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Introduction (Lecture 1)

Lior Silberman, lior@Math.UBC.CA, http://www.math.ubc.ca/~lior
Office: Math Building 229B
Phone: 604-827-3031

0.1. Administrivia

• See syllabus, especially about problem sets
• Textbooks

– Lang, Algebraic Number Theory
– Neukirch, Algebraic Number Theory
– Borevich–Shafarevich, Algebraic Number Theory
– Weil, Basic Number Theory

0.2. Course plan (subject to revision)

• Number fields, rings of integers, ideals and unique factorization. Finiteness of the class
group.
• Valuations and completions; local fields.
• Ramification theory, the different and discriminant.
• Geometry of numbers: Dirichlet’s Unit Theorem and discriminant bounds.
• Other topics if time permits.

0.3. Review of Z

• Classification of elements
– Zero
– Units: ±1
– Primes: 2,3,5,7, . . . ,
– Composite numbers

• Euclidean domain, hence a UFD
• Observations

– Every non-trivial ideal is of finite index
– Every prime is maximal

0.4. Motivating examples

DEFINITION 1 (Caricature). Number Theory tries to find integer solutions to polynomial equa-
tions.

• Algebraic Number Theory: study individual solutions.
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• Analytic Number Theory: count the solutions.

0.4.1. The equation x2 + y2 = z2, solution 1: May assume x,y,z pairwise relatively prime.
Now z is odd, wlog x is odd. Then y2 = (z− x)(z+ x) with z−x

2 , z+x
2 relatively prime. Thus each is

a square and we have x = n2−m2, y = 2mn, z = n2 +m2.
For a solution by the methods of this course see the

0.4.2. Primes representable as a sum of two squares.

PROBLEM 2. For which integers n does the equation n = x2 + y2 have integer solutions?

FACT 3. We have the following identity in Z[x,y,z,w]:

(0.4.1)
(
x2 + y2)(z2 +w2)= (xz− yw)2 +(xw+ yz)2

so it is natural to understand prime n first.

PROPOSITION 4 (Fermat). p = x2 + y2 is soluble iff p = 2 or p≡ 1(4).

COROLLARY 5. If n = ∏p pep is an integer such that ep is even whenever p ≡ 3(4) then
n = x2 + y2 has solutions.

THEOREM 6. The converse holds.

PROOF. Consider the Euclidean domainO=Z[i] =Z⊕Zi. Let z 7→ z̄ be the non-trivial Galois
automorphism of Q(i). Then Nz= zz̄ is a multiplicative mapO→O (product of two multiplicative
maps), which is the formula 0.4.1. Now let π ∈Obe a prime divisor of some rational prime p. Then
Nπ|N p = p2 so Nπ ∈

{
1, p, p2}. But Nπ 6= 1 (not a unit). If Nπ = p2 then N( p

π
) = 1 so π ∼ p and

p is a prime. If Nπ = p then p = ππ̄ must be the prime factorization of p, and p = x2 + y2 where
π = x+ iy.

(1) p≡ 3(4). Then p∼ π is a prime of O since:
(a) It is not a sum of two squares mod 4, hence not in Z, and we are in the first case.
(b) The map Fp[x] →O/pO given by mapping Fp to Z/pZ and x to i + pO factors

through the field Fp2 ' Fp[x]/(x2 + 1), of the same cardinality, so O/pO is a field.
Thus (p) is a prime ideal so p is prime.

(2) If p≡ 1(4) then it is not prime in O, hence there is π such that p = Nπ .
(a) The order of the cyclic group (Z/pZ)× is divisible by 4, hence it has a solution to

x2 ≡ −1(p). If a is the solution then p|(1+ ai)(1− ai) but it divides neither. It
follows that p isn’t prime in O.

(b) The ring O/pO contains four solutions to x2 =−1 (both ±a+ pO and ±i+ pO) so
it isn’t a field.

(3) If p = 2 then p = (1+ i)(1− i) =−i(1+ i)2 since (1+ i)∼ (1− i).
• Note that if p≡ 1(4) and p = x2 + y2 then x± iy are non-associate primes, since the

only units in Z[i] are ±1,±i but if x− iy = ia(x+ iy) then either x+ iy is totally real,
totally complex, or |x|= |y| and all cases are impossible.

�

6



Summary.
• Every prime p of Z is either inert, split or ramified in this extension.
• Only finitely many ramified primes; Fact (Chebotarev density): half the primes are inert,

half split.
• This classification covers all primes of Z[i] since if π is a prime then π divides the non-unit

Nπ ∈ Z and hence one of its prime factors, so π|p for some rational prime p.

