Lior Silberman's Math 223: Problem Set 2 (due 26/1/2022)

Practice problems (recommended, but do not submit)

- Study the method of solving linear equations introduced in section 1.4 and use it to solve problem 2 of section 1.4.
- Section 1.4, problems 1-5 (ignore matrices), 8, 12-13, 17-19.
- Section 1.5, problems 1,2 (ignore matrices), 4, 9, 10
- M1. For each vector in the set $S = \{(0,0,0,0), (0,0,3,0), (1,1,0,1), (2,2,0,0), (0,0,0,-1)\} \subset \mathbb{R}^4$ decide whether that vector is dependent or independent of the other vectors in *S*.
- M2. In the space of 2x2 matrices, is the matrix $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ linearly dependent on the set $\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 5 & 3 \\ 7 & 6 \end{pmatrix}, \begin{pmatrix} -1 & -2 \\ -2 & -4 \end{pmatrix} \right\}$ If it is, express it as a linear combination.

Linear dependence and independence

1. Let $\underline{u} = \begin{pmatrix} a \\ b \end{pmatrix}$, $\underline{v} = \begin{pmatrix} c \\ d \end{pmatrix} \in \mathbb{R}^2$ and suppose that $\underline{u} \neq \underline{0}$. Show that \underline{v} depends linearly on \underline{u} iff

2. In each of the following problems either exhibit the given vector as a linear combination of elements of the set or show that this is impossible (cf. PS1 problem M1).

(a)
$$V = \mathbb{R}^3$$
, $S = \left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right\}$, $\underline{\nu} = \begin{pmatrix} -4\\-2\\0 \end{pmatrix}$ (b) Same V, S but $\underline{\nu} = \begin{pmatrix} -4\\-2\\-2 \end{pmatrix}$.
(c) $V = \mathbb{R}^2$, $S = \left\{ \begin{pmatrix} a\\b \end{pmatrix}, \begin{pmatrix} c\\d \end{pmatrix} \right\}$ such that $ad - bc \neq 0$, $\underline{\nu} = \begin{pmatrix} e\\f \end{pmatrix}$.

- *3. The support of a function $f \in \mathbb{R}^X$ is the set supp $f = \{x \in X \mid f(x) \neq 0\}$ (note that we are doing algebra here; in analysis the set X would have some kind of topology and the support would be defined as the closure of the subset we consider). Let $S \subset \mathbb{R}^X$ be a set of non-zero functions of *disjoint* supports, in that supp $f \cap$ supp $g = \emptyset$ if $f, g \in S$ are distinct. Show that S is linearly independent. *Hint:* suppose linear combination of functions from *S* is zero and evaluate this combination carefully chosen points $x \in X$.
- 4. More on spans.
 - (a) Let W = Span(S) where S is as in 2(a). Identify $W \subset \mathbb{R}^3$ as the set of triples which satisfy a (a) Let w = Span(S) where z = zsingle equation in three variables. (b) Let $T = \{x^{k+1} - x^k\}_{k=0}^{\infty} \subset \mathbb{R}[x]$. Show that $\text{Span}(T) \subset \{p \in \mathbb{R}[x] \mid p(1) = 0\}$.

 - (b) Let $R = \{2+x^k\}_{k=1}^{\infty} \subset \mathbb{R}[x]$ (that is, *R* is the set of polynomials $2+x, 2+x^2, 2+x^3, \cdots$). Show that this set is linearly independent.
 - (*e) Give (with proof)! a simple criterion, similar to the one in part (b), for whether a polynomial is in Span(R).
- *5. Let V be a vector space, $S \subset V$ a non-empty subset, and let $w \in V$. Show that the following are equivalent: (1) $w \in \text{Span}(S)$; (2) $\text{Span}(S+w) \subset \text{Span}(S)$. Here $S+w = \{v+w \mid v \in S\}$ is the translation of S by w.

