Math 100C - SOLUTIONS TO WORKSHEET 10 MULTIVARIABLE CALCULUS

1. Plotting in three dimensions

(1) \star Plot the points $(2,1,3),(-2,2,2)$ on the axes provided.
(2) Let $f(x, y)=e^{x^{2}+y^{2}}$.
(a) \star What are $f(0,-1) ? f(1,2)$? Plot the point $(0,1, f(0,1))$ on the axes provided.
(b) \star What is the domain of f (that is: for what (x, y) values does f make sense?
Solution: f makes sense for all (x, y) - equivalenly that is on the plane \mathbb{R}^{2}.
(c) \star What is the range of f (that is: what values does it take)? Solution: $x^{2}+y^{2}$ takes all possible nonegative values, so $e^{x^{2}+y^{2}}$ takes all values in $[1, \infty)$.
(3) $\star \star$ What would the graph of $z=\sqrt{1-x^{2}-y^{2}}$ look like?

Solution: This is the same as $x^{2}+y^{2}+z^{2}=1$ with $z \geq 0$,
 so the graph would be the upper half of the sphere of radius 1 .
(4) \star Which plane is this?

Solution: (C) $z=3$.

(A) $x=3$
(B) $y=3$
(C) $z=3$
(D) none
(E) not sure

2. Partial derivatives

(5) (a) \star Let $f(x)=2 x^{2}-a^{2}-2$. What is $\frac{d f}{d x}$?

Solution: $\quad \frac{d f}{d x}=4 x$.
(b) \star Let $f(x)=2 x^{2}-y^{2}-2$ where y is a constant. What is $\frac{d f}{d x}$?

Solution: $\quad \frac{d f}{d x}=4 x$.
(c) \star Let $f(x, y)=2 x^{2}-y^{2}-2$. What is the rate of change of f as a function of x if we keep y constant?
Solution: $\quad \frac{\partial f}{\partial x}=4 x$.

[^0](d) \star What is $\frac{\partial f}{\partial y}$?

Solution: $\frac{\partial f}{\partial y}=-2 y$.
(6) Find the partial derivatives with respect to both x, y of
(a) $\star g(x, y)=3 y^{2} \sin (x+3)$

Solution: $\frac{\partial g}{\partial x}=3 y^{2} \cos (x+3)$ (note that $3 y^{2}$ is constant if y is) while $\frac{\partial g}{\partial y}=6 y \sin (x+3)$ (note that $\cos (x+3)$ is constant when x is constant).
(b) $\star h(x, y)=y e^{A x y}+B$

Solution: We have $\frac{\partial h}{\partial x} \stackrel{\text { linear }}{=} y\left(\frac{\partial}{\partial x} e^{A x y}\right)+\frac{\partial}{\partial x} B \stackrel{\text { chain }}{=} y \cdot A y \cdot e^{A x y}=A y^{2} e^{A x y}$ and $\frac{\partial h}{\partial y} \stackrel{\text { pdt }}{=}\left(\frac{\partial}{\partial y} y\right) \cdot e^{A x y}+y\left(\frac{\partial}{\partial y} e^{A x y}\right)=e^{A x y}+A x y e^{A x y}=e^{A x y}(1+A x y)$.
(7) The the gravitational potential due to a point mass M (equivalently the electrical potential due to a point charge $M)$ is given by the formula $U(x, y, z)=-\frac{G M}{r}$ where $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Here G is the universal gravitational constant (equivalently G is the Coulomb constant).
(a) \star The x-component of the field is given by the formula $F_{x}(x, y, z)=-\frac{\partial U}{\partial x}$. Find F_{x}

Solution: We have

$$
\begin{aligned}
F_{x} & =G M \frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2} \\
& =-\frac{G M}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} 2 x \\
& =-G M\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} \cdot x \\
& =-\frac{G M}{r^{3}} x .
\end{aligned}
$$

