Lior Silberman's Math 312: Problem Set 6

Primitive roots

- 1. For each $p \in \{11, 13, 17, 19\}$ find a primitive root mod p. Justify your answers.
- 2. How many primitive roots are there mod 25? Find all of them.
- 3. (Wilson's Theorem, again)
 - (a) Let $r = \operatorname{ord}_m(a)$ and let S be the product of the r distinct residues which are powers of a mod *m*. Show that $\operatorname{ord}_m(S)$ is 1 if *r* is odd and 2 if *r* is even.
 - (b) Let p be an odd prime, and let $k \ge 1$. Show that the product of all invertible residues mod p^k is congruent to $-1 \mod p^k$.
 - *Hint*: There is a primitive root mod p^k .
- 4. (removed)
- 5. Let p be a prime. Let S be a set of representatives for all the primitive roots mod p (we showed in class this set has size $\phi(p-1)$). Find $\prod_{r \in S} r \mod p$.

Quadratic reciprocity

- 6. Evaulate the following Legendre symbols.
 (a) (⁴⁸/₁₀₃), (³³²⁵/₁₄₄₀₇), (¹⁹³⁸²/₄₈₃₉₇), using factorization and quadratic reciprocity.
 (b) (⁷⁹⁹/₃₇), (³¹³³/₃₁₃₇), (³⁹²⁷⁰/₄₉₁₇₇), using Jacobi symbols.
- 7. Let *p* be an odd prime and let $q|2^p 1$. Recall that $q \equiv 1 (2p)$.
 - (a) We have seen before that $\operatorname{ord}_{q}(2) = p$. Use this and Euler's criterion to show that 2 is a square mod *q*. Conclude that $q \equiv \pm 1(8)$.
 - (b) Show that $M_{17} = 2^{17} 1 < 132,000$ is prime, only trying to divide by three numbers.
 - RMK Why is it not necessary to show that these numbers are prime?
- 8. (Math 437 Midterm, 2009)
 - (a) Let $a \ge 3$ be odd and let $p|a^2 2$ be prime. Show that $p \equiv \pm 1(8)$.
 - (b) Let a > 3 be odd. Show that *some* prime divisor of $a^2 2$ is congruent to $-1 \mod 8$. *Hint*: What is the residue class of $a^2 - 2 \mod 8$?
 - (c) Show that there are infinitely many primes congruent to $-1 \mod 8$.

- 4. (The quadratic character of -1) Let p be an odd prime. We'll show that $\left(\frac{-1}{p}\right) = 1$ iff $p \equiv 1(4)$.
 - (a) Suppose that -1 is a square mod $p: x^2 \equiv -1(p)$. Show that $\operatorname{ord}_p(x) = 4$ and conclude that $p \equiv 1(4)$.
 - (b) Conversely, suppose $p \equiv 1$ (4). Writing this as $4 \mid p-1$ show that there is a residue class $x \mod p$ of order 4, and prove that $x^2 \equiv -1$ (p).
- 9. Let p be a prime such that q = 4p + 1 is also prime. Show that 2 is a primitive root mod q. *Hint:* Show that if $\operatorname{ord}_q(2) \neq q - 1$ then it must divide one of $\frac{q-1}{2}$ and $\frac{q-1}{p}$, and consider those cases separately.