Math 100C - SOLUTIONS TO WORKSHEET 10 MULTIVARIABLE CALCULUS

1. PLOTTING IN THREE DIMENSIONS

- (1) * Plot the points (2, 1, 3), (-2, 2, 2) on the axes provided.
- (2) Let $f(x, y) = e^{x^2 + y^2}$.
 - (a) \star What are f(0,-1)? f(1,2)? Plot the point (0,1,f(0,1))on the axes provided.
 - (b) \star What is the *domain* of f (that is: for what (x, y) values does f make sense?
 - **Solution:** f makes sense for all (x, y) equivalency that is on the plane \mathbb{R}^2 .
 - (c) \star What is the *range* of f (that is: what values does it take)? **Solution:** $x^2 + y^2$ takes all possible nonegative values, so $e^{x^2+y^2}$ takes all values in $[1,\infty)$.
- (3) ****** What would the graph of $z = \sqrt{1 x^2 y^2}$ look like? **Solution:** This is the same as $x^2 + y^2 + z^2 = 1$ with $z \ge 0$,
- so the graph would be the upper half of the sphere of radius 1. (4) \star Which plane is this?

- (5) (a) * Let $f(x) = 2x^2 a^2 2$. What is $\frac{df}{dx}$?
 - Solution: $\frac{df}{dx} = 4x$. (b) \star Let $f(x) = 2x^2 y^2 2$ where y is a constant. What is $\frac{df}{dx}$?
 - Solution: $\frac{df}{dx} = 4x$. (c) \star Let $f(x, y) = 2x^2 y^2 2$. What is the rate of change of f as a function of x if we keep yconstant? Solution: $\frac{\partial f}{\partial x} = 4x.$

Date: 24/11/2022, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

- (d) \star What is $\frac{\partial f}{\partial y}$? **Solution:** $\frac{\partial f}{\partial y} = -2y$. (6) Find the partial derivatives with respect to both x, y of
 - (a) $\star g(x, y) = 3y^2 \sin(x+3)$ **Solution:** $\frac{\partial g}{\partial x} = 3y^2 \cos(x+3)$ (note that $3y^2$ is *constant* if y is) while $\frac{\partial g}{\partial y} = 6y \sin(x+3)$ (note that $\cos(x+3)$ is constant when x is constant). (b) $\star h(x,y) = ye^{Axy} + B$

Solution: We have
$$\frac{\partial h}{\partial x} \stackrel{\text{linear}}{=} y \left(\frac{\partial}{\partial x} e^{Axy}\right) + \frac{\partial}{\partial x} B \stackrel{\text{chain}}{=} y \cdot Ay \cdot e^{Axy} = Ay^2 e^{Axy}$$

and $\frac{\partial h}{\partial y} \stackrel{\text{pdt}}{=} \left(\frac{\partial}{\partial y}y\right) \cdot e^{Axy} + y \left(\frac{\partial}{\partial y} e^{Axy}\right) = e^{Axy} + Axy e^{Axy} = e^{Axy} (1 + Axy).$

- (7) The the gravitational potential due to a point mass M (equivalently the electrical potential due to a point charge M) is given by the formula $U(x, y, z) = -\frac{GM}{r}$ where $r = \sqrt{x^2 + y^2 + z^2}$. Here G is the universal gravitational constant (equivalently G is the Coulomb constant).
 - (a) \star The x-component of the field is given by the formula $F_x(x, y, z) = -\frac{\partial U}{\partial x}$. Find F_x Solution: We have

$$F_x = GM \frac{\partial}{\partial x} (x^2 + y^2 + z^2)^{-1/2}$$

= $-\frac{GM}{2} (x^2 + y^2 + z^2)^{-3/2} 2x$
= $-GM (x^2 + y^2 + z^2)^{-3/2} \cdot x$
= $-\frac{GM}{r^3} x$.

(b) \star The magnitude of the field is given by $\left|\vec{F}\right| = \sqrt{F_x^2 + F_y^2 + F_z^2}$. How does it decay as a function of r?