0.4.3. The Eisenstein integers. What about n = x2 + xy+ y2?
Let K = Q(

√
−3). Then Z[

√
−3] is a subring like above, but in it 2 is irreducible (norm too

small to have proper divisors) and 2|(1+
√
−3)(1−

√
−3) without 2 dividing any of the factors, ao

unique factorization fails. Nevertheless set ω = −1+
√
−3

2 . Then K = Q(ω) and Z[ω] = Z⊕Z[ω]

is a Euclidean domain (this is a ring since ω2 +ω + 1 = 0). Exercise: same arguments as above
solve the equation n = x2 + xy+ y2.

0.5. Fermat’s Last Theorem

0.5.1. Lamé’s mistake. Let x,y,z be a primitive solution to xp + yp = zp where p is an odd
prime.

We can equivalently write this as

zp = (x− y)
p−1

∏
j=1

(
x−ζ

jy
)

where ζ is a primitive pth root of unity. It’s therefore natural to work in the ring O = Z[ζ ] of
cyclotomic integers (when p = 4 this is Z[i], when p = 3 this is Z[ω]). Let ρ be a common divisor
of x− ζ jy,x− ζ ky. It then divides (ζ j− ζ k)y and (ζ− j− ζ−k)x. For any j 6≡ k (p), ζ j− ζ k =

ζ j(1−ζ k− j) = ζ j 1−ζ k− j

1−ζ
(1−ζ ) so ρ divides (1−ζ )x,(1−ζ )y. Since x,y are relatively prime we

have ρ|π = 1−ζ which is a prime element since π p−1× (unit) = ∏
p−1
j=1 (1−ζ j) = Φ(1) = p where

Φ(x) = xp−1
x−1 is the pth cyclotomic polynomial.

Case 1. p divides none of x,y,z. Then the (x− ζ jy) are pairwise relatively prime (including
j = 0) so there is ε ∈ O×, t ∈ O such that

x−ζ y = εt p .

If τ denotes complex conjugation we then have

x−ζ
−1y = τ(ε)τ(t)p .

Now, for any σ ∈Gal(Q(ζ )/Q) we have
∣∣∣σ τ(ε)

ε

∣∣∣= ∣∣∣ τ(σ(ε))
σ(ε)

∣∣∣= 1 since the Galois group

is commutative. It follows that τ(ε)
ε

is a root of unity, hence of the form ζ−r for some r.
Also, for any t ∈ O, there is a ∈ Z such that t ≡ a(π). Since t p−ap ≡ (t−a)p (p) and
since p|π p−1|π p we have t p ≡ ap (p) and hence τ(t)p ≡ ap ≡ t p (p). Thus

x−ζ
−1y = ζ

−r
ετ(t)p ≡ ζ

−r(x−ζ y)(p) .

If ζ r = 1 this implies (ζ −ζ−1)y≡ 0(p) so p|(1−ζ )y, so π p−2|y. But this would force
p|y which isn’t the case. Otherwise, we have for some 1≤ r ≤ p−1,

ζ
r−1(ζ x− y)≡ x−ζ y(p) ,
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which we can rewrite as

(1−π)r−1 (x− y−πx)− (x− y+πy)≡ 0(p) .

Expanding in a power series in π , if 2 ≤ r ≤ p− 2 the highest-order term is xπr and
we must have p|x which is impossible. For r = 1, r = p− 1 one can derive a similar
contradiction.

Case 2. p|z. Now π divides each of the x−ζ jy (also x−y), and the x−ζ jy
1−ζ

are pairwise relatively
prime. We thus have ( z

π

)p
=

p−1

∏
j=0

x−ζ jy
π

where the factors on the right are relatively prime. It follows that for some ε j ∈O× and
t j ∈ O,

x−ζ
jy = ε jπt p

j

furthermore, the t j are relatively prime. Now the x−ζ jy where j 6= 0 are all divisible by
π exactly once (since they are all conjugate, and their differences are divisible exactly
once), so π - t j for j 6= 0 and π | t0 since p|z.
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CHAPTER 1

Number Fields and Algebraic Integers

DEFINITION 7. A (global) number field is a finite extension of Q.

Fix a number field K and set n = [K : Q].

1.1. Algebraic Integers (Lecture 3)

DEFINITION 8. An element α ∈ K is said to be an algebraic integer if p(α) = 0 for some
monic polynomial p ∈ Z[x]. The set of algebraic integers in K is denoted OK and called the “ring
of integers” or the “maximal order”.

