... �
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NOTATION 56. We may uniquely write every non-zero integer in the form n = ε ∏p pep where
ε ∈ {±1} and ep are non-negative integers, equal to zero for all but finitely many p.

EXAMPLE 57. vp(n!) =
⌊

n
p

⌋
+
⌊

n
p2

⌋
+
⌊

n
p3

⌋
+ · · · .

PROPOSITION 58. Every positive divisor of ∏p pep is of the form ∏p p fp where 0≤ fp ≤ ep.

THEOREM 59.
(
∏p pep,∏p p fp

)
= ∏p pmin{ep, fp} while

[
∏p pep,∏p p fp

]
= ∏p pmax{ep, fp}.

COROLLARY 60. (a,b) [a,b] = ab.

PROOF. min
{

ep, fp
}
+max

{
ep, fp

}
= ep + fp. �

1.3.3. Distribution of primes (not examinable).

DEFINITION 61. π(x) = #{1≤ p≤ x | p prime}.

CONJECTURE 62. (Gauss circa 1800) limx→∞ π(x) · log
x = 1. More precisely, π(x) ∼ Li(x)

def
=∫ x

2
dt

log t (“integers are prime with probability 1
log t ”)

THEOREM 63. (Chebychev 1850) For all large enough x,

0.9
x

logx
≤ π(x)≤ 1.1

x
logx

.

-

THEOREM 64. (de la Vallée-Poussin, Hadamard 1896, following Riemann 1859) |π(x)−Li(x)| ≤
Cxe−c

√
logx.

CONJECTURE 65. (Riemann 1859) |π(x)−Li(x)| ≤C
√

x logx.

THEOREM 66. (Dirichlet 1837) Barring local obstruction, every AP contains infinitely many
primes.

(Chebotarev) Let π(q,a;x)= #{1≤ p≤ x | p≡ a(q) prime}. Then
∣∣∣π(x)− 1

φ(q) Li(x)
∣∣∣≤Cxe−c

√
logx.

CONJECTURE 67. (ERH) For (a,q) = 1,
∣∣∣π(q,a;x)− 1

φ(q) Li(x)
∣∣∣≤C

√
x logx.

1.3.4. Special primes.
• Twin primes.
• Fermat numbers: Fn = 22n

+ 1. Prime for n = 0,1,2,3,4. Fermat Conj all prime; Euler
showed 641|2232

+1. No other Fermat primes known.
– (Fn,Fm) = 1 if n 6= m, so infinitely many primes.

• Mersenne numbers: 2p−1. Many known; probably there are ∞ many but it is open.
– Cole, October 1903 meeting of the AMS: 267−1= 193,707,721×761,838,257,287.
– Euclid: 2p−1 prime then 2p−1 (2p−1) perfect.
– Euler: converse.

PROPOSITION 68. (Fn,Fm) = 1 if n > m≥ 0.
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PROOF. For any integer x we have(
x2 +1,x+1

)
=
(
(x+1)2−2(x+1)+2,x+1

)
= (2,x+1) .

In particular, for x = 22m
which is even we find (Fm+1,Fm) = 1. Assume now that n > m+1, and

for 0≤ j < 2n−m−1 write Fn, j = 22n− j2m+1
+1 so that Fn,0 = Fn and Fn,2n−m−1−1 = 22m+1

+1 = Fm+1.
Then, for 0≤ j < 2n−m−1−1 we have(

22n− j2m+1
+1,22m

+1
)

=
(

22n− j2m+1
−22m

,22m
+1
)

Euclid’s Lemma

=
(

22m
(

22n− j2m+1−2m
−1
)
,22m

+1
)

Common factor

=
(

22n− j2m+1−2m
−1,22m

+1
) (

22m
,22m

+1
)
= 1

=
(

22n− j2m+1−2m
+22m

,22m
+1
)

Euclid’s Lemma

=
(

22n− j2m+1−2·2m
+1,22m

+1
)

Common factor

=
(

22n−( j+1)2m+1
+1,22m

+1
)
,

that is
(
Fn, j,Fm

)
=
(
Fn, j+1,Fm

)
. It follows by induction that (Fn,Fm) = (Fm+1,Fm) = 1. �

COROLLARY 69. There are infinitely many primes.

PROOF. No prime divides two of the Fn. �

REMARK 70. Note that this proof only produces n primes up to 22n
+ 1, i.e. about log logx

primes up to x.

1.4. Diophantine equations

1.4.1. Diophantine equations.

DEFINITION 71. A Diophantine equation is an equation which is to be solved by integers.

REMARK 72. So named because of Diophantus’s book.

EXAMPLE 73. Some famous equations include:
(1) Linear equations in one variable: 2x = 6, 2x = 7 (encoding divisibility)
(2) Linear equations in two variables: 6x+5y = 7, 10x+7y = 33 (divisibility plays a major

role)
(3) Pythagorean triples: x2 + y2 = z2 (such as 32 +42 = 52)
(4) Fermat equation: x4 + y4 = z4 (Fermat: no solutions except if xyz = 0)
(5) Fermat equation: x3 + y3 = z3 (Euler: no solutions except if xyz = 0)
(6) Fermat equation: xp+yp = zp, p≥ 3 (Ribet: no solutions assuming the Tanyima–Shimura

Conjecture, Wiles: Tanyima–Shimura Conjecture is true).

1.4.2. Linear Diophantine equations.

THEOREM 74. The set of integral solutions to ax+by = c is as follows:
(1) If a = b = 0 then the set is empty if c 6= 0, all of Z2 if c = 0.
(2) Otherwise, let d = gcd(a,b). Then
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(a) If d - c the set is empty.
(b) If d | c, let s, t be such that as+bt = d. Then the set of solutions is

{( sc
d + b

d z, tc
d −

a
d z
)}

z∈Z.

REMARK 75. Note that “solving an equation” requires doing two things: showing that every
solution is in the set, and showing that every member of the set is a solution.

EXAMPLE 76. The equation 5x+11y= 7 has the solutions {(−14+11k,7−5k)}k∈Z=(−14,7)+
(11,−5)Z. The equation 10x+ 22y = 9 has no solutions. The equation 10x+ 22y = 14 has the
same solutions as 5x+11y = 7.