(b) \star The magnitude of the field is given by $|\vec{F}|=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}$. How does it decay as a function of r ?
Solution: Let $r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$. Then $F_{x}=-\frac{G M x}{r^{3}}$ so $F_{y}=-\frac{G M y}{r^{3}}$ and $F_{z}=-\frac{G M z}{r^{3}}$ and we get:

$$
\begin{aligned}
|\vec{F}|^{2} & =\frac{(G M)^{2} x^{2}}{r^{6}}+\frac{(G M)^{2} y^{2}}{r^{6}}+\frac{(G M)^{2} z^{2}}{r^{6}} \\
& =(G M)^{2} \frac{x^{2}+y^{2}+z^{2}}{r^{6}} \\
& =\frac{r^{2}}{r^{6}}=(G M)^{2} r^{-4}
\end{aligned}
$$

Thus

$$
|\vec{F}|=\frac{G M}{r^{2}}
$$

This is the inverse square law.
(8) The entropy of an ideal gas of N molecules at temperature T and volume V is

$$
S(N, V, T)=N k \log \left[\frac{V T^{1 /(\gamma-1)}}{N \Phi}\right]
$$

where k is Boltzmann's constant and γ, Φ are constants that depend on the gas.
(a) \star Find the heat capacity at constant volume $C_{V}=T \frac{\partial S}{\partial T}$.

Solution: We have $S=N k \log V+\frac{N k}{\gamma-1} \log T-N k \log N-N k \log \Phi$

$$
\begin{aligned}
T \frac{\partial S}{\partial T} & =T \frac{N k}{(\gamma-1) T} \\
& =\frac{N k}{\gamma-1}
\end{aligned}
$$

(b) $\star \star \star$ Using the relation ("ideal gas law") $P V=N k T$ write S as a function of N, P, T instead. Differentiating with respect to T while keeping P constant determine the heat capacity at constant pressure $C_{P}=T \frac{\partial S}{\partial T}$.

Solution: \quad Substituting $V=\frac{N k T}{P}$ we get $S=N k \log \left[\frac{k T^{\gamma /(\gamma-1)}}{\Phi P}\right]=-N k \log P+\frac{\gamma N k}{\gamma-1} \log T-$ $N k \log \frac{k}{\Phi}$ so now

$$
\begin{aligned}
T \frac{\partial S}{\partial T} & =T \frac{\gamma N k}{(\gamma-1) T} \\
& =\frac{\gamma}{\gamma-1} N k
\end{aligned}
$$

(9) We can also compute second derivatives. For example $f_{x y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2}}{\partial y \partial x} f$. Evaluate:
(a) $\star h_{x x}=\frac{\partial^{2} h}{\partial x^{2}}=$

Solution: We have $\frac{\partial^{2} h}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial h}{\partial x}\right)=\frac{\partial}{\partial x}\left(A y^{2} e^{A x y}\right)=A^{2} y^{3} e^{A x y}$.
(b) $\star h_{x y}=\frac{\partial^{2} h}{\partial y \partial x}=$

Solution: We have $\frac{\partial^{2} h}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial h}{\partial x}\right)=\frac{\partial}{\partial y}\left(A y^{2} e^{A x y}\right)=2 A y e^{A x y}+A^{2} x y^{2} e^{A x y}=\left(2 A y+A^{2} x y^{2}\right) e^{A x y}$.
(c) $\star h_{y x}=\frac{\partial^{2} h}{\partial x \partial y}=$

Solution: We have $\frac{\partial^{2} h}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial h}{\partial y}\right)=\frac{\partial}{\partial x}\left(e^{A x y}(1+A x y)\right)=A y e^{A x y}(1+A x y)+e^{A x y} \cdot A y=$ $e^{A x y}\left(A^{2} x y^{2}+2 A y\right)$.
(d) $\star h_{y y}=\frac{\partial^{2} h}{\partial y^{2}}=$

Solution: We have $\frac{\partial^{2} h}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial h}{\partial y}\right)=\frac{\partial}{\partial y}\left(e^{A x y}(1+A x y)\right)=A x e^{x y}(1+A x y)+e^{A x y}(A x)=$ $A x(2+A x y) e^{A x}$.
(10) \star Repeat this exercise for the function g from problem 2(a).