Solution: Let $r = (x^2 + y^2 + z^2)^{1/2}$. Then $F_x = -\frac{GMx}{r^3}$ so $F_y = -\frac{GMy}{r^3}$ and $F_z = -\frac{GMz}{r^3}$ and we get:

$$\begin{split} \left|\vec{F}\right|^2 &= \frac{(GM)^2 x^2}{r^6} + \frac{(GM)^2 y^2}{r^6} + \frac{(GM)^2 z^2}{r^6} \\ &= (GM)^2 \frac{x^2 + y^2 + z^2}{r^6} \\ &= \frac{r^2}{r^6} = (GM)^2 r^{-4} \,. \end{split}$$

Thus

This is the inverse square law.

$$\left|\vec{F}\right| = \frac{GM}{r^2} \,.$$

(8) The entropy of an ideal gas of N molecules at temperature T and volume V is

$$S(N,V,T) = Nk \log \left[\frac{VT^{1/(\gamma-1)}}{N\Phi}\right] \,.$$

where k is *Boltzmann's constant* and γ , Φ are constants that depend on the gas.

(a) * Find the heat capacity at constant volume $C_V = T \frac{\partial S}{\partial T}$. Solution: We have $S = Nk \log V + \frac{Nk}{\gamma - 1} \log T - Nk \log N - Nk \log \Phi$

$$T\frac{\partial S}{\partial T} = T\frac{Nk}{(\gamma - 1)T}$$
$$= \frac{Nk}{\gamma - 1}.$$

(b) $\star \star \star$ Using the relation ("ideal gas law") PV = NkT write S as a function of N, P, T instead. Differentiating with respect to T while keeping P constant determine the heat capacity at constant pressure $C_P = T \frac{\partial S}{\partial T}$.

Solution: Substituting $V = \frac{NkT}{P}$ we get $S = Nk \log \left[\frac{kT^{\gamma/(\gamma-1)}}{\Phi P}\right] = -Nk \log P + \frac{\gamma Nk}{\gamma-1} \log T - Nk \log \frac{k}{\Phi}$ so now

$$T\frac{\partial S}{\partial T} = T\frac{\gamma Nk}{(\gamma - 1)T}$$
$$= \frac{\gamma}{\gamma - 1}Nk.$$

- (9) We can also compute second derivatives. For example $f_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2}{\partial y \partial x} f$. Evaluate:
 - (a) $\star h_{xx} = \frac{\partial^2 h}{\partial x^2} =$ **Solution:** We have $\frac{\partial^2 h}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial h}{\partial x} \right) = \frac{\partial}{\partial x} \left(Ay^2 e^{Axy} \right) = A^2 y^3 e^{Axy}.$
 - (b) $\star h_{xy} = \frac{\partial^2 h}{\partial y \partial x} =$ **Solution:** We have $\frac{\partial^2 h}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial h}{\partial x} \right) = \frac{\partial}{\partial y} \left(Ay^2 e^{Axy} \right) = 2Aye^{Axy} + A^2xy^2 e^{Axy} = \left(2Ay + A^2xy^2 \right) e^{Axy}$.
 - (c) $\star h_{yx} = \frac{\partial^2 h}{\partial x \partial y} =$ **Solution:** We have $\frac{\partial^2 h}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial h}{\partial y} \right) = \frac{\partial}{\partial x} \left(e^{Axy} \left(1 + Axy \right) \right) = Aye^{Axy} \left(1 + Axy \right) + e^{Axy} \cdot Ay = e^{Axy} \left(A^2 x y^2 + 2Ay \right).$ (d) $\star h_{yy} = \frac{\partial^2 h}{\partial y^2} =$

Solution: We have
$$\frac{\partial^2 h}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial h}{\partial y} \right) = \frac{\partial}{\partial y} \left(e^{Axy} \left(1 + Axy \right) \right) = Axe^{xy} \left(1 + Axy \right) + e^{Axy} \left(Ax \right) = Ax \left(2 + Axy \right) e^{Ax}.$$

(10) \star Repeat this exercise for the function g from problem 2(a).

