
Lior Silberman’s Math 312: Problem Set 5

Arithmetic functions
1. (A Mersenne prime)

(a) Let p,q be primes such that q|2p−1. Show that q≡ 1(p).
Hint: Consider the order of 2 mod q.

(b) Show that if p is odd then in fact q≡ 1(2p).
Hint: q−1 is even.

(*c) Prove that n = 213− 1 is prime by (i) Showing that if n were composite, it would be
divisible by at least one of two specific primes and (ii) Explicitly dividing it with remainder
by those primes to rule them out.

2. (a) Show that f (n) = 2ω(n) is a multiplicative function.
Hint: Adapt the argument that proved that µ was multiplicative.
(b) Show that ∑d|n f (d) = τ(n2).

Hint: First show that it is enough to check when n is a prime power, then do that case.
SUPP What would happen for f (d) = bω(n) for a general b ∈ Z≥2?

*3. Show that Λ∗ I = log.
Hint: The Use the prime factorization of the integer under consideration.

4. Define a function χ4(n) =


1 n≡ 1(4)
−1 n≡ 3(4)
0 2|n

and set s(n) = ∑d|n χ4(d).

(a) Show that χ4 is completely multiplicative and conclude that s is multiplicative.
(b) Calculate s(2),s(3),s(4),s(5).
(c) Let r2(n) = #

{
(a,b) ∈ Z2 | a2 +b2 = n

}
be the number of ways to write n as a sum of two

squares of integers (possibly negative!). Show that r2(n) = 4s(n) for n = 2,3,4,5.
RMK The identity r2(n) = 4s(n) holds for all n.

Cryptology

5. The following message has been encoded using an affine cipher. Decode it and explain your
reasoning

NMCWT FIHHI ACPBN RSWHI NRUNG VSWBI BAUFS CPBAI YTHSI PNRSM
CTSCH HYIYW UMSFS NRSTG FGAGV SWCPB NRSYG YSFCN RWGEN AFCTS

(Hint 1: the average frequency of letters in English falls according to ETAOIN)
(Hint 2: the author of passage is the Rev. C.L. Dodgson, author of the book “Sym-
bolic Logic Part I”)

6. Show that in the following two affine ciphers encryption and decryption are the same operation
(that is, that E(E(P)) = P)
(a) “ROT-13”, a popular cipher for internet discussion boards, for which the encryption func-

tion is E(P)≡ P+13(26).
(b) “Atbash”, a historical cipher originally used in Hebrew, consisting of exchanging letters:

a↔ z, b↔ y, c↔ x and so on. Its encryption function is E(P)≡−1−P(26).
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7. In this problem your will do an RSA decryption when the public key is (e = 5,m = 2881).
(a) Calculate φ(m) and find the decryption exponent d.
(b) If the ciphertext is 0504 1874 0347 0515 2088 2356 0736 0468, what was the plaintext?

(decrypt each four-digit number separately).
(c) Interpret each resulting four-digit number as a pair of letters. What was the message?

Supplementary problems (not for submission)

A. Fix a prime p.
(a) Let f (x) = ∑

n
i=0 aixi be a polynomial with integer coefficients. Use the identity of PS2

problem 8 to show that x− y divides f (x)− f (y) as polynomials.
(b) Let c1 ∈ Z be such that f (c1) ≡ 0(p). Plugging in c1 for y show that for some poly-

nomial g(x) with integer coefficients we have a congruence of polynomials f (x) ≡ (x−
c1)g(x)(p). Moreover, deg(g)≤ deg( f )−1.

(c) Let c2 ∈ Z also be such that f (c2)≡ 0(p) and assume that c1 6≡ c2 (p). Show that g(c2)≡
0(p).

(d) Show by induction on r that if
{

c j
}r

j=1 are representatives of the distinct congruence
classes mod p which solve the equation f (x) ≡ 0(p) then there is a polynomial g(x) of
degree≤ n− r such that f (x)≡ g(x)∏

r
j=1(x− c j).

(e) Show that if f is not zero mod p then has at most n distinct roots mod p.