LEMMA 9. α ∈ K is an algebraic integer iff its minimal polynomial is in Z[x].

PROOF. One direction is immediate. For the other, let p ∈ Z[x] be monic such that p(α) = 0
and let m ∈ Q[x] be the minimal polynomial. Then m is an irreducible factor of p in Q[x], but by
Gauss’s Lemma every such divisor is in Z[x]. �

EXAMPLE 10. K =Q. The minimal polynomial of α is x−α soOQ = Z. This is the “rational
root theorem”.

EXAMPLE 11. K = Q(i). The minimal polynomial of a + bi is (x− a− bi)(x− a + bi) =
(x−a)2 +b2 = x− (2a)x+(a2 +b2). This is Z[x] iff 2a,a2 +b2 ∈ Z. Thus a ∈ 1

2Z. If a ∈ Z then
b ∈Q, b2 ∈ Z so b ∈ Z. If a /∈ Z then (2a)2 +(2b)2 ∈ 4Z where 2a is an odd integer. This forces
(2b)2 to be an integer, hence 2b to be an integer, but then (2b)2 is 0,1 mod 4 which is impossible
since (2a)2 ≡ 1(4). Thus a+bi is algebraic iff a,b ∈ Z.

REMARK 12. Note that Z[i] = {a+bi | a,b ∈ Z} is a subring of K.

LEMMA 13. β ∈OK iff Z[β ] is a finitely generated Abelian group iff there is a finitely generated
Abelian group M ⊂ K such that βM ⊂M.

PROOF. If β ∈ OK then Z[β ] = Z⊕Zβ ⊕·· ·⊕Zβ n−1 where β has degree n. The last claim
implies the first by Cayley–Hamilton. �

THEOREM 14. Let α,β ∈ K be algebraic integers. Then so are α±β , αβ .

PROOF. Suppose that αM ⊂ M, βN ⊂ N, where M = ∑
r
i=1Zxi, N = ∑

s
j=1Zy j. Then MN =

∑i, jZxiy j is invariant by α,β hence by Z[α,β ] which contains the requisite elements. �

COROLLARY 15. OK is a subring of K. If α ∈ OK then:
(1) Every Galois conjugate of α is integral over Q;
(2) The minimal polynomial of α over Q is monic and belongs to Z[x];
(3) TrK

Q(α),NK
Q(α) ∈ Z and,

(4) α ∈ O×K iff NK
Qα ∈ Z× = {±1}.
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PROOF. (1) Let L be a normal extension containing K. Then OL∩K = OKby definition, and
every conjugate of α satisfies the same polynomials that α does.

(2) The minimal polynomial of α is ∏µ∈HomQ(Q(α),Q)(x−µα) = ∏σ∈Hom(Q(α),L) (x−σα) ∈
OL[x]∩Q[x] = Z[x] since OL is a ring.

(3) now follows by taking specific coefficients.
(4) Exercise. �

LEMMA 16. Let α ∈ K. Then there is m ∈ Z so that mα ∈ OK .

PROOF. Let f =∑
d
i=0 aixi ∈Q[x] be the (monic) minimal polynomial of α . Then ∑

d
i=0 md−iai(mα)i =

0. If m is large enough then md−iai ∈ Z for all 0≤ i < d. �

COROLLARY 17. There exists a basis of K consisting of elements of OK .

LEMMA 18. The quadratic form (x,y) 7→ Tr(xy) is non-degenerate.

PROOF. Tr(x · x−1) = n. �

PROPOSITION 19. There exist a Q-basis {ω∗i }
n
i=1 ⊂ K so that OK ⊂⊕iZω∗i .

PROOF. Take {ω∗i } be the basis dual to a basis contained in OK w.r.t. the trace form. �

CONCLUSION 20. The Z-module OK embeds in Zn and contains a copy of Zn.

THEOREM 21. OK is a free Z-module of rank n.

PROOF. Classification of finitely generated Abelian groups. �

1.2. The absolute discriminant (skipped)

Fix a number field K, and let n = [K : Q]

DEFINITION 22. A (Z-)lattice in K is a subgroup L =⊕n
i=1Zωi where {ωi}n

i=1 is a Q-basis of
K.

Let
{

σ j
}n

j=1 be an enumeration of Hom(K,Q).