Solution: We have

$$\begin{aligned} \frac{\partial^2 g}{\partial x^2} &= \frac{\partial}{\partial x} \left(\frac{\partial g}{\partial x} \right) = \frac{\partial}{\partial x} \left(3y^2 \cos(x+3) \right) = -3y^2 \sin(x+3) \\ \frac{\partial^2 g}{\partial y \partial x} &= \frac{\partial}{\partial y} \left(\frac{\partial g}{\partial x} \right) = \frac{\partial}{\partial y} \left(3y^2 \cos(x+3) \right) = 6y \cos(x+3) \\ \frac{\partial^2 g}{\partial x \partial y} &= \frac{\partial}{\partial x} \left(\frac{\partial g}{\partial y} \right) = \frac{\partial}{\partial x} \left(6y \sin(x+3) \right) = 6y \cos(x+3) \\ \frac{\partial^2 g}{\partial y^2} &= \frac{\partial}{\partial y} \left(\frac{\partial g}{\partial y} \right) = \frac{\partial}{\partial y} \left(6y \sin(x+3) \right) = 6 \sin(x+3) \,. \end{aligned}$$

(11) You stand in the middle of a north-south street (say Health Sciences Mall). Let the x axis run along the street

(say oriented toward the south), and let the y axis run across the street. Let z = z(x, y) denote the height of

the street surface above sea level.

- (a) \star What does $\frac{\partial z}{\partial y} = 0$ say about the street?
- **Solution:** The street surface is level.
- (b) \star What does $\frac{\partial z}{\partial x} = 0.15$ say about the street? Solution: The street has a 15% grade sloping up toward the south: for each 1m we walk south we gain 0.15m in altitude.
- (c) \star You want to follow the street downhill. Which way should you go? Solution: Since altitude increases with increasing x (i.e. as you go south), you should go north.
- (d) The intersection of Health Sciences Mall and Agronomy Road is a local maximum. What does that say about $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ there?

Solution: Both derivatives must be zero, else the street would be sloped in some direction.

3. BONUS (NONEXAMINABLE!): MULTIVARIABLE LINEAR AND HIGHER APPROXIMATION

Definition 1. A function f(x,y) is differentiable at x_0, y_0 if we have a linear approximation $f(x,y) = f(x_0, y_0) + A(x-x_0) + B(y-y_0) + \text{small as } (x,y) \to (x_0, y_0)$. We then have $A = \frac{\partial f}{\partial x}(x_0, y_0)$ and $B = \frac{\partial f}{\partial y}(x_0, y_0)$. The definition for functions of more than two variables is analogous.

(12) Let $f(x) = \sqrt{2 + x^2 + y^2}$.

(a) Write the linear approximation to f about (1,1) and use that to estimate f(1.1,1.2). **Solution:** We have $\frac{\partial f}{\partial x} = \frac{x}{\sqrt{2+x^2+y^2}}$ and $\frac{\partial f}{\partial y} = \frac{y}{\sqrt{2+x^2+y^2}}$. So at (1,1) we have f(1,1) = 2, $f_x(1,1) = f_y(1,1) = \frac{1}{2}$ and the linear approximation is

$$f(x,y) \approx 2 + \frac{1}{2}(x-1) + \frac{1}{2}(y-1)$$
.

In particular

$$f(1.1, 1.2) \approx 2 + \frac{1}{2} \cdot \frac{1}{10} + \frac{1}{2} \cdot \frac{2}{10} = 2\frac{3}{20} = 2.15$$

(b) Write the linear approximation to f about (3,5) and use that to estimate f(2.8, 4.9). Solution: At (3,5) we have f(3,5) = 6, $f_x(3,5) = \frac{3}{6} = \frac{1}{2}$ and $f_y(3,5) = \frac{5}{6}$. Thus the linear approximation is

$$f(x,y) \approx 6 + \frac{1}{2}(x-3) + \frac{5}{6}(y-5)$$

In particular

$$f(2.8, 4.9) \approx 6 + \frac{1}{2} \left(-\frac{2}{10} \right) + \frac{5}{6} \left(-\frac{1}{10} \right) = 6 - \frac{1}{10} - \frac{1}{12} = 5\frac{49}{60}$$