PROOF. The first part is obvious. For the second, certainly d = gcd(a,b) divides any integer of
the form ax+by so if the equation has solutions we must have d|c. Conversely, suppose d|c. We
can then study the equation a

d x+ b
d y = c

d , where now gcd
( a

d ,
b
d

)
= 1. �

• Example: 10x+7y = 33

REMARK 77. Linear equations will recur in several guises; they are common.

1.4.3. Non-linear equations: finding all Pythagorean triples.

REMARK 78. The main motivation for this section is not the “bottom line” result, but rather
the techniques used along the way.

Let x,y,z ∈ Z satisfy x2 + y2 = z2. What can we say about them?
Step 0: Signs. If x = 0 then the equation is y2 = z2 with solutions y = ±z. Also, changing the

sign of x, say, does not affect x2.

CONCLUSION. We may assume x,y,z are strictly positive.

Step 1: Removing common factors. Suppose a prime p divides both of x,y. Then p|x2 + y2 so
p|z2. But this means p|z · z so p|z or p|z, that is p|z. But now p divides all three of x,y,z and then
dividing the equation by p2 we get:(

x
p

)2

+

(
y
p

)2

=

(
z
p

)2

.

Dividing by common factors whenever we can, we can eventually write x= d ·x′, y= d ·y′, z= d ·z′
so that

x′2 + y′2 = z′2 .

CONCLUSION. For the next steps we may assume that x,y,z are pairwise relatively prime.

Step 2: Congruence considerations. Since x,y do not have a common prime divisor, at most
one of them is even, so at least of them is odd. Can both be odd?

FACT 79 (PS2). Let x ∈ Z. If x is even, x2 is divisible by 4. If x is odd, x2 leaves remainder 1
when divided by 4.

It’s also clear that if z is even, z2 is a multiple of 4. Suppose now that x,y were both odd. Then
x2 = 1+4q for some q, y2 = 1+4r for some r, but then z2 = x2 + y2 = 2+4(r+q) would leave
remainder 2 when divided by 4 and this is forbidden.

CONCLUSION. One of x,y is even and one is odd. Wlog x is odd and y is even. Then x2 is odd,
y2 is even, so z2 is odd, so x,z are odd.
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Step 2: Factoring the equation. Rewrite the equation as:

y2 = z2− x2 = (z+ x)(z− x) .

As in step 1 we begin by trying to remove common factors. We note that y,z+ x,z− x are all even
(x,z are both odd) so we can immediately divide by 4 and write

(1.4.1)
(y

2

)2
=

(
z+ x

2

)(
z− x

2

)
.

QUESTION. Can there be more common factors?

Answer: No. (Trick: polarization) Supposep divides both of z+x
2 and z−x

2 . Then p divides their
sum and their difference. This means

p | z =
z+ x

2
+

z− x
2

p | x =
z+ x

2
− z− x

2
.

But x,z have no common factors.

CONCLUSION. In the factorization (1.4.1) the factors on the right are relatively prime.

Step 3: Unique factorization. Let u = z+x
2 , v = z−x

2 and we know that uv =
( y

2

)2 is a square.

LEMMA 80. Let n ∈ Z>0 have the prime factorization n = ∏p pep . Then n is a square iff all ep
are even.

PROOF. Suppose n = m2 and let the factorization of m be m = ∏p p fp . Then n = m2 = ∏p p2 fp .
Conversely, suppose each ep is even. Then n = m2 where m = ∏p p(ep/2). �

LEMMA 81. Suppose u,v are relatively prime integers such as uv is a square. Then both of u,v
are squares.

PROOF. Let the prime factorizations of u,v be

u =
r

∏
i=1

pei
i

v =
s

∏
j=1

q f j
j

with all ei, f j > 0. Since u,v are relatively prime, no pi equals any q j. The prime factorization of
uv is then

uv =
r

∏
i=1

pei
i

s

∏
j=1

q f j
j

with all the primes appearing distinct. By the previous Lemma, if uv is a square than each ei and
f j is even. But since each ei is even u is a square, and since each f j is even v is a square. �

CONCLUSION. Both z+x
2 and z−x

2 are squares.
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Step 4: Parametrization. Accordingly, let z+x
2 = n2 and let z−x

2 = m2. The numbers m,n are
relatively prime, since their squares z+x

2 and z−x
2 are. Also, their sum z is odd so they have opposite

parities. Noting that
( y

2

)2
=
( z+x

2

)( z−x
2

)
= m2n2 we get:

x =
z+ x

2
− z− x

2
= n2−m2

y = 2mn

z =
z+ x

2
+

z− x
2

= n2 +m2

Step 5: Solution. Recalling the common factor construction of step 1, we have shown:

PROPOSITION 82. Let x,y,z satisfy x2 + y2 = z2where x,y,z > 0. Then (up to swiching x,y)
there are m,n,d > 0 with m,n relatively prime and not both odd so that

x = d ·
(
n2−m2)

y = d ·2nm
z = d ·

(
n2 +m2) .

QUESTION 83. Are we done?

Answer: No – we need to check these are solutions.

LEMMA 84. All of these are indeed solutions to the equations.

PROOF. The following is an algebraic identity:(
d ·
(
n2−m2))2

+(d ·2mn)2 =
(
d ·
(
n2 +m2))2

�
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CHAPTER 2

Congruences

2.1. Motivation

Consider the linear congruence 10x+7y = 33. We already know that its solutions are{(
−66
99

)
+

(
7
−10

)
k
}
.

We now take a different point of view. We write the equation as

10x+
(

multiple
of 7

)
= 33

(leaving y as an implicit variable). We can similarly write the solution as:

x =−66+
(

multiple
of 7

)
.

The equation now seems like an equation in one unknown, and seems to have one solution.

2.2. Arithmetic in congruences

2.2.1. Examples: arithmetic mod 2,3,4.
• Construct addition and multiplication tables mod 2,3,4
• Observe we only need the reduced residues {0,1}, {0,1,2}, {0,1,2,3}.
• Observe usual rules of arithmetic (for addition and multiplication) still hold
• Observe

2.2.2. Formal proofs.

DEFINITION 85. For a,b,m ∈ Z with m≥ 2, a≡ b(m) iff m | a−b.

REMARK 86. Informally, a≡ b(m) means “a = b up to a multiple of m”.

LEMMA 87 (“implicit variable”). a≡ b(m) iff there is k∈Z such that a−b= km or a= b+km.

PROPOSITION 88. Congruence mod m is an equivalence relation.

