Lior Silberman’s Math 223: Problem Set 10 (due 28/3/2022)

Practice problems

Section 5.1: all problems are suitable
Section 5.2: all problems are suitable

Calculation

M1. Find the characteristic polynomial of the following matrices.

(a) \[
\begin{pmatrix}
5 & 7 \\
-3 & 2
\end{pmatrix}
\]
(b) \[
\begin{pmatrix}
\pi & e \\
\sqrt{7} & 0
\end{pmatrix}
\]
(c) \[
\begin{pmatrix}
0 & 1 \\
0 & 1 \\
\vdots & \ddots \\
0 & 1
\end{pmatrix}
- \begin{pmatrix}
a_0 & \cdots & \cdots & -a_{n-2} & -a_{n-1}
\end{pmatrix}
\]

M2. For each of the following matrices find its spectrum and a basis for each eigenspace.

(a) \[
\begin{pmatrix}
5 & 4 & 2 \\
4 & 5 & 2 \\
2 & 2 & 2
\end{pmatrix}
\]
(b) \[
\begin{pmatrix}
2 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 2
\end{pmatrix}
\]

Projections

Fix a vector space \(V \).

1. Let \(T, T' \in \text{End}(V) \) be similar. Show that \(p_T(x) = p_{T'}(x) \). (Hint: show that \(x \text{Id} - T, x \text{Id} - T' \) are similar)

2. Let \(T \in \text{End}(V) \).
 (a) Let \(p \in \mathbb{R}[x] \), and let \(v \in V \) be an eigenvector of \(T \) with eigenvalue \(\lambda \). Show that \(v \) is an eigenvector of \(p(T) \) with eigenvalue \(p(\lambda) \).
 (b) Suppose \(p(T) = 0 \). Show that \(p(\lambda) = 0 \) for all eigenvalues \(\lambda \) of \(V \).
 (c) Show that the only eigenvalue of a nilpotent map is 0.

3. Let \(P \in \text{End}(V) \) satisfy \(P^2 = P \). Such maps are called projections.
 (a) Apply problem 2(b) to show that \(\text{Spec}(P) \subset \{0, 1\} \).
 (b) Let \(V_0 = \text{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\} \) and \(V_1 = \text{Span} \left\{ \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\} \) so that \(\mathbb{R}^3 = V_0 \oplus V_1 \) [no need to check this separately]. Let \(P \) be the projection onto \(V_1 \) along \(V_0 \). Find the matrix of \(P \) with respect to the standard basis of \(\mathbb{R}^3 \).

 \text{Hint: By diagonalization } P = S \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} S^{-1} \text{ where } S \text{ is the matrix of eigenvectors.}
The Quantum Harmonic Oscillator, I

PRAC In physics a “parity operator” is a map \(R \in \text{End}(V) \) such that \(R^2 = I \) (we use the shorthand \(I = \text{Id}_V \)).

RMK This was problem 4, but it is for practice, not for submission.

(a) Show that \(\pm I \) are (uninteresting) parity operators.

— For parts (b)-(d) fix a parity operator \(R \).

(b) Show that the eigenvalues of \(R \) are in \(\{ \pm 1 \} \); let \(V_\pm \) be the corresponding eigenspaces.

(c) Show that \(I + R \), \(I - R \) are the projections onto \(V_+ \), \(V_- \) along the other subspace, respectively.

\[\text{Hint: compute } (I + R)^2 \text{ using that } R^2 = I. \]

(d) Conclude that \(V = V_+ \oplus V_- \) and hence that every parity operator is diagonalizable.

(e) Let \(X \) be a set and let \(\tau : X \to X \) be an involution: a map such that \(\tau^2 = \text{id}_X \) (identity permutation).

Let \(R_{\tau} \in \text{End}(\mathbb{R}^X) \) be the linear map \(f \mapsto f \circ \tau \). Show that \(P_{\tau} \) is a parity operator.

(f) Let \(X = \mathbb{R} \), \(\tau(x) = -x \). Explain how (b)-(e) relate to the concepts of odd and even functions.

5. Let \(V = \left\{ p(x)e^{-x^2/2} \mid p \in \mathbb{R}[x] \right\} \) and for \(n \geq 1 \) let \(V_n = \left\{ p(x)e^{-x^2/2} \mid p \in \mathbb{R}[x] \lt n \right\} \subset V \). Let \(H \in C^\infty(\mathbb{R}) \) be the operator (“quantum Hamiltonian”) \(H = -D^2 + Mx^2 \). Concretely we have \(Hf = -\frac{d^2f}{dx^2} + x^2f \).

PRAC Show that \(V_n \subset V \) are subspaces of \(C^\infty(\mathbb{R}) \), the space of infinitely differentiable functions.

(a) Show that \(HV \subset V \) and \(HV_n \subset V_n \).

(b) Let \(H_n = H \mid_{V_n} \in \text{End}(V_n) \) be the restriction of \(H \) to \(V_n \). Show that \(H_n \) has an upper-triangular basis with respect to an appropriate basis of \(V_n \) and determine its eigenvalues.

