Lior Silberman’s Math 312: ComPAIR Assignment 5

e This assignment is due Wednesday, 7/4/2021 at noon (Vancover time)
e Comparisons are due Sunday, 11/4/2021 at 11pm (Vancouver time).
Recall that for a modulus m each integer a is congruent to a unique reduced residue mod m (an integer i
the range [0,m — 1] and if m is odd also to a unique balanced residue (an integer in the range [——_1 m_1
(if m is even we can use the range [—% +1, %} or [—%, 5= 1].
1. Let p be an odd prime.
(a) Give a formula for s depending on p.
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2. Let p be an odd prime.
(a) Give a formula for s depending on p.
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(b) Use Gauss’s Lemma to conclude that (2) =
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For parts (a), the key ideas are (1) edge cases for ¢ (for each range of consecutive ¢ where the claim holds,

what are the endpoints? and (2) In part 2(a) division into cases for p: the formula for the edge case might
depend on the class of p mod 8.