THEOREM 89 (Arithmetic). If a≡ a′,b≡ b′ (m) then

a±b≡ a′+b′ (m)

and
ab≡ a′b′ (m) .

PROOF. Say a′ = a + km, b′ = b + lm. Then a′ ± b′ = a± b + (k± l)m and a′b′ = ab +
(al +bk+ kl)m. �
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FACT 90 (Division Thm). Every congruence class mod m contains a unique representative
0≤ r < m.

DEFINITION 91. The reduction of a mod m is that 0≤ r < m which is congruent to a.

EXAMPLE 92. (Divisibility tests) m | a iff the reduction of a mod m is zero.

2.3. Application: Divisibility tests

Write an integer n ∈ Z≥1 using its decimal expansion: n = ∑
d
i=0 ai10i where the digits ai ∈

{0,1,2,3,4,5,6,7,8,9}. What can we tell about n knowing only its digits?

LEMMA 93 (Divisibility by 2,5,10). n≡ a0 (10), hence also n≡ a0 (5) and n≡ a0 (2).

PROOF. We have 100 = 1 and for i≥ 1, 10i = 10 ·10i−1 ≡ 0(10). It follows that

n =
d

∑
i=0

ai10i ≡ a0 +
d

∑
i=1

ai ·0≡ a0 (10) .

�

What about divisibility by 9?

LEMMA 94. For all k ≥ 0, 10k ≡ 1(9) (proof by induction)

PROPOSITION 95 (Divisibility by 9). For all n≥ 0, n≡ S(n)(9) where S(n) is the digit sum of
n.

PROOF. We have

n =
d

∑
i=0

ai10i ≡
d

∑
i=0

ai ·1≡ S(n)(9) .

�

LEMMA 96. If n > 9 then S(n)< n.

PROOF. n−S(n) = ∑
d
i=1 ai

(
10i−1

)
> 0 as long there is i≥ 1 with ai > 0. �

ALGORITHM 97. To reduce n mod 9 keep replacing n with S(n) until the resulting number
(“digital root”) is at most 9.

COROLLARY 98. n is divisible by 9 iff its digital root is 9, by 3 iff its digital root is 3,6 or 9.

EXERCISE 99. (PS3) Construct a similar test for divisibility by 11, using 10≡−1(11).

2.4. Negatives, inverses and linear equations

We’d like to solve equations like ax+b≡ c(m). For this we need to be able to:

• Subtract b
• Divide by a
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2.4.1. The negative (reinforces reduced residue).
• “Residue class” or “congruence class” = all numbers congruent to a given number, equiv-

alently all numbers giving the same reminder (mod m)
• “Reducing” an integer mod m = replacing with the reduced residue, the remainder upon

division by m.
• Let a be a reduced residue. What is the reduction of −a?

– It is m−a.
• This allows us to solve the equation x+a≡ b(m).

2.4.2. The modular inverse.

DEFINITION 100. Say that b is a modular inverse of a (mod m) if ab ≡ 1(m). Say that a is
invertible if it has a modular inverse.

PROPOSITION 101. a is invertible mod m iff (a,m) = 1.

PROOF. Assume that ab ≡ 1(m). Then 1 = ab+ km. Thus any prime dividing both a and m
must divide 1. Conversely, let a,m be relatively prime. By Bezout’s Theorem 27, there are x,y
such that ax+my = 1, which means that ax≡ 1(m). �

LEMMA 102. The modular inverse is unique (if it exists)

PROOF. Suppose b,b′ are both modular inverses of a. Then ab′ ≡ 1(m). Multiplying both
sides by b we conclude b≡ b ·1≡ b · (ab′)≡ (ba)b′ ≡ 1 ·b′ ≡ b′ (m). �

NOTATION 103. Write ā for the modular inverse of a (when m is understood from context).

EXAMPLE 104 (Euler). 5 · 128 = 640 = 641− 1 so 27 ≡ −5̄(641). Also, 641 = 625+ 16 so
24 ≡ −54 (641). We conclude that 232 + 1 = 24 (27)4

+ 1 ≡ −54 (−5̄
)4

+ 1 ≡ −1
(
5 · 5̄
)4

+ 1 ≡
0(641). In fact, 232 +1 = 641 ·6,700,417.

PROPOSITION 105. a is a zero-divisor iff (m,a)> 1.

PROOF. Let d = (m,a). If d > 1 then Then 1≤ m
d < m so m

d 6≡ 0(m). Also, a · m
d =

( a
d ·d

)
· m

d =
a
d ·
(
d · m

d

)
= a

d ·m ≡
a
d · 0 ≡ 0(m). If d = 1 then a is invertible. Suppose that ab ≡ 0(m). Then

b = 1 ·b≡ (āa)b≡ ā(ab)≡ ā ·0≡ 0(m). �

2.4.3. Linear equations.

THEOREM 106. Consider the congruence ax ≡ b(m), and let d = (a,m). If d - b there are no
solutions. Otherwise it is equivalent to the congruence a

d x ≡ b
d (

m
d ). If (a,m) = 1 then ax ≡ b iff

x≡ āb.

REMARK 107. Every class mod m
d splits into d classes mod m – and we expect the final answer

to be in terms of classes mod m.

2.4.4. Linear equations: several variables. Same techniques as for usual linear algebra. For
example we’ll solve {

5x+2y ≡ 3(12)
2x+7y ≡ 5(12)
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2.5. The CRT

2.5.1. Example: a non-linear congruence. Suppose we want to solve x2 ≡ 1(7). This is not
hard because we can factor:

x2−1≡ 0(7) ⇐⇒ 7 | x2−1 ⇐⇒ 7 | (x−1)(x+1) ⇐⇒ 7|(x−1)∨7|(x+1) ⇐⇒ x≡±1(7) .

Same if 7 is replaced by any prime (“quadratic equation should have two solutions”). What about
mod 35? Obvious solutions ±1 but note also that 62 = 36 ≡ 1(35) while 6 6≡ ±1. How can we
find such solutions?

• Factor 35 = 5 ·7.
• Solve congruence mod 5 and mod 7 separately.
• Put solutions together.

2.5.2. Formal statement.
THEOREM 108 (CRT). Let

{
m j
}J

j=1be pairwise relatively prime, and let M = ∏ j m j. Let{
a j
}J

j=1 ⊂ Z. Then there is a ∈ Z, unique mod M, such that a≡ a j (m j).