Challenge: The "minimal dependent subset" trick

The following result (C1(d)) is a *uniqueness* result, very handy in proving linear independence.

- C1. Let *V* be a vector space, and let $S \subset V$ be linearly dependent.
 - (a) Show that S contains a finite subset which is linearly dependent (this is a test of understanding the definitions)

Now let $S' \subset S$ be a linearly dependent subset of the smallest possible size, and enumerate its elements as $S' = \{\underline{\nu}_i\}_{i=1}^n$ (so *n* is the size of *S'* and the $\underline{\nu}_i$ are distinct). (b) By definition of linear dependence there are scalars $\{a_i\}_{i=1}^n \subset \mathbb{R}$ not all zero so that $\sum_{i=1}^n a_i \underline{\nu}_i = \underline{0}$.

- Show that all the a_i are non-zero.
- (c) Conclude from (b) that *every* vector of S' depends on the other vectors.
- (d) Suppose that there existed other scalars b_i so that also $\sum_{i=1}^n b_i \underline{y}_i = \underline{0}$. Show that there is a single scalar *t* such that $b_i = ta_i$ for all $1 \le i \le n$.
- C2. (hint: differentiation might help here!)
 - (a) Show that the set of functions $\{x^a\}_{a\in\mathbb{R}}$ is independent in $\mathbb{R}^{(0,\infty)}$.
 - (b) Fix a < b and consider the infinite set $\{\cos(rx), \sin(rx)\}_{r>0} \cup \{1\}$ of functions on [a, b] (you can treat 1 as the function $\cos(0x)$). Show that this set is linearly independent.

Challenge: Independence in direct sums

- C3 Before thinking more about direct sums, meditate on the following: by breaking every vector in \mathbb{R}^{n+m} into its first *n* and last *m* coordinates, you can identify \mathbb{R}^{n+m} with $\mathbb{R}^n \oplus \mathbb{R}^m$. Now do the same problem twice:
 - (a) Let $n, m \ge 1$ and let $S_1, S_2 \subset \mathbb{R}^{n+m}$ be two linearly independent subsets. Suppose that every vector in S_1 is supported in the first *n* coordinates, and that every vector in S_2 is supported in the last *m* coordinates. Show that $S_1 \cup S_2$ is also linearly independent. If n = 2, m = 1 this means

- that vectors from S_1 look like $\begin{pmatrix} * \\ * \\ 0 \end{pmatrix}$ and vectors in S_2 look like $\begin{pmatrix} 0 \\ 0 \\ * \end{pmatrix}$. (b) Let V, W be two vector spaces. Let $S_1 \subset V$ and $S_2 \subset W$ be linearly independent. Show that $\{(v,0) \mid v \in S_1\} \cup \{(0,w) \mid w \in S_2\}$ is linearly independent in $V \oplus W$.
- RMK To understand every problem about direct sums consider it first in setting of part (a). Then try the general case.

