Lior Silberman's Math 412: Problem set 10, due 5/4/2023

P1. Recall that a projection is a linear map E such that $E^2 = E$. For each n construct a projection $E_n: \mathbb{R}^2 \to \mathbb{R}^2$ of norm at least n (\mathbb{R}^n is equipped with the Euclidean norm unless specified otherwise). Prove for yourself that the norm of an *orthogonal* projection is 1.

Difference and differential equations

- P2. Let $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Let $\underline{v}_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
 - (a) Find S invertible and D diagonal such that $A = S^{-1}DS$.
 - Prove for yourself the formula $A^k = S^{-1}D^kS$.
 - (b) Find a formula for $\underline{v}_k = A^k \underline{v}_0$, and show that $\frac{\underline{v}_k}{\|\underline{v}_k\|}$ converges for any norm on \mathbb{R}^2 .
 - RMK You have found a formula for Fibbonacci numbers (why?), and have shown that the real number $\frac{1}{2}\left(\frac{1+\sqrt{5}}{2}\right)^n$ is exponentially close to being an integer. RMK This idea can solve any *difference equation*, and also *differential equations*.

1. We will analyze the differential equation u'' = -u with initial data $u(0) = u_0, u'(0) = u_1$. (a) Let $\underline{v}(t) = \begin{pmatrix} u(t) \\ u'(t) \end{pmatrix}$. Show that u is a solution to the equation iff \underline{v} solves

$$\underline{v}'(t) = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \underline{v}(t)$$

- (b) Let $W = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Find a formula for W^n and express $\exp(Wt) = \sum_{k=0}^{\infty} \frac{W^k t^k}{k!}$ as a matrix whose entries are standard power series.
- (c) Sum the series and show that $u(t) = u_0 \cos(t) + u_1 \sin(t)$.
- (d) Find a matrix S such that $W = S \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} S^{-1}$. Evaluate $\exp(Wt)$ again, this time using $\exp(Wt) =$ $S\left(\exp\begin{pmatrix}it & 0\\ 0 & -it\end{pmatrix}\right)S^{-1}.$

DEF The companion matrix associated to the polynomial $p(x) = x^n - \sum_{i=0}^{n-1} a_i x^i$ is

$$C = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 1 \\ a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \end{pmatrix}.$$

2. A sequence $\{x_k\}_{k=0}^{\infty}$ is said to satisfy a linear recurrence relation (or a difference equation) if for each k,

$$x_{k+n} = \sum_{i=0}^{n-1} a_i x_{k+i}$$

- (a) Define vectors $\underline{v}^{(k)} = (x_{k-n+1}, x_{k-n+2}, \dots, x_k)$. Show that $\underline{v}^{(k+1)} = C\underline{v}^{(k)}$ where C is the companion matrix above.
- (b) Find x_{100} if $x_0 = 1$, $x_1 = 2$, $x_2 = 3$ and $x_n = x_{n-1} + x_{n-2} x_{n-3}$. *hint:* Find the Jordan canonical form of $\begin{pmatrix} 1\\ & 1\\ -1 & 1 & 1 \end{pmatrix}$.

- 3. Let C be the companion matrix associated with the polynomial $p(x) = x^n \sum_{k=0}^{n-1} a_k x^k$.
 - (a) Show that p(x) is the characteristic polynomial of C.
 - (b) Show that p(x) is also the minimal polynomial.
 - For parts (c),(d) fix a non-zero root λ of p(x).
 - (c) Find (with proof) an eigenvector with eigenvalue λ .
 - (**d) Let g be a polynomial, and let \underline{v} be the vector with entries $v_k = \lambda^k g(k)$ for $0 \le k \le n-1$. Show that, if the degree of g is small enough (depending on p, λ), then $((C - \lambda) \underline{v})_k = \lambda (g(k+1) - g(k)) \lambda^k$ and (the hard part) that

$$\left((C-\lambda)\underline{v}\right)_{n-1} = \lambda \left(g(n) - g(n-1)\right) \lambda^{n-1}.$$

- (**e) Find the Jordan canonical form of C.
- 4. Consider now differential equation $\frac{d}{dt}\underline{v} = B\underline{v}$ where B is at in PS8 problem 1.
 - (a) Find matrices S, D so that D is in Jordan form, and such that $B = SDS^{-1}$.
 - (b) Find $\exp(tD)$ as in 1(b) by computing a formula for D^n and summing the series.
 - (c) Find the solution such that $\underline{v}(0) = \begin{pmatrix} 0 & 1 & 1 & 0 \end{pmatrix}^{t}$.

Power series

- 5. Let $A = \begin{pmatrix} z & 1 \\ 0 & z \end{pmatrix}$ with $z \in \mathbb{C}$.
 - (a) Find a simple formula for the entries of A^n .
 - (b) Use your formula to decide the set of z for which $\sum_{n=0}^{\infty} A^n$ converge, and give a formula for the sum. (c) Show that the sum is $(\mathrm{Id} A)^{-1}$ when the series converges.
- 6. For any matrix $A \in M_n(\mathbb{C})$ show that $\sum_{n=0}^{\infty} z^n A^n$ converges for $|z| < \frac{1}{\rho(A)}$. Hint: see PS9 problem 3.

Supplementary problems

- A. Consider the map Tr: $M_n(F) \to F$.
 - (a) Show that this is a continuous map.
 - (b) Find the norm of this map when $M_n(F)$ is equipped with the $L^1 \to L^1$ operator norm (see PS9 Problem 2(a)).
 - (c) Find the norm of this map when $M_n(F)$ is equipped with the Hilbert–Schmidt norm (see PS9 Problem A).
 - (*d) Find the norm of this map when $M_n(F)$ is equipped with the $L^p \to L^p$ operator norm. Find the matrices A with operator norm 1 and trace maximal in absolute value.
- B. Call $T \in \text{End}_F(V)$ bounded below if there is K > 0 such that $||T\underline{v}|| \ge K ||\underline{v}||$ for all $\underline{v} \in V$.
 - (a) Let T be bounded below. Show that T is invertible, and that T^{-1} is a bounded operator.
 - (*b) Suppose that V is finite-dimensional. Show that every invertible map is bounded below.
- C. (The supremum norm and the Weierestrass M-test) Let V be a complete normed space. DEF For a set X call $f: X \to V$ bounded if there is M > 0 such that $\|f(x)\|_V \leq M$ for all $x \in X$ in which case we write $\|f\|_{\infty} = \sup_{x \in X} \|f(x)\|_V$ (equivalently, f is bounded if $x \mapsto \|f(x)\|_V$ is in $\ell^{\infty}(X)$).
 - (a) Show that $\ell^{\infty}(X; V)$ is a vector space (this doesn't use completeness of V).
 - (b) Show that $\ell^{\infty}(X; V)$ is complete.
 - DEF Now suppose that X is a metric space (or, more generally, a topological space). Let C(X;V)denote the space of continuous functions $X \to V$ and let $C_{\rm b}(X;V) = C(X;V) \cap \ell^{\infty}(X;V)$ be the space of *bounded* continuous functions, the latter equipped with the ℓ^{∞} -norm.
 - (c) Show that $C_{\rm b}(X;V)$ is a closed subspace of $\ell^{\infty}(X;V)$. Conclude that it is complete.
 - COR Deduce Weirestrass's M-test: $f_n: X \to V$ are continuous and satisfy $||f_n||_{\infty} \leq M_n$ with $\sum_n M_n < \infty$ ∞ then $\sum_n f_n$ converges to a continuous function of norm at most by $\sum_n \widetilde{M}_n$.