PROOF. Assume first that a1 = 1 and that a j = 0 for 2 ≤ j ≤ J. Let N = ∏
J
j=2 m j so that

M = m1N. It is then enough to find a such that a≡ 1(m1) while a≡ 0(N). Since (N,m1) = 1 can
take a = NN̄ where N̄ is any inverse of N mod m1. It follows that there exist

{
y j
}J

j=1 such that
yi ≡ δi j (m j). For existence set a = ∑ j y ja j. For uniqueness by subtraction it is enough to consider
the case a≡ 0(m j) for all j, for which a must be divisible by M. �

EXAMPLE 109. Divide the six residue classes mod 6 into their classes mod 2 and 3.

2.5.3. Summary.
(1) Let M = m1m2. Then

(a) The residue class of a mod M is contained in the residue class of a mod m1.
(b) The residue class of a mod m1 splits into m2 classes mod M: the classes of a,a+

m1,a+2m1,a+3m1, . . . ,a+(m2−1)m1.
(c) The residue class of

(2) In general let M = m1m2 · · ·mr.
(a) For each i let Ni =

M
mi

, in other words Ni = ∏ j 6=i m j. Use Euclid’s Algorithm to find
xi,yi such that Nixi +miyi = 1 and let bi = Nixi.

(b) Given {ai}r
i=1 set a = ∑

r
i=1 aibi.

EXAMPLE 110. Solve x≡ 1(3), x≡ 2(5) and x≡ 3(7). Indeed 35 ·2 = 70≡ 1(3), 21≡ 1(5)
and 15≡ 1(7). It follows that the solution is x≡ 70 ·1+21 ·2+15 ·3(3 ·5 ·7), that is x≡ 157≡
52(105).

2.6. The multiplicative group

2.6.1. Wilson’s Theorem.
THEOREM 111. Let p be prime. Then (p−1)!≡−1(p).

PROOF. This is exactly the product of all residues mod p. We can pair each residue with its
inverse, except for −1 which is its own inverse. �

EXAMPLE 112. What is 6! mod 7.
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2.6.2. Multiplicative order. Examine powers of 2 mod 7, mod 11. Powers of 5 mod 11 and
see periodicity. Examine powers of 2 mod 6 and see periodicity but no 1.

DEFINITION 113. For (a,m)= 1 the multiplicative order of a mod m is ordm(a)=min{n≥ 1 | an ≡ 1(m)}.

PROPOSITION 114. Let (a,m) = 1.
Then ar ≡ as (m) iff r ≡ s(ordm(a)).

PROOF. Wlog r = s+ t for t ≥ 0. Suppose first that r ≡ s (ordm(a)), that is ordm(a) | t. Then

ar = asat = as ·aordm(s) t
ordm(s) = as

(
aordm(s)

) t
ordm(s) ≡ as1

t
ordm(s) ≡ as (m) .

Conversely, suppose ar ≡ as (m). Multiplying both sides by ās we get

at = ar−s ≡ arās ≡ asās ≡ (aā)s ≡ 1(m) .

By the division theorem we can write t = qordm(a)+u for some u < ordm(a). Then

1≡ at ≡
(

aordm(a)
)q

au ≡ au (m) .

If u is positive this contadicts the minimality of ordm(a), so u = 0 and ordm(a) | t = r− s. �

EXAMPLE 115. The order of 2 mod 2n−1 is n: it divides n since 2n ≡ 1(2n−1) but can’t be
smaller.

What can we say about the multiplicative order?

2.6.3. Fermat’s Little Theorem.

THEOREM 116 (Fermat). Let p be prime, and let p - a. Then ap−1 ≡ 1(p).

PROOF 1. Let

A = (p−1)! =
′

∏
x(p)

x .

Now multiply both sides by ap−1. We get:

ap−1 ·A =
′

∏
x(p)

(ax) = ∏
y(p)

y = A

since multiplication by a is a bijection of the invertible residues with themselves. Multiplying by
Ā we get ap−1 ≡ 1(p). �

REMARK 117. The “correct” proof is via Lagrange’s Theorem in group theory; see Math 322.

EXAMPLE 118. 35 is not prime since 234 6≡ 1(35).

• 210 = 1024 = 1023+1≡ 1(341). It follows that 2340 ≡ 1(341). But 11 | 341 (why?) so
this is not a prime.
• What is the order of a mod 23? It must divide 23−1 = 22 = 2 ·11 so it is either 1, 2, 11,

or 22.
– Only ±1 have order dividing 2.
– Order 11 if a is a square.
– Later: iff a is a square, and can quickly determine whether a is a square or not.
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DEFINITION 119. Call p a Sophie Germain prime if 2p+ 1 is also prime. In that case call
q = 2p+1 a safe prime.

LEMMA 120. Let q = 2p+1 be a safe prime. Let a 6≡ −1,0,1(q). Then the order of a mod q
is either p or 2p.

2.6.4. Euler’s Theorem.

DEFINITION 121. φ(m) = #U(m)

EXAMPLE 122. φ(p) = p−1, φ(27) = 27− 1
3 ·27 = 18.

THEOREM 123 (Euler). For any m, aφ(m) ≡ 1(m).

2.6.5. Primality testing. Pseudoprimes, Charmichael numbers.
Aside: Miller’s algorithm and Rabin’s version.

ALGORITHM 124. Modular exponentiation by repeated squaring
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CHAPTER 3

Arithmetic functions

3.1. Dirichlet convolution

DEFINITION 125. An arithmetical function is a function f : Z≥1→ R (more generally, to C).

EXAMPLE 126. Some standard functions.

• All-ones function I(n) = 1, identity function N(n) = n, delta-function δ (n) =

{
1 n = 1
0 n 6= 1

.

• Characteristic function of the primes: P(n) =

{
1 n prime
0 not

for which π(x) = ∑n≤x P(n).

The von-Mangoldt function Λ(n) =

{
log p n = pk, k ≥ 1
0 else

which is the “right way” to

count primes using Chebychev’s function ψ(x) = ∑n≤x Λ(n).
• Let n=∏p pep . Then ω(n)= #{p prime : p|n}, Ω(n)=∑p ep. From these get the Möbius

function µ(n) =

{
(−1)ω(n) n squarefree
0 else

, the Liouville function λ (n) = (−1)Ω(n).

• φ(n) = #{0≤ a < n | (a,n) = 1}, τ(n) = ∑d|n 1, σ(n) = ∑d|n d, σk(n) = ∑d|n dk.