(c) Show that \(H_n \) is diagonalizable.

(d) Show that \(HR = RH \) for the parity operator of 4(f).

(*e) Show that every eigenfunction of \(H_n \) is either even or odd. Which is which?

(f) Show that \(V = \left\{ p(x)e^{-x^2/2} \mid p \in \mathbb{R}[x] \right\} \) has a basis of eigenfunctions of \(H \), and that each eigenfunction is either even or odd.
Extra credit: the generalized eigenvalue decomposition and the Cayley–Hamilton Theorem

Fix a vector space \(V \) and a linear map \(T \in \text{End}_F(V) \).

A. DEF For a number \(\lambda \) define the generalized \(\lambda \)-eigenspace to be the set of vectors \(v \in V \) killed by some power of \(T - \lambda \) (possibly depending on \(v \)):

\[
\tilde{V}_\lambda = \left\{ v \in V : \exists k : (T - \lambda)^k v = 0 \right\}.
\]

(a) Show that \(\tilde{V}_\lambda \) is a subspace containing \(V_\lambda \).
(b) Show that \(\tilde{V}_\lambda \neq \{0\} \) iff \(V_\lambda \neq \{0\} \) (“every generalized eigenvalue is a regular eigenvalue”).
(c) Show that \(V_\lambda \) and \(\tilde{V}_\lambda \) are \(T \)-invariant: if \(v \in \tilde{V}_\lambda \) then \(T v \in \tilde{V}_\lambda \) as well, and similarly for \(V_\lambda \).
(d) Let \(\mu \neq \lambda \). Show that \(T |_{\tilde{V}_\lambda} - \mu \in \text{End}(\tilde{V}_\lambda) \) is injective (“no other eigenvalues in \(\tilde{V}_\lambda \) except \(\lambda \”). Using a factorization into linear terms conclude that for any polynomial \(p \) if \(p(\lambda) \neq 0 \) then \(p \left(T |_{\tilde{V}_\lambda} \right) \in \text{End}(\tilde{V}_\lambda) \) is injective there.
(e) Show that \(\{ \tilde{V}_\lambda \}_{\lambda \in \text{Spec}(T)} \) are linearly independent.

COR The sum \(\tilde{V} = \bigoplus_{\lambda \in \text{Spec}(T)} \tilde{V}_\lambda \) is direct.

B. Continuing the previous problem, suppose now that \(V \) is finite-dimensional.

(a) Show that \(p_T |_{\tilde{V}_\lambda} (x) = (x - \lambda)^{\dim \tilde{V}_\lambda} \) and that \(\left(T |_{\tilde{V}_\lambda} - \lambda \right)^{\dim \tilde{V}_\lambda} = 0 \tilde{V}_\lambda \).
(b) Let \(m(x) = \prod_{\lambda \in \text{Spec}(T)} (x - \lambda)^{\dim \tilde{V}_\lambda} \). Show that \(m(x) = p_T |_{\tilde{V}_\lambda} (x) \) and that \(m(T |_{\tilde{V}_\lambda}) = 0 \).
(c) Suppose that \(\tilde{V} \neq V \). Show that setting \(\bar{T} (v + \tilde{V}) = T v + \tilde{V} \) gives a well-defined linear map \(\bar{T} \) on the quotient vector space \(W = V / \tilde{V} \).
(d) Let \(\mu \) be a root of \(p_T(x) \), and let \(W_\mu \subset W \) be the corresponding eigenspace. Show that \(\prod_{\lambda \in \text{Spec}(T) \setminus \{\mu\}} (\bar{T} - \lambda)^{\dim \tilde{V}_\lambda} \) is an invertible map there. Conclude that if \(v + \tilde{V} \in W_\mu \) with \(v \notin \tilde{V} \) then \(u = \prod_{\lambda \in \text{Spec}(T) \setminus \{\mu\}} (T - \lambda)^{\dim \tilde{V}_\lambda} v \notin \tilde{V} \) but \(u + \tilde{V} \in W_\mu \).
(e) Suppose \(\mu \) is not an eigenvalue of \(T \). Show that \((T - \mu) u = 0 \), a contradiction to \(u \notin \tilde{V} \).

 Hint: In this case the polynomial in the definition of \(u \) is exactly \(m(T) \).
(f) Suppose \(\mu \) is an eigenvalue of \(T \). Show that \((T - \mu)^{1 + \dim V_\mu} u = 0 \) showing that \(u \in \tilde{V}_\mu \subset \tilde{V} \), a contradiction.

C. It follows that \(V = \tilde{V} \) so that\(T |_{\tilde{V}} = T \). Problem B(b) now gives two corollaries:

(a) The algebraic multiplicity of \(\lambda \in \text{Spec}(T) \) is equal to \(\dim \tilde{V}_\lambda \) (and since \(V_\lambda \subset \tilde{V}_\lambda \) we get a new proof that the algebraic multiplicity is at least the geometric multiplicity).
(b) (Cayley–Hamilton Theorem) \(p_T(T) = 0 \).