
Lior Silberman’s Math 412: Problem Set 4 (due 10/2/2023)

Practice
M1. Let U,V be vector spaces and let U1 ⊂U , V1 ⊂V be subspaces.

(a) “Naturally” embed U1⊗V1 in U⊗V .
(b) Is (U⊗V )/(U1⊗V1) isomorphic to (U/U1)⊗ (V/V1)?

M2. Let (·, ·) be a non-degenerate bilinear form on a finite-dimensional vector space U , defined

by the isomorphism g : U →U ′ via (u,v) def
= (gu)(v).

(a) For T ∈ End(U) define T † = g−1T ′g where T ′ is the dual map. Show that T † ∈ End(U)
satisfies (u,T v) =

(
T †u,v

)
for all u,v ∈V .

(b) Show that (T S)† = S†T †.
(c) Show that the matrix of T † wrt an (·, ·)-orthonormal basis is the transpose of the matrix of

T in that basis.

The dual map

1. Let U,V,W be vector spaces, and let T ∈ Hom(U,V ), and let S ∈ Hom(V,W ).
(a) (The abstract meaning of transpose) Suppose U,V be finite-dimensional with bases

{
u j
}m

j=1⊂
U , {vi}

n
i=1 ⊂ V , and let A ∈ Mn,m(F) be the matrix of T in those bases. Show that the

matrix of the dual map T ′ ∈ Hom(V ′,U ′) with respect to the dual bases
{

u′j
}m

j=1
⊂U ′,

{v′i}
n
i=1 ⊂V ′ is the transpose tA.

(b) Show that (ST )′ = T ′S′. It follows that t(AB) = tBtA.

Bilinear forms

In problems 2,3 we assume 2 is invertible in F and fix F-vector spaces V,W .
2. (Alternating pairings and symplectic forms) Let V,W be vector spaces, and let [·, ·] : V ×V →

W be a bilinear map.
(a) Show that (∀u,v ∈V : [u,v] =− [v,u])↔ (∀u ∈V : [u,u] = 0) (Hint: consider u+ v).
DEF A form satisfying either property is alternating. We now suppose [·, ·] is alternating.
PRAC Show that the radical R = {u ∈V | ∀v ∈V : [u,v] = 0} of the form is a subspace.

(b) The form [·, ·] is called non-degenerate if its radical is {0}. Show that setting [u+R,v+R] def
=

[u,v] defines a non-degenerate alternating bilinear map (V/R)× (V/R)→W .
RMK Note that you need to justify each claim, starting with “defines”.

3. (Darboux’s Theorem) Suppose now that V is finite-dimensional, and that [·, ·] : V ×V → F is
a non-degenerate alternating form.
DEF The orthogonal complement of a subspace U ⊂V is a set U⊥= {v ∈V | ∀u ∈U : [u,v] = 0}.
PRAC Show that U⊥ is a subspace of V .
(a) Show that the restriction of [·, ·] to U is non-degenerate iff U ∩U⊥ = {0}.
(*b) Suppose that the conditions of (a) hold. Show that V =U ⊕U⊥, and that the restriction

of [·, ·] to U⊥ is non-degenerate.
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(c) Let u ∈ V be non-zero. Show that there is u′ ∈ V such that [u,u′] 6= 0. Find a basis

{u1,v1}to U = Span{u,u′} in which the matrix of [·, ·] is
(

0 1
−1 0

)
.

(d) Show that dimF V = 2n for some n, and that V has a basis {ui,vi}
n
i=1 in which the matrix

of [·, ·] is block-diagonal, with each 2×2 block of the form from (d).
RECAP Only even-dimensional spaces have non-degenerate alternating forms, and up to choice

of basis, there is only one such form.

Tensor products

4. For finite-dimensional U,V construct a natural isomorphism End(U⊗V )→Hom(U,U⊗End(V )).

SUPP Generalize this to a natural isomorphism Hom(U⊗V1,U⊗V2)→Hom(U,U⊗Hom(V1,V2)).

5. Let U,W be vector spaces with U finite-dimensional, and let A ∈ Hom(U,U ⊗W ). Given
a basis

{
u j
}dimU

j=1 of U let wi j ∈W be defined by Au j = ∑
dimU
i=1 ui⊗wi j and define TrU A =

∑
dimU
i=1 wii ∈W . Show that this definition is independent of the choice of basis.

6. (Partial traces) Let U,V be real vector spaces equipped with non-degenerate inner products.
(a) Show that 〈u1⊗ v1,u2⊗ v2〉U⊗V

def
= 〈u1,u2〉U 〈v1,v2〉V induces an inner product on U⊗V .

(b) Let A ∈ End(U), B ∈ End(V ). Show that (A⊗B)† = A†⊗B† (A†,B† are defined in M2).
(c) Let P ∈ End(U⊗V ), interpreted as an element of Hom(U,U⊗End(V )) as in 4. Show

that (TrU P)† = TrU
(
P†).

(*d) [Thanks to J. Karczmarek] Let w ∈U ⊗V be non-zero, and let Pw ∈ End(U ⊗V ) be the
orthogonal projection on w. It follows from (c) that TrU Pw ∈End(V ) and TrV Pw ∈End(U)
are both selfadjoint. Show that their non-zero eigenvalues are the same.
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Supplementary problems
A. (Extension of scalars) Let F ⊂ K be fields. Let V be an F-vectorspace.

(a) Considering K as an F-vectorspace (see PS1), we have the tensor product VK = K⊗F V
(the subscript means “tensor product as F-vectorspaces”). For each α ∈ K set α (x⊗ v) def

=
(αx)⊗ v. Show that this extends to an F-linear map K⊗F V → K⊗F V giving VK the
structure of a K-vector space. This construction is called “extension of scalars”

(b) Let {vi}i∈I ⊂V be a set of vectors. Show that it is linearly independent (resp. spanning) iff
{1K⊗ vi}i∈I ⊂VK is linearly independent (resp. spanning). Conclude that dimK (K⊗F V )=
dimF V .

(c) Let VN = SpanR
(
{1}∪{cos(nx),sin(nx)}N

n=1

)
. Then d

dx : VN → VN is not diagonable.

Find a different basis for C⊗RVN in which d
dx is diagonal. Note that the elements of your

basis are not “pure tensors”, that is not of the form a f (x) where a ∈ Cand f = cos(nx) or
f = sin(nx).

B. DEF: An F-algebra is a triple (A,1A,×) such that A is an F-vector space, (A,0A,1A+,×)
is a ring, and (compatibility of structures) for any a ∈ F and x,y ∈ A we have a · (x× y) =
(a · x)× y = x× (a · y). Because of the compatibility from now on we won’t distinguish the
multiplication in A and scalar multiplication by elements of F .
(a) Verify that C is an R-algebra, and that Mn(F) is an F-algebra for all F .
(b) More generally, verify that if R is a ring, and F ⊂ R is a subfield then R has the structure

of an F-algebra. Similarly, that EndF(V ) is an F-algebra for any vector space V .
(c) Let A,B be F-algebras. Give A⊗F B the structure of an F-algebra.
(d) Show that the map F → A given by a 7→ a ·1A gives an embedding of F-algebars F ↪→ A.
(e) (Extension of scalars for algebras) Let K be an extension of F . Give K⊗F A the structure

of a K-algebra.
(f) Show that for V finite-dimensional, K⊗F EndF(V )' EndK (K⊗F V ).

C. The center Z(A) of a ring is the set of elements that commute with the whole ring.
(a) Show that the center of an F-algebra is an F-subspace, containing the subspace F ·1A.
(b) Show that the image of Z(A)⊗Z(B) in A⊗B is exactly the center of that algebra.

50