DEFINITION 127. Call f multiplicative if f (mn) = f (m) f (n) if (m,n) = 1.

REMARK 128. This usually has to do with the CRT.

EXAMPLE 129. φ(n) is multiplicative (proof later).

LEMMA 130. If f is multiplicative and f (1) 6= 1 then f (n) = 0 for all n.

PROOF. f (n) = f (n ·1) = f (n) f (1) so (1− f (1)) · f (n) = 0 for all n. �

PROPOSITION 131. f multiplicative and n = ∏p pep then f (n) = ∏p f (pep).

PROOF. Induction on number of prime factors of n. �

COROLLARY 132. φ(pk) = pk − pk−1 = pk
(

1− 1
p

)
so φ(∏p pep) = ∏p|n

(
pep− pep−1) =

∏p|n pep
(

1− 1
p

)
= n∏p|n

(
1− 1

p

)
.

DEFINITION 133. f is completely multiplicative if f (mn) = f (m) f (n) for all n.

EXAMPLE 134. I(n), δ (n), Nk(n).

DEFINITION 135. The Dirichlet convolution of f ,g is the arithmetical function

( f ∗g)(n) = ∑
d|n

f (d)g(
n
d
) = ∑

de=n
f (d)g(e)
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The second definition shows that f ∗g = g∗ f . By convention the sum is over positive divisors
and factorizations only.

EXAMPLE 136. Calculate (φ ∗ I)(n) for small values of n, note that φ ∗ I = N.

THEOREM 137. φ ∗ I = N.

PROOF. (Textbook) Combinatorial – ∑d|n φ( n
d ) = n since this counts the integers between 1,n

according to their gcd with n. �

THEOREM 138. f ,g multiplicative then so if f ∗g.

PROOF. Let gcd(m1,m2) = 1. Then there is a bijection between divisors d|m1m2 and pairs
d1|m1, d2|m2 by (d1,d2) 7→ d1d2 and d 7→ (gcd(d,m1),gcd(d,m2)). It follows that

( f ∗g)(m1m2)
def
= ∑

d|m1m2

f (d)g(
m1m2

d
)

= ∑
d1|m1

∑
d2|m2

f (d1d2)g
(

m1

d1
· m2

d2

)
= ∑

d1|m1

∑
d2|m2

f (d1) f (d2)g
(

m1

d1

)
g
(

m2

d2

)
f ,g multiplicative

= ∑
d1|m1

f (d1)g
(

m1

d1

)
∑

d2|m2

f (d2)g
(

m2

d2

)
= (( f ∗g)(m1)) · (( f ∗g)(m2)) .

�

EXAMPLE 139. τ = I ∗ I, σk = I ∗Nk.

REMARK 140. f ,g completely multiplicative doesn’t mean f ∗g is so, e.g. τ = I ∗ I.

EXAMPLE 141. τ(pk) = k+ 1 so τ(∏p pep) = ∏p(ep + 1). σ(pk) = pk+1−1
p−1 so σ(∏p pep) =

∏p|n
pep+1−1

p−1 .

PROBLEM 142. (Past final) τ(n) = 77 and 6|n. Find n.

3.2. Mersenne primes and perfect numbers

DEFINITION 143. (cf PS1) Call n deficient if σ(n)< 2n, abundant if σ(n)> 2n and perfect if
σ(n) = 2n.

EXAMPLE 144. 6,28.

Not clear if odd perfect numbers exist. We’ll study even perfect numbers.
• Let n = 2sm be perfect with m odd. Then by multiplicativity σ(n) = σ(2s)σ(m) =(

2s+1−1
)

σ(m).
– We used (2s,m) = 1. Not enough to say “2s even, m odd”.

• By assumption also σ(n)= 2n= 2s+1m. It follows that 2s+1|
(
2s+1−1

)
m. Since

(
2s+1,2s+1−1

)
=

1 (they are consecutive) we have 2s+1|σ(m) so write σ(m) = 2s+1t.
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• We then have 2s+1m =
(
2s+1−1

)
2s+1t that is m =

(
2s+1−1

)
t.

• If t > 1 then 1, t,
(
2s+1−1

)
t are distinct divisors of m so σ(m) ≥ 1+ t +

(
2s+1−1

)
t =

1+2s+1t > σ(m), a contradiction.
• It follows that m = 2s+1−1 and that σ(m) = 2s+1 = m+1. In particular, m has no other

divisors that 1,m so m is prime.
• By PS2, if 2s+1− 1 is prime then s+ 1 itself is prime. We have shown that every even

perfect number is of the form 2p−1 (2p−1) where p,2p−1 are both prime.
• Conversely, if p,2p− 1 are both prime then σ

(
2p−1(2p−1)

)
= σ

(
2p−1)σ (2p−1) =

(2p−1)(1+2p−1) = 2 ·2p−1 (2p−1).

THEOREM 145. An even number is perfect iff it is of the form 2p−1 (2p−1) for a prime of the
form 2p−1.

DEFINITION 146. The numbers of the form Mn = 2n−1 are called Mersenne numbers.

PROPOSITION 147. Let q, p be primes with q|2p−1. Then q≡ 1(p).

PROOF. PS5 �

EXAMPLE 148. The first few Mersenne primes and associated perfect numbers are:
• 22−1 = 3; 21 ·3 = 6
• 23−1 = 7; 22 ·7 = 28
• 25− 1 = 31 – if not prime would have a prime divisor≡ 1(5) and < 6 =

√
36 which is

impossible. The perfect number is 24 ·31 = 496.
• 27− 1 = 127 – if not prime would have a prime divisor ≡ 1(7) and < 12 =

√
144 but

there are no such primes. 26 ·127 = 8128.

EXAMPLE 149. 211−1 = 2047 – if not prime would have a prime divisor≡ 1(11) and < 50 =√
2500. The only prime in this range is 23 and indeed 2047

23 = 89.
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CHAPTER 4

Cryptology

4.1. Introduction

• Three parties: A (Alice) would like to communicate some message P (“plaintext”) to B
(Bob). The eavesdropper Eve will know everything Alice sends.
• Alice and Bob will agree on a pair of functions E (“encryption”), D (“decryption”) such

that D(E(P)) = P for all P. Alice will send the ciphertext C = E(P). Bob will recover the
plaintext by evaluating P = D(C).