LEMMA 23. Given {ωi}n
i=1 ⊂ K, let A be the matrix where Ai j = σ j(ωi). Let B be the ma-

trix where Bi j = TrK
Qωiω j (“the Gram matrix of the quadratic space

(
⊕n

i=1Zωi,TrK
Q

)
”). Then

(detA)2 = detB.

PROOF. B = AAt since TrK
Q(x) = ∑ j σ j(x). �

LEMMA 24. Let K = Q(α), and let ωi = α i−1. Then detB = ∆( f ) where f ∈ Q[x] is the
minimal polynomial of α .

PROOF. detA=∏i< j
(
ωi−ω j

)
by the Vandermonde determinant, and ∆( f )=∏i< j

(
ωi−ω j

)2.
�

LEMMA 25. γ ∈Mn(Q), and let A′,B′ be the associated matrices. Then detB′ = (detγ)2 detB.

PROOF. B′ = γBγ t. �

COROLLARY 26. detB 6= 0 iff {ωi} is a Q-basis.
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PROOF. Any sequence has a unique representation as ωi = ∑ j γi jα
j−1 K =Q(α) and γi j ∈Q.

Then detB = (detγ)2
∆( f ) where ∆( f ) 6= 0 and {ωi} is a basis iff γ ∈ GLn(Q) iff detγ 6= 0. �

COROLLARY 27. If detB 6= 0 it only depends on the lattice generated by the {ωi}n
i=1 and will

be denoted dK/Q(L).

PROOF. If {ωi} ,
{

ω ′j

}
generate the same lattice they are related by a matrix in GLn(Z) whose

squared determinant is therefore 1. �

PROPOSITION 28. Let L1 ⊂ L2 be two lattices. Then dK/Q(L1) = [L2 : L1]
2 dK/Q(L2).

PROOF. Gaussian elimination. �

LEMMA 29. Let L⊂OK be a lattice. Then dK/Q(L) ∈ Z\{0}

PROOF. The associated matrix B consists of integers. �

DEFINITION 30. The absolute discriminant of K is the number dK = dK/Q(OK).

REMARK 31. Suppose that L⊂OK is a lattice and dK/Q(L) = d = e2 f with f squarefree. Since
dK/Q(L) = dK [OK : L]2 it follows that [OK : L] |e and hence that L⊂OK ⊂ 1

e L, which reduces the
problem of finding OK to checking a coset representative for each element of 1

e L/L to see if it is
integral.

For a starting point let K =Q(α) where α ∈ OK . Then Z[α]⊂OK .

EXAMPLE 32. Let K =Q(
√

d) with d squarefree. Then dK/Q

(
Z⊕Z

[√
d
])

= det
(

Tr1 Tr
√

d
Tr
√

d Trd

)
=

det
(

2 0
0 2d

)
= 4d. It follows that

dK =

{
d d ≡ 1(4)
4d d ≡ 2,3(4)

Integers of the form are called fundamental discriminants.

1.3. Unique factorization (Lectures 4,5)

Fix a number field K of degree n. We will study the ideals in OK .

DEFINITION 33 (Warm-up). Let I,J be ideals of a ring R. Then IJ =
{

∑
k
i=1 aibi | ai ∈ I, b j ∈ J

}
is the ideal generated by all products ab with a ∈ A, b ∈ B.

EXERCISE 34. This turns the set of ideals into a monoid.

CONVENTION. For this section, “ideal” always means a non-zero ideal (but includes the
whole ring). A “prime” of OK always means a prime ideal, not a prime element. We say “ra-
tional prime” to mean a prime number p ∈ Z.

PROPOSITION 35. (Ideals of OK) Fix a proper ideal aCOK .
(1) a∩Z is a non-zero proper ideal of Z.
(2) [OK : a]< ∞.

11



(3) a is finitely generated. In fact, rankZ a= n.
(4) If a is prime then it is maximal, and a∩Z= (p) for a prime number p.

PROOF. Exercise. �

DEFINITION 36. The norm of an ideal is Na
def
= [OK : a] = #(OK/a).

DEFINITION 37. Say that a prime pCOK lies above (p)CZ if p∩Z= (p).

REMARK 38. Conversely, it is clear that for any rational prime p, pOK is a proper ideal ofOK ,
hence that there exist primes lying above (p). In the case of an extension L/K of number fields,
the argument above still shows that every prime of L (that is, of OL) lies above a prime of K. The
converse is not as easy – see Proposition 52

We will now develop a theory of unique factorization in OK . The result is due to Kummer, the
proof due to Dedekind.

