Lior Silberman's Math 412: Problem set 10, due 5/4/2023

P1. Recall that a projection is a linear map E such that $E^{2}=E$. For each n construct a projection $E_{n}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ of norm at least $n\left(\mathbb{R}^{n}\right.$ is equipped with the Euclidean norm unless specified otherwise). Prove for yourself that the norm of an orthogonal projection is 1 .

Difference and differential equations

P2. Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$. Let $\underline{v}_{0}=\binom{0}{1}$.
(a) Find S invertible and D diagonal such that $A=S^{-1} D S$.

- Prove for yourself the formula $A^{k}=S^{-1} D^{k} S$.
(b) Find a formula for $\underline{v}_{k}=A^{k} \underline{v}_{0}$, and show that $\frac{\underline{v}_{k}}{\left\|\underline{v}_{k}\right\|}$ converges for any norm on \mathbb{R}^{2}.

RMK You have found a formula for Fibbonacci numbers (why?), and have shown that the real number $\frac{1}{2}\left(\frac{1+\sqrt{5}}{2}\right)^{n}$ is exponentially close to being an integer.
RMK This idea can solve any difference equation, and also differential equations.

1. We will analyze the differential equation $u^{\prime \prime}=-u$ with initial data $u(0)=u_{0}, u^{\prime}(0)=u_{1}$.
(a) Let $\underline{v}(t)=\binom{u(t)}{u^{\prime}(t)}$. Show that u is a solution to the equation iff \underline{v} solves

$$
\underline{v}^{\prime}(t)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \underline{v}(t) .
$$

(b) Let $W=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Find a formula for W^{n} and $\operatorname{express} \exp (W t)=\sum_{k=0}^{\infty} \frac{W^{k} t^{k}}{k!}$ as a matrix whose entries are standard power series.
(c) Sum the series and show that $u(t)=u_{0} \cos (t)+u_{1} \sin (t)$.
(d) Find a matrix S such that $W=S\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right) S^{-1}$. Evaluate $\exp (W t)$ again, this time using $\exp (W t)=$ $S\left(\exp \left(\begin{array}{cc}i t & 0 \\ 0 & -i t\end{array}\right)\right) S^{-1}$.
DEF The companion matrix associated to the polynomial $p(x)=x^{n}-\sum_{i=0}^{n-1} a_{i} x^{i}$ is

$$
C=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & 1 \\
a_{0} & a_{1} & \cdots & a_{n-2} & a_{n-1}
\end{array}\right)
$$

2. A sequence $\left\{x_{k}\right\}_{k=0}^{\infty}$ is said to satisfy a linear recurrence relation (or a difference equation) if for each k,

$$
x_{k+n}=\sum_{i=0}^{n-1} a_{i} x_{k+i}
$$

(a) Define vectors $\underline{v}^{(k)}=\left(x_{k-n+1}, x_{k-n+2}, \ldots, x_{k}\right)$. Show that $\underline{v}^{(k+1)}=C \underline{v}^{(k)}$ where C is the companion matrix above.
(b) Find x_{100} if $x_{0}=1, x_{1}=2, x_{2}=3$ and $x_{n}=x_{n-1}+x_{n-2}-x_{n-3}$. hint: Find the Jordan canonical form of $\left(\begin{array}{ccc} & 1 & \\ & & 1 \\ -1 & 1 & 1\end{array}\right)$.
3. Let C be the companion matrix associated with the polynomial $p(x)=x^{n}-\sum_{k=0}^{n-1} a_{k} x^{k}$.
(a) Show that $p(x)$ is the characteristic polynomial of C.
(b) Show that $p(x)$ is also the minimal polynomial.

- For parts (c),(d) fix a non-zero root λ of $p(x)$.
(c) Find (with proof) an eigenvector with eigenvalue λ.
$\left({ }^{* *} \mathrm{~d}\right)$ Let g be a polynomial, and let \underline{v} be the vector with entries $v_{k}=\lambda^{k} g(k)$ for $0 \leq k \leq n-1$. Show that, if the degree of g is small enough (depending on p, λ), then $((C-\lambda) \underline{v})_{k}=\lambda(g(k+1)-g(k)) \lambda^{k}$ and (the hard part) that

$$
((C-\lambda) \underline{v})_{n-1}=\lambda(g(n)-g(n-1)) \lambda^{n-1}
$$

$(* * e)$ Find the Jordan canonical form of C.
4. Consider now differential equation $\frac{\mathrm{d}}{\mathrm{d} t} \underline{v}=B \underline{v}$ where B is at in PS8 problem 1.
(a) Find matrices S, D so that D is in Jordan form, and such that $B=S D S^{-1}$.
(b) Find $\exp (t D)$ as in 1 (b) by computing a formula for D^{n} and summing the series.
(c) Find the solution such that $\underline{v}(0)=\left(\begin{array}{llll}0 & 1 & 1 & 0\end{array}\right)^{\mathrm{t}}$.

Power series

5. Let $A=\left(\begin{array}{ll}z & 1 \\ 0 & z\end{array}\right)$ with $z \in \mathbb{C}$.
(a) Find a simple formula for the entries of A^{n}.
(b) Use your formula to decide the set of z for which $\sum_{n=0}^{\infty} A^{n}$ converge, and give a formula for the sum.
(c) Show that the sum is $(\operatorname{Id}-A)^{-1}$ when the series converges.
6. For any matrix $A \in M_{n}(\mathbb{C})$ show that $\sum_{n=0}^{\infty} z^{n} A^{n}$ converges for $|z|<\frac{1}{\rho(A)}$. Hint: see PS9 problem 3.

Supplementary problems

A. Consider the map Tr $: M_{n}(F) \rightarrow F$.
(a) Show that this is a continuous map.
(b) Find the norm of this map when $M_{n}(F)$ is equipped with the $L^{1} \rightarrow L^{1}$ operator norm (see PS9 Problem 2(a)).
(c) Find the norm of this map when $M_{n}(F)$ is equipped with the Hilbert-Schmidt norm (see PS9 Problem A).
$\left({ }^{*} \mathrm{~d}\right)$ Find the norm of this map when $M_{n}(F)$ is equipped with the $L^{p} \rightarrow L^{p}$ operator norm. Find the matrices A with operator norm 1 and trace maximal in absolute value.
B. Call $T \in \operatorname{End}_{F}(V)$ bounded below if there is $K>0$ such that $\|T \underline{v}\| \geq K\|\underline{v}\|$ for all $\underline{v} \in V$.
(a) Let T be boudned below. Show that T is invertible, and that T^{-1} is a bounded operator.
$\left.{ }^{*} \mathrm{~b}\right)$ Suppose that V is finite-dimensional. Show that every invertible map is bounded below.
C. (The supremum norm and the Weierestrass M-test) Let V be a complete normed space.

DEF For a set X call $f: X \rightarrow V$ bounded if there is $M>0$ such that $\|f(x)\|_{V} \leq M$ for all $x \in X$ in which case we write $\|f\|_{\infty}=\sup _{x \in X}\|f(x)\|_{V}$ (equivalently, f is bounded if $x \mapsto\|f(x)\|_{V}$ is in $\left.\ell^{\infty}(X)\right)$.
(a) Show that $\ell^{\infty}(X ; V)$ is a vector space (this doesn't use completeness of V).
(b) Show that $\ell^{\infty}(X ; V)$ is complete.

DEF Now suppose that X is a metric space (or, more generally, a topological space). Let $C(X ; V)$ denote the space of continuous functions $X \rightarrow V$ and let $C_{\mathrm{b}}(X ; V)=C(X ; V) \cap \ell^{\infty}(X ; V)$ be the space of bounded continuous functions, the latter equipped with the ℓ^{∞}-norm.
(c) Show that $C_{\mathrm{b}}(X ; V)$ is a closed subspace of $\ell^{\infty}(X ; V)$. Conclude that it is complete.

COR Deduce Weirestrass's M-test: $f_{n}: X \rightarrow V$ are continuous and satisfy $\left\|f_{n}\right\|_{\infty} \leq M_{n}$ with $\sum_{n} M_{n}<$ ∞ then $\sum_{n} f_{n}$ converges to a continuous function of norm at most by $\sum_{n} M_{n}$.