– “Symmetric crypto”: Alice and Bob keep D,E secret. Eve only knows C and has to
guess what D,E are.

– “Public-key / Asymmetric crypto”: Eve knows both C and the function E, while
Bob’s function D is kept secret.

• The first scheme requires prior communication between Alice and Bob (to agree on the
functions). Usually this prior communication is facilitated by a method of the second
kind.

– PKC is more involved, more computationally expensive. Usually only used for key
exchange after which a symmetric cipher is used.

• Alice and Bob do “cryptography” (create methods of communications); Eve does “crypt-
analysis” (breaking such methods).

4.2. Character and block ciphers

In a character cipher we encode every letter of the message as an integer P ∈ {0, . . . ,25}
(thought of as residues mod 26). The function D,E are then maps {0, . . . ,25}→ {0, . . . ,25}.

EXAMPLE 150. (Caesar cipher) E(P)≡ P+3(26) so D(C) =C−3(26).

• HELLO + 3 = , decrypt by −3.

EXAMPLE 151. (Affine cipher) E(P) = aP+b(26).
• Must have a invertible mod 26 for this to make sense.
• In that case D(C)≡ ā(C−b) = āC− āb is also an affine function

• HELLO via ·3−7, decrypt via ·9+63 = ·9+11.

REMARK 152. (ETAOIN) Character ciphers are very weak, since they preserve the frequency
distribution of the letters (which is highly non-uniform). They also preserve the order of the letters
(TH most common digraph, THE most common trigraph).

Even if a different substitution is used for different plaintext letters, but the sequence of substi-
tutions repeat it’s possible to recover the block length by checking the letter distributions in residue
classes.
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Block ciphers: work with several letters are once, perhaps on a rolling basis. E.g. affine-linear
map on the vector coming from several letters.

4.3. Asymmetric encryption: RSA
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CHAPTER 5

Primitive roots

5.1. Primitive roots

PROBLEM 153. Solve x5 ≡ 7(17).
Find ord17(2) = 8 and 62 ≡ 2 so ord17(6) = 16. Now take log base 16. Similarly for x5 ≡ 4

and x6 ≡ 4.

DEFINITION 154. For (a,m) = 1 set ordm(a) = min{n≥ 1 | an ≡ 1(m)}
Call r a primitive root mod p if ordp(r) = φ(m).

EXAMPLE 155. Mod 17. Mod 19.

LEMMA 156. a is a primitive root iff every invertible residue is a power of a; in this case the
invertible residues are given by

{
a j}φ(m)−1

j=0 .

THEOREM 157. (“Discerte Logarithm”) Let r be a primitive root mod m. Then the equation
xn ≡ rl (m) has solutions iff (n,φ(m))|l in which case there are (n,φ(m)) such solutions.

In particular, b is an nth power mod m iff b
φ(m)

(n,φ(m)) ≡ 1(m), in which case it has (n,φ(m)) nth
roots.

PROOF. Changing variables to x = rt we need to solve nt ≡ l (φ(m)) which is a linear congru-
ence. �

THEOREM 158. There is a primitive root mod m iff m is of the form 2,4, pk,2pk where p is an
odd prime and k ≥ 1.

5.2. Primitive roots mod p

Fix a prime p.
Two key ingredients:

PROPOSITION 159. Let f (x)∈Z[x] be of degree n mod p (that is, p - an). Then the congruence
f (x)≡ 0(p) has at most n solutions.

PROOF. If f (a)≡ 0(p) then x−a divides f mod p, and continue by induction. �

PROPOSITION 160. ∑d|n φ(d) = n.

THEOREM 161. For every d|p− 1 there are at d elements of order dividing d, and φ(d) ele-
ments of order exactly d.

PROOF. There are at most d elements since x has order dividing n iff xd ≡ 1(p). Let Ad ={
1≤ a≤ p−1 | ordp(a) = d

}
. If this set is not empty let a ∈ Ad . Then

{
a j}d−1

j=0 are all distinct
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so these are all elements of order dividing d. Since ordp(a j) =
ordp(a)

( j,ordp(a))
, exactly φ(d) of these

elements are of order d exactly. It follows that #Ad ≤ φ(d). Thus:

p−1 = #{1≤ a≤ p−1}= #
(
∪d|p−1Ad

)
≤ ∑

d|p−1
#Ad ≤ ∑

d|p−1
φ(d) = p−1 .

It follows that we must have equalities throughout, that is that #Ad = φ(d). In particular for n|p−1,
the elements of order dividing n are ∪d|nAd and there are ∑d|n φ(d) = n of them. �

COROLLARY 162. There are φ(φ(p))≥ 1 primitive roots mod p.

5.3. Primitive roots mod p2, pk

Idea: linear deformation.

THEOREM 163. Let r be a primitive root mod p. Then one of r,r+ p is a primitive root mod
p2.

PROOF. By Euler’s Theorem, ordp2(r)|φ(p2) = p(p− 1). Also, rordp2(r) ≡ 1(p) so p− 1 =
ordp(r)|ordp2(r). If ordp2(r)< p(p−1) it must equal p−1.

Now consider ordp2(r+ pt). Since r+ pt ≡ r (p) the same reasoning shows that p−1|ordp2(r+
pt)|p(p−1). Moreover,

(r+ pt)p−1 = rp−1 +(p−1)rp−2 pt +
p−1

∑
k=2

(
p−1

k

)
rp−1−ktk pk

≡ 1− rp−2t p(p2) .

Note that p - rp−2 so as long as p - t (say if t =−1) we have p2 - (r+ pt)p−1−1 so ordp2(r+ t p) 6=
p−1. �

THEOREM 164. [not covered in class] Let p be odd and let r be a primitive root mod p2. Then
r is a primitive root mod pk, k ≥ 2.

PROOF. Assume by induction that ordpk r = pk−1(p− 1). It follows that rpk−2(p−1) 6≡ 1(pk).

Since rpk−2(p−1)≡ 1(pk−1), we have rpk−2(p−1) = 1+t pk−1 for some t not divisible by p. It follows
that

rpk−1(p−1) = (1+ t pk−1)p = 1+ t pk +
p−1

∑
l=2

(
p
l

)
t l pl(k−1)+ t p pp(k−1) .

Now if k, l ≥ 2 then l(k−1)+1≥ 2(k−1) = k+1+(k−2)≥ k+1 and p |
(p

l

)
if 2≤ l ≤ p−1.