Supplementary problem: another construction

- A. (Quotient vector spaces) Let V be a vector space, W a subspace.
 - (a) Define a relation $\cdot \equiv \cdot (W)$ (read "congruent mod W") on V by $\underline{v} \equiv \underline{v}'(W) \iff (\underline{v} \underline{v}') \in W$. Show that this relation is an *equivalence relation*, that is that it is reflexive, symmetric and transitive.
 - (b) For a vector <u>v</u> ∈ V let <u>v</u>+W denote the set of sums {<u>v</u>+<u>w</u> | <u>w</u> ∈ W}. Show that <u>v</u>+W = <u>v'</u>+W iff <u>v</u>+W ∩ <u>v'</u>+W ≠ Ø iff <u>v</u> − <u>v'</u> ∈ W. In particular show that if <u>v'</u> ∈ <u>v</u>+W then <u>v'</u>+W = <u>v</u>+W. These subsets are the equivalence classes of the relation from part (a) and are called *cosets* mod W or *affine subspaces*.
 - (c) Show that if $\underline{v} \equiv \underline{v}'(W)$ and $\underline{u} \equiv \underline{u}'(W)$ and $a, b \in \mathbb{R}$ then $a\underline{v} + b\underline{u} \equiv a\underline{v}' + b\underline{u}'(W)$.
 - DEF Let $V/W = \{\underline{v} + W \mid \underline{v} \in V\}$ be the set of cosets mod W. Define addition and scalar multiplication on V/W by $(\underline{v} + W) + (\underline{u} + W) \stackrel{\text{def}}{=} (\underline{v} + \underline{u}) + W$ and $a(\underline{v} + W) \stackrel{\text{def}}{=} (a\underline{v}) + W$.
 - (d) Use (c) to show that the operation is *well-defined* that if $\underline{v} + W = \underline{v}' + W$ and $\underline{u} + W = \underline{u}' + W$ then $(\underline{v} + \underline{u}) + W = (\underline{v}' + \underline{u}') + W$ so that the sum of two cosets comes out the same no matter which vector is chosen to represent the coset.
 - (e) Show that V/W with these operations is a vector space, known as the quotient vector space V/W.

Supplementary problems: finite fields

Let *p* be a prime number. Define addition and multiplication on $\{0, 1, \dots, p-1\}$ as follows: $a+_pb = c$ and $a \cdot_p b = d$ if *c* (resp. *d*) is the remainder obtained when dividing a + b (resp. *ab*) by *p*. For example if p = 7 we have $5+_76 = 4$ and $5 \cdot_76 = 2$ because $11 = 1 \cdot 7 + 4$ and $30 = 4 \cdot 7 + 2$.

- B. (Elementary calculations)
 - (a) Show that these operations are associative and commutative, that 0 is neutral for addition, that 1 is neutral for multiplication.
 - (b) Show that if 1 < a < p then $a +_p (p a) = 0$, and conclude that additive inverses exist in this system.
 - (c) Show that the distributive law holds.
 - (d) Show that for every integer *n*, $n^p n$ is divisible by *p*. *Hint:* Induction on *n*, using the binomial formula and that $p|\binom{p}{k}$ if 0 < k < p.
 - (e) Show that for every integer *a*, if $1 \le a \le p-1$ then $p|a^{p-1}-1$. *Hint*: If p|xy but $p \nmid x$ then p|y.
 - (f) Show that for every integer $a, 1 \le a \le p-1, a^{p-1} = 1$ if we exponentiation means repeated \cdot_p rather than repeated \cdot .
 - (g) Conclude that every $1 \le a \le p 1$ has a multiplicative inverse.

DEFINITION. The field defined in problem *B* is called "the field with *p* elements" or "*F p*" and denoted \mathbb{F}_p .

REMARK. A better version of this problem relies on a construction like problem A. For integers $a, b \in \mathbb{Z}$ define $a \equiv b(p)$ if a - b is divisible by p (and say "a is congruent to $b \mod p$ "), and write $\mathbb{Z}/p\mathbb{Z}$ for the set of equivalence classes. First one shows that there are p such classes, with representatives $\{0, 1, \dots, p-1\}$ (this connects this argument to the one used in problem B). Following the same steps as in problem A we can endow $\mathbb{Z}/p\mathbb{Z}$ with addition and multiplication operations coming from the integers and deduces the laws of arithmetic from those in \mathbb{Z} . So far this makes sense for any integer p, and now problems B(d) through B(g) prove that this is a field.

C. Let (V, +) be set with an operation, and suppose all the axioms for addition in a vector space hold. Suppose that for every $\underline{v} \in V$, $\sum_{i=1}^{p} \underline{v} = \underline{0}$ (i.e. if you add *p* copies of the same vector you always get zero). Define $a\underline{v} = \sum_{i=1}^{a} \underline{v}$ for all $0 \le a < p$ and show that this endows *V* with the structure of a vector space over \mathbb{F}_p .