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12. EXPONETIAL GROWTH AND DECAY
(21/10/2021)

Goals.

(1) More related rates

(2) Exponential growth

(3) Exponential decay: half-life
(4) Newton’s law of cooling
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Math 100 —- WORKSHEET 12
EXPONENTIAL GROWTH AND DECAY

1. MORE RELATED RATES

(1) (Final, 2015, variant) A conical tank of water is 6m

tall and has radius 1m at the top.
(a) The drain is clogged, and is filling up with rainwa-
ter at the rate of 5m®/min. How fast is the water
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(b) The drain is unclogged and water begins to clear
at the rate of Tm?/min (but rain is still falling).
At what height is the water falling at the rate of
Im /min?
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RELATED RATES SUMMARY

(0) Read problem: understand the idea, draw a pic-
ture if possible.
(1) Assign names:
e Choose axes, quantities of interest.
e Give a name to each quantity of interest.
(2) Function: write down the relation between the
quantities of interest.
(3) Calculus: differentiate the relation using the
chain rule
(4) Interpretation: solve the problem using the cal-
culus result.
e Make sanity checks (area can’t be negative,
for example).
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(2) Two ships are travelling near?an island. The first is
located 20km due west of it,” The second is located
15km due south of it and is moving due south at

7Tkm/h. How fast is the distance between the ships
changing if:
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(a) The first ship is moving due neﬁah at bkm /h.
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(b) The same setting, but now the first ship is moving
toward the island.
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2. BXPONENTIAL GROWTH AND DECAY

(3) Suppose® that a pair of invasive OpOSSuUMms arrives in
BC in 1935. Unchecked, opossums can triple their
population annually.

(a) At what time will there be 1000 opossums in BC?

10,000 opossums?
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(b) Write a differential equation expressing the growth
of the opossum population with time.

1 See http://linnet.geog.ubc.ca/efauna/Atlas/Atlas.aspx?sciname=Didelphis%20virginiana
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(4) A radioactive sample decays according to the law

dm
T km.
a

(a) Suppose that one-quarter of the sample remains
after 10 hours. What is the half-life?

(b) A 100-gram sample is left unattended for three
days. How much of it remains?
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(5) (Final, 2015) A colony of bacteria doubles every 4
hours. If the colony has 2000 cells after 6 hours, how
many were present initially”? Simplify your answer.
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3. NEWTON’S LAW OF COOLING

Fact. When a body of temperature Tty is placed in an en-
vironment of temperature Ty, the temperature difference
T(t) — Teny between the body and the environment de-
cays exponentially. In other words, there is a (negative)
constant k such that

T = k(T — T.p) T(t) — Ty = (Tt — Tomp)e™ .

e key 1dea: change variables to the temperature differ-
ence. Let y =T — T,,,. Then

dy dT"
dt dt y
Corollary. lim; 0 y(t) = 0 s0 limy_s00 T'(y) = Tens.




(6) (Final, 2010) When an apple is taken from a refrig-
erator, 1ts temperature is 3°C'. After 30 minutes in
a 19°C' room its temperature is 11°C.
(a) Find the temperature of the apple 90 minutes after
it is taken from the refrigerator, expressed as an
integer number of degrees Celsius.
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(b) Determine the time when the temperature of the
apple is 16°C'.

(c) Write the differential equation satisfied by the tem-
perature T'(t) of the apple.
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(7) (Final, 2013) A bottle of soda pop at room temper-
ature (70°F) is placed in the refrigerator where the
temperature is 40°F'. After half han hour the bottle
has cooled to 60°F. When will it reach 50°F™?



(6) (Final, 2010) When an apple is taken from a refrig-
erator, its temperature is 3°C'. After 30 minutes in
a 19°C room its temperature is 11°C.
(a) Find the temperature of the apple 90 minutes after
it is taken from the refrigerator, expressed as an
integer number of degrees Celsius.
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(b) Determine the time when the temperature of the
apple is 16°C.
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(c) Write the differential equation satisfied by the tem-
perature T'(t) of the apple