As motivation, consider the following inductive proof that every integer is a product of irre-
ducibles: let a ≥ 1 be minimal among those which are not products of primes. Then a ≥ 2; let
p = min{b | 2≤ b, b|a}. Then p is irreducible (any factors would divide n also and be smaller).
By construction n

p < n so it is a product of irreducibles. Now multiply both sides by p. Replacing
a with an ideal a, we replace p with a maximal ideal p containing a. One issue now is constructing
an ideal p−1a such that p

(
p−1a

)
= a, but the real difficulty is in showing that p−1a is “smaller”

that a in the appropriate sense (its index in OK is smaller) so that the inductive argument can run.

DEFINITION 39. An OK-submodule a ⊂ K is a fractional ideal if there is α ∈ K× so that
αa⊂OK .

Given fractional ideals a,b let ab be the module generated by all products xy, x ∈ a, y ∈ b. This
is also a fractional ideal. Multiplication of fractional ideals is commutative and associative, and
has the unit (1) = OK . We call a fractional ideal invertible if it is invertible in this commutative
monoid (we will later show that this is a group).

LEMMA 40. Every proper ideal of OK contains a product of primes.

PROOF. Let a be a maximal counterexample. It is not prime so there are x,y ∈ OK \ a with
xy ∈ a. Then (a,x)(a,y) = a, a contradiction. �

PROPOSITION 41. Let pCOK be prime. Then p−1 def
= {x ∈ K | xp⊂OK} is a fractional ideal

properly containing OK . In particular, pp−1 =OK .

PROOF. Let p ∈ Z be the prime lying below p. Let x,y ∈ p−1 and α ∈ OK . First, (αx+ y)p⊂
xp+ yp ⊂ OK +OK = OK . Second, if x ∈ p−1 then xp ∈ xp ⊂ OK so pp−1 ⊂ OK . p−1 ⊃ OK by
definition of ideal, and the real issue (as noted above) is to see that p−1 6= OK . For this note that
the ideal pOK contains a product of prime ideals. Let p1 · · ·pr be a minimal such product. Since
p contains this product, it contains one factor, and hence equal to it (all primes are maximal). Let
a ∈ p2 · · ·pr \ pOK (this exists by minimality of r). Then ap ⊂ pOK so a

pp ⊂ OK but a
p /∈ OK .

Finally, p⊂ pp−1 ⊂OK . Since pp−1 is an OK-submodule of OK and p is a maximal ideal one side
must be an equality. If pp−1 = p held then every y ∈ p−1 would preserve the finitely generated
Z-module p and hence be integral, a contradiction. �

12



THEOREM 42. All ideals of OK are invertible; every ideal can be uniquely written in the form
∏

r
i=1 p

ei
i with pi prime and ei ∈ Z>0. a|b in the monoid of ideals iff b⊂ a.

PROOF. First, let aCOK be a proper ideal and let a ⊂ pCOK be a maximal ideal. Then
p−1a⊂ p−1p=OK and p−1a 6= a since p−1 6⊂ OK .

Now let aCOK be maximal among the ideal without representation as a product of primes.
Then p−1a can be written as such a product, and hence so can a. If a = ∏i pi then a∏i p

−1
i =OK

so a is invertible. For uniqueness let ∏
r
i=1 pi = ∏

t
j=1 q j. Then pr contains the product on the left,

hence the product on the right, hence equal to one of the factors. Multiplying by p−1
r the claim

follows by induction on r.
Finally, ac= b then certainly b⊂ a. Conversely, if b⊂ a then a−1b⊂ a−1a=OK . �

COROLLARY 43. Every fractional ideal is invertible, so that the fractional ideals form a group.
Every element of this group has a unique representation in the form ∏

r
i=1 p

ei
i with ei ∈ Z\{0}.

DEFINITION 44. Call a fractional ideal principal if it is of the form αOK for some α ∈K×. Say
that two fractional ideals a,b are in the same class if ab−1 is principal (note that every fractional
ideal is in the same class as an ideal by definition). The principal fractional ideals form a subgroup
of the group of fractional ideals. The class group of K is the quotient Cl(K) of the group of ideals
by the group of principal ideals. It measures the failure of unique factorization.

THEOREM 45 (Dedekind). Cl(K) is a finite group. Its order is denoted hK and called the class
number of K.

This is an immediate Corollay of Theorem 189 of Section 4.3.

REMARK 46. Every prime ideal contains irreducible elements (an element of minimal norm
must be irreducible) but if it contains a prime element the ideal is principal since non-zero prime
ideals are maximal.