Finally, if p≥ 3 then p(k−1)≥ 3(k−1) = k+1+2(k−2)≥ k+1 as well so

rpk−1(p−1) ≡ 1+ t pk 6≡ 1(pk+1) .

�

5.4. Discrete Log and ElGamal

See textbook.
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CHAPTER 6

Quadratic reciprocity

6.1. Quadratic residues

Fix an odd prime p.

DEFINITION 165. Let a not be divisible by p. Call a a quadratic residue mod p if there is
x ∈ Z such that x2 ≡ a(p). Otherwise say that x is a quadratic non-residue.

NOTATION 166. The Legendre Symbol is given by:(
a
p

)
=


+1 a a quadratic residue
−1 a a quadratic nonresidue
0 p|a

.

We first study
(

a
p

)
as a function of a.

EXAMPLE 167. List all squares mod 3,5,7,11 and obtain the residues and non-residues.

PROPOSITION 168. (Euler’s criterion)
(

a
p

)
≡ a

p−1
2 (p).

PROOF. If p|a both sides vanish mod p. Otherwise, this is the case n = 2 of Theorem 157. �

EXAMPLE 169. For which primes amond 3,5,7,11 is −1 a square mod p?

COROLLARY 170. (The quadratic character of −1)
(
−1
p

)
= (−1)

p−1
2 =

{
+1 p≡ 1(4)
−1 p≡ 3(4)

.

REMARK 171. For an alternative proof see PS6.

LEMMA 172. Let a,a′,b ∈ Zwith a≡ a′ (p). Then:

(1)
(

a
p

)
=
(

a′
p

)
;

(2)
(

b2

p

)
= 1 if p - b;

(3)
(

a
p

)(
b
p

)
=
(

ab
p

)
.

PROOF. The first two claims are true by definition (x2 ≡ a(p) iff x2 ≡ a′ (p)). For the third, it
is clear if p divides one of a,b or if at least one is a quadratic residue, but the claim that if both a,b
are non-residues then ab is a residue is non-trivial. In any case using Euler’s criterion it is easy to
check that (

ab
p

)
≡ (ab)

p−1
2 ≡ a

p−1
2 b

p−1
2 ≡

(
a
p

)(
b
p

)
(p)

and if signs are congruent mod p they are equal since p - 2. �
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Another criterion:

PROPOSITION 173. (Gauss’s Lemma) Let p - a. Then
(

a
p

)
= (−1)s where s is the number of

t, 1≤ t ≤ p−1
2 such that the least positive residue of at is greater than p−1

2 .

PROOF. We evalute the product ∏

p−1
2

t=1 (at) = a
p−1

2 ·
(

p−1
2

)
! in another way. For this divide the

numbers 1≤ x≤ p−1 into pairs {x, p− x} (x 6= p−x since p is odd). If at,at ′ belong to the same
pair then either they are equal (at which point t ≡ t ′ (p)) or opposite, at which point at ≡−at ′ (p)
forces t ≡−t ′ (p). Since the range 1≤ t ≤ p−1

2 does not contain t, t ′ such that t ≡−t ′ (p) and since

there are exactly p−1
2 pairs it follows that ∏

p−1
2

t=1 (at)≡∏1≤x≤ p−1
2
(±x)(p) where the sign is + or −

according to whether at ≡ x or at ≡−x. By assumption we have s minus signs, so

a
p−1

2

(
p−1

2

)
!≡ (−1)s

p−1
2

∏
x=1

x≡ (−1)s
(

p−1
2

)
! .

The factor
(

p−1
2

)
! is invertible mod p and we are done by Euler’s criterion. �

COROLLARY 174. (The quadratic character of 2)(
2
p

)
=

{
1 p≡±1(8)
−1 p≡±3(8)

.

PROOF. Explicit count using Gauss’s Lemma. �

6.2. Quadratic reciprocity

Now consider
(

a
p

)
as a function of p. Euler observed that this only depends on the class of p

mod 4a. Gauss eventually proved this:

THEOREM 175. (Gauss) Let p,q be distinct odd primes. Then(
p
q

)(
q
p

)
= (−1)

p−1
2

q−1
2 =

{
−1 p≡ q≡ 3(4)
+1 otherwise

.

PROOF. (Based on Exercize 17 to section 11.2) Let R =
{

1≤ a≤ pq−1
2 | (a, pq) = 1

}
, let

T =
{

q,2q, · · · , p−1
2 q
}

and let S = RtT =
{

1≤ a≤ pq−1
2 | (a, p) = 1

}
(if (a, p) = 1 then either

(a, pq) = 1 or a is divisible by q). Finally, set A = ∏a∈R a. One one hand we then have:

∏
a∈S

a =

q−1
2 −1

∏
k=0

p−1

∏
j=1

(pk+ j) ·
p−1

2

∏
j=1

(
p

q+1
2

+ j
)

≡ (p−1)!
q−1

2

(
p−1

2

)
!(p)

≡ (−1)
q−1

2

(
p−1

2

)
!(p)
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by Wilson’s Theorem. On the other hand we have

∏
a∈S

a =

(
∏
a∈R

a

)
·

 p−1
2

∏
j=1

(q j)


= Aq

p−1
2

(
p−1

2

)
!

≡ A
(

q
p

)(
p−1

2

)
!(p)

by Euler’s criterion (Proposition 168). Since
(

p−1
2

)
! is invertible mod p and

(
q
p

)
≡ ±1(p) we

conclude

A≡ (−1)
q−1

2

(
p
q

)
(p) .

By symmetry we also have

A≡ (−1)
p−1

2

(
q
p

)
(q) .

We now evaluate A mod pq. For this note that if x is a residue class mod pq then x 6≡ −x(pq)
since p,q are odd. It follows that for each pair {x,−x} of invertible residue class mod pq ex-
actly one member belongs to A. Now let a ∈ R and assume that ā 6≡ ±a(pq). Then exactly
one of ā,−ā belongs to R and together we get either a 1 or a −1 in A. Accordingly let R′ ={

1≤ a≤ pq−1
2 | a2 ≡±1(pq)

}
. We have shown that:

A≡±∏
a∈R′

a(pq).

There are 4 residues a mod pq such that a2 ≡ 1(p). Those are ±1 and ±u where u ≡ 1(p) and
u ≡ −1(q). There residues contribute ±u to A. Assume first that at least one of p,q is ≡ 3(4).
Then there is not x mod that prime such that x2 ≡−1 mod that prime; a fortiori there is no a mod
pq such that a2 ≡ −1(pq) and hence A ≡ ±u(pq). It follows that A mod p and A mod q are
opposite signs. If p≡ 1(4) and q≡ 3(4) this means that −

(
p
q

)
and

(
q
p

)
have opposite signs (as

claimed), while if p≡ q≡ 3(4) it means that −
(

p
q

)
and −

(
q
p

)
have opposite signs (as claimed).

We are left with the case p ≡ q ≡ 1(4). Now fix ε,δ such that ε2 ≡ −1(p) and δ 2 ≡ −1(q). By
the CRT there is v mod pq such that v ≡ ε (p) and v ≡ ε (q). Then the solutions to a2 ≡ −1(pq)
are±v,±uv, and R′ contains precisely one from each pair, so that A≡±u ·±v(±uv)≡±u2 ≡±1.
It follows that

(
p
q

)
and

(
q
p

)
are congruent to the same sign mod pq, and hence they are equal. �

REMARK 176. Alternative proof: Let G = ∑a(p)

(
a
p

)
ζ a be the Gauss sum mod p. Then Ḡ =

∑a(p)

(
a
p

)
ζ−a =

(
−1
p

)
G so

(
−1
p

)
G2 = |G|2 = p by Planchere’s formula. We thus have

p
q−1

2 = (−1)
p−1

2
q−1

2 Gq−1
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and

Gp
q−1

2 = (−1)
p−1

2
q−1

2 Gq

≡ (−1)
p−1

2
q−1

2 ∑
a(p)

(
a
p

)q

ζ
−aq (q)

≡ (−1)
p−1

2
q−1

2

(
q
p

)
G(q).

Multiplying by G we find:

G2
(

p
q

)
≡ (−1)

p−1
2

q−1
2

(
q
p

)
G2 (q).

Since G2 is invertible mod q we conclude(
p
q

)
≡ (−1)

p−1
2

q−1
2

(
q
p

)
(q)

as a congruence in Z[ζ ]. However, if a rational number is an algebraic integer then it is an integer,
so this congruence holds in Z and both sides are equal.

ALGORITHM 177. To evaluate
(

a
p

)
:

(1) Reduce a mod p to get a′.
(2) Factor a′, and eliminate any square factors.
(3) For any prime factor q of a′, relate

(
q
p

)
to
(

p
q

)
using QR, and evaluate the latter recur-

sively.

6.3. The Jacobi Symbol

Better algorithm: avoid factoring.

DEFINITION 178. Let P be an odd positive integer, with prime factorization P = ∏i pi (the pi
need not be distinct). For a ∈ Z the Jacobi symbol is the function( a

P

)
def
= ∏

i

(
a
pi

)
.

LEMMA 179. Let a,a′,b ∈ Zwith a≡ a′ (P). Then:

(1)
( a

P

)
=
(

a′
P

)
;

(2)
(

b2

P

)
= 1 if (P,b) = 1;

(3)
( a

P

)( b
P

)
=
(ab

P

)
.

PROOF. These all follow from the respective properties of the Legendre symbol. �

THEOREM 180. Let P,Q be odd nad positive. Then:

(1)
(−1

P

)
= (−1)

P−1
2 ;

(2)
( 2

P

)
= (−1)

P2−1
8 ;

(3)
(

Q
P

)(
P
Q

)
= (−1)

P−1
2

Q−1
2 .
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PROOF. In both (1),(2) the claim holds for P prime. Both sides of the claimed equality are also
completely multiplicative (clear on the Jacobi Symbol side and an easy calculation on the other) so
the claim follows). For part (3) one checks that both sides are separately completely multiplicative
in P,Q (for the RHS this is already checked for part (1)) so again equality follows from the case of
primes, which is the law of QR. �

ALGORITHM 181. To evaluate
( a

P

)
:

(1) Reduce a mod P to get a′.
(2) Write a′ = 2tQ with Q odd. We then have

( a
P

)
=
(

a′
P

)
=
( 2

P

)t
(

Q
P

)
.

(3) Evalute
( 2

P

)
by part (2), and

(
Q
P

)
by relating it to

(
P
Q

)
and continuing recursively.
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CHAPTER 7

Special topics

7.1. The Gaussian integers

Baseically a review of the course but using a different number system.

• Defined the rings Q(i) and Z[i].
• State that they are rings.
• Define conugation and the norm; relate it to divisibility in Q(i).
• Find all units of Z[i].
• Divisition with remainder in Z[i] by rounding quotient in Q(i).
• Divisibility:

– Only finitely many divisors;
– define gcd;
– Euclid’s Lemma still holds. Due to division with remainder Euclid’s Algorithm also

still holds.
– Bezout’s extension also holds, and can also proof Bezout’s Theorem by considering

a minimal element of the ideal generated by z,w. This also shows the GCD is unique
up to associates.

• Unique factorization
– Define irreducible, prime. Discuss associates.

∗ If Nz = p is a rational prime then z must be irreducible.
– Show that every Guassian integer is a product of irreducibles.
– Show that π is prime iff it is irreducible and not a unique.
– Conclude that the prime factorization is unique up to permutation and associates.

• Classification of primes.
– If π is prime then π divides Nπ which is a rational integer, and hence a product of

rational primes. It follows that π|p for some rational prime p.
– If Nπ = p2 = N p then π is assoc to p. Otherwise Nπ = p.
– 2 =−i(1+ i)2 so 1+ i is the only prime dividing 2.
– If p≡ 3(4) and p|a2 +b2then p|a, p|b (if p - a then (āb)2 ≡−1(p)). It follows that

p is not a norm, so p is still prime in Z[i].
– If p ≡ 1(4) then there is a ∈ Z such that p | a2 + 1. But p - a± i in Z[i] so p is not

prime. It follows that there is a prime properly dividing p so Nπ = p. This says
p = ππ̄ and the two are not associates: π

π̄
= π2

p /∈ Z[i], so p is divisible by exactly
two primes (and we can write p = a2 + b2 in 8 ways, coming from the 4 associates
of π, π̄ each).
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7.2. Elliptic curves

y2 = x3 +ax+b.
• Plane cubics; the addition law.
• Fermat descent for x4 + y4 = z2.
• Modularity
• Elliptic curves mod p.
• Elliptic curve cryptography.
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