B. Let f be an arithmetical function.
(a) Show that f is invertible (there is g such that f ∗g = δ ) iff f (1) 6= 0.
(b) Let f be invertible. Show that it has a unique inverse and that

(
f−1)−1

= f .
(c) Let f be invertible and multiplicative. Show that f−1 is multiplicative.
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Lior Silberman’s Math 312: Solutions to Problem Set 5

Arithmetic functions

1. (a) We have seen in class that p|q−1. Clearly 2p−1 and hence q are odd, so q−1 is even. We
thus know that 2, p both divide q−1. Since 2, p are relatively prime their product also divides
p−1.
(b) We have 213−1 = 154 ·53+29 = 103 ·79+54. If 213−1 were not prime, it would have

a proper prime divisor q ≤
√

213−1 <
√

10,000 = 100 which by part (a) would satisfy
q≡ 1(26). The numbers up to 100 which satisfy this congruence are 1,27,53,79, of which
1,27 are not prime, so that putative prime divisor would have to be one of 53,79.

2. (a) We check that ω is an additive function: let m,n be two integers. Certainly every prime
dividing one of m,n divides mn and conversely if p divides mn is divides one of m,n. It follows
that the set of primes dividing m,n is the union of the sets of primes dividing m,n. Finally, if
(m,n) = 1 then the sets of primes dividing m,n are disjoint (any prime lying in the intersection
would be a common divisor). Since the size of a disjoint union is the sum of the sizes, we have
ω(mn) = ω(m)+ω(n) in this case, and thus 2ω(mn) = 2ω(m)+ω(n) = 2ω(m)2ω(n).
(b) Set g = f ∗ I and let h(n) = τ(n2). g is multiplicative as the convolution of two multiplica-

tive functions. h is also multiplicative: if (m,n) = 1 then
(
m2,n2) = 1 also (exactly the

same primes divide the two integers m,m2), and then h(mn) = τ(m2n2) = τ(m2)τ(n2) =
h(m)h(n) by the multiplicativity of τ . We have seen in class that two multiplicative func-
tions are equal iff the are equal at prime powers, so it remains to evaluate g,h at inte-
gers of the form pk, p prime. In that case g(pk) = ∑d|pk f (pk) = ∑

k
j=0 f (p j) = 2ω(1)+

∑
k
j=1 2ω(p j) = 1+2k since ω(p j) if j ≥ 1, while h(pk) = τ(p2k) = 2k+1 (we have seen

in class that τ(pr) = r+1).
SUPP If f (n) = bω(n) then ( f ∗ I)(n) = τ(nb).

3. Let n = ∏
r
i=1 pki

i where the pi are the distinct prime divisors of n. If a divisor d of n is a prime
power then it is a power of one of the pi, so d|n is a prime power iff d = pk

i for some 1≤ i≤ r
and some 1≤ k ≤ ki. It follows that

∑
d|n

Λ(d) =
r

∑
i=1

ki

∑
k=1

Λ(pk
i ) =

r

∑
i=1

ki

∑
k=1

log pi =
r

∑
i=1

ki log pi = log

(
r

∏
i=1

pki
i

)
= logn .

4. (a) Let n,m be non-zero integers. If at least one of them is even so is nm and hence both
χ4(nm) and χ4(n)χ4(m) vanish. Otherwise, by the division theorem we can write n = 4k+ ε

and m = 4l+δ for some ε,δ ∈ {±1}. By definition of χ4 we then have χ4(n) = ε , χ4(m) = δ

and χ4(nm) = χ4 (4(kl + εl +δk)+ εδ ) = εδ = χ4(n)χ4(m). s is then multiplicative as the
convolution of two multiplicative functions.
(b) s(2) = χ4(1)+ χ4(2) = 1, s(3) = χ4(1)+ χ4(3) = 1− 1 = 0, s(4) = χ4(1) = 1, s(5) =

χ4(1)+χ4(5) = 1+1 = 2.
(c) The only way to write 2 as a sum of two positive squares is 2 = 1+ 1 so if 2 = a2 + b2

we have a,b ∈ {±1}. There are 4 sign choices so r2(2) = 4 = 4s(2). Since 1+1 < 3 < 4
3 cannot be written as a sum of two squares, and 4 can only be written as a sum of two
positive squares via 4 = 4+ 0. We can then choose which of a,b vanishes, and we can
choose the sign of the other (one of ±2), so r2(4) = 4. Finally, the only way to write 5 as
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