Solution: We have

$$
\begin{aligned}
\frac{\partial^{2} g}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial g}{\partial x}\right) \\
\frac{\partial^{2} g}{\partial y \partial x} & =\frac{\partial}{\partial x}\left(3 y^{2} \cos (x+3)\right)=-3 y^{2} \sin (x+3) \\
\left.\frac{\partial^{2} g}{\partial x \partial y}\right) & =\frac{\partial}{\partial y}\left(3 y^{2} \cos (x+3)\right)=6 y \cos (x+3) \\
\frac{\partial^{2} g}{\partial y^{2}}=\frac{\partial g}{\partial y}\left(\frac{\partial g}{\partial y}\right) & =\frac{\partial}{\partial x}(6 y \sin (x+3))=6 y \cos (x+3) \\
\partial y & (6 y \sin (x+3))=6 \sin (x+3) .
\end{aligned}
$$

(11) You stand in the middle of a north-south street (say Health Sciences Mall). Let the x axis run along the street
(say oriented toward the south), and let the y axis run across the street. Let $z=z(x, y)$ denote the height of
the street surface above sea level.
(a) \star What does $\frac{\partial z}{\partial y}=0$ say about the street?

Solution: The street surface is level.
(b) \star What does $\frac{\partial z}{\partial x}=0.15$ say about the street?

Solution: The street has a 15% grade sloping up toward the south: for each $1 m$ we walk south we gain 0.15 m in altitude.
(c) \star You want to follow the street downhill. Which way should you go?

Solution: Since altitude increases with increasing x (i.e. as you go south), you should go north.
(d) The intersection of Health Sciences Mall and Agronomy Road is a local maximum. What does that say about $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ there?
Solution: Both derivatives must be zero, else the street would be sloped in some direction.
3. Bonus (nonexaminable!): multivariable linear and higher approximation

Definition 1. A function $f(x, y)$ is differentiable at x_{0}, y_{0} if we have a linear approximation $f(x, y)=$ $f\left(x_{0}, y_{0}\right)+A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+$ small as $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$. We then have $A=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$ and $B=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)$. The definition for functions of more than two variables is analogous.
(12) Let $f(x)=\sqrt{2+x^{2}+y^{2}}$.
(a) Write the linear approximation to f about $(1,1)$ and use that to estimate $f(1.1,1.2)$.

Solution: We have $\frac{\partial f}{\partial x}=\frac{x}{\sqrt{2+x^{2}+y^{2}}}$ and $\frac{\partial f}{\partial y}=\frac{y}{\sqrt{2+x^{2}+y^{2}}}$. So at $(1,1)$ we have $f(1,1)=2$, $f_{x}(1,1)=f_{y}(1,1)=\frac{1}{2}$ and the linear approximation is

$$
f(x, y) \approx 2+\frac{1}{2}(x-1)+\frac{1}{2}(y-1) .
$$

In particular

$$
f(1.1,1.2) \approx 2+\frac{1}{2} \cdot \frac{1}{10}+\frac{1}{2} \cdot \frac{2}{10}=2 \frac{3}{20}=2.15
$$

(b) Write the linear approximation to f about $(3,5)$ and use that to estimate $f(2.8,4.9)$.

Solution: At $(3,5)$ we have $f(3,5)=6, f_{x}(3,5)=\frac{3}{6}=\frac{1}{2}$ and $f_{y}(3,5)=\frac{5}{6}$. Thus the linear approximation is

$$
f(x, y) \approx 6+\frac{1}{2}(x-3)+\frac{5}{6}(y-5) .
$$

In particular

$$
f(2.8,4.9) \approx 6+\frac{1}{2}\left(-\frac{2}{10}\right)+\frac{5}{6}\left(-\frac{1}{10}\right)=6-\frac{1}{10}-\frac{1}{12}=5 \frac{49}{60}
$$

[^0]: Date: $24 / 11 / 2022$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