REMARK 47 (Hilbert Classfield + Chebotarev’s Density Theorem). limx→∞
#{p|Np≤x,p principal}

#{p|Np≤x} =
1

hK
.

1.4. Primes in extensions (Lectures 6,7,8)

Fix a finite extension L/K of number fields and a prime pCOK .

1.4.1. Residue field extensions and ramification (Lecture 6).

LEMMA 48. Let P be a prime of L. Then p=P∩OK is a prime of K, and P contains no other
prime of K.

PROOF. Exercise. �

DEFINITION 49. In the setting above we say that P lies above p and write P|p.

In the setting of Definition 49, the OK-module OL/P is annihilated by p, so is in fact a kp =
OK/p-module. In other word, the finite field kP is an extension of the finite field kp.

DEFINITION 50. The number qp= #OK/p is called the residue field size. f (P/p)
def
=
[
kP : kp

]
=

dimkp kP is called the residue index or the inertial degree.
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LEMMA 51. Let p be a prime of K. Then P|p iff P|pOL.

PROOF. Exercise. �

PROPOSITION 52. pOL 6=OL. In particular, {PCOL |P|p} is non-empty and finite.

PROOF. Exercise. �

DEFINITION 53. Let pOL = ∏
g
i=1P

ei
i be the factorization of pOL. We write e(Pi/p) = ei and

call this number the ramification index or the ramification degree. We also write fi = f (Pi/p) for
the residue index.

LEMMA 54. Let PCOL be prime. Then for all e ≥ 1, OL/P
e is a dvr – a local ring and a

PID.

PROOF. The ideals of OL/P
e correspond to the ideals of OL containing Pe, which by unique

factorization are P j for 1≤ j≤ e. Let π ∈P\P2, and let π̄ be its image mod Pe. Then the image
of P j is (π̄) j. �

THEOREM 55. n = ∑
g
i=1 ei fi.

PROOF. We calculate the dimension of the kp-vector space OL/pOL in two different ways.
First, since Pi are maximal ideals, we have Pi +P j = (1) for all j. It follows that Pei

i +P
e j
j =

(1) (Exercise). Also, pOL = ∩g
i=1P

ei
i (they have the same prime factorization). By the CRT,

OL/pOL'⊕g
i=1OL/P

ei
i . NowOL/P

ei
i 'OL/Pi⊕ei−1

j=1 P j/P j+1 and by Lemma 54 multiplication
by π̄ j gives gives a vector space isomorphism OL/Pi→P j/P j+1, so dimkpOL/P

ei
i = ei fi.

In the other direction, if K = Q then OL/pOL ' Zn/pZn ' (Z/pZ)n and the proof is over.
Unfortunately, in general OL is not a free OK-module and we need to work harder. Specifically,
we first localize at p . OK,p is a PID (same proof as for OL/P

e), and OL[S−1] (S = OK \ p) is a
torsion-free module, hence free. Since K is a further localization, it follows that OL[S−1] ' On

K,p

for n = [L : K]. Finally, OL/pOL 'OL[S−1]/pOL[S−1] as OK,p/pOK,p ' kp-modules. �

1.4.2. Explicit factorization (Lecture 7).

THEOREM 56. Suppose OL =OK[α], and let f ∈ OK[x] be the minimal polynomial of α over
K. For a prime pCOK Let f̄ = ∏

r
i=1 P̄ei

i be the factorization of the image of f in kp[x] into
irreducibles. Then there are r primes of L lying above p, and f (Pi/p) = deg P̄i and e(Pi/p) = ei.

PROOF. We have

OL/pOL 'OK[x]/( f ,p)' kp[x]/
(

f̄
)
'

r⊕
i=1

kp[x]/
(
P̄ei

i
)
.

It follows that there are r ideals of OL in the factorization of p, with OL/Pi ' kp[x]/(P̄i) hence
f (Pi/p) = deg P̄i. Also, ∏

r
i=1P

ei
i ⊂ pOL (in the quotient the LHS maps to zero) but this holds for

no smaller exponents, so we have found the ei. �

EXAMPLE 57. In K =Q(
√
−5) we haveOK =Z[

√
−5] with minimal polynomial x2+5. Mod

2 this factors as (x+1)2 so 2 ramifies. To find generators for the prime we want to take the inverse
image of the ideal (x+1)/

(
(x+1)2) in F2[x]/

(
(x+1)2), so the ideal will be

(
2,1+

√
−5
)
.

Mod 3 this factors as (x+1)(x−1) so the two ideals will be
(
3,±1+

√
−5
)
.
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REMARK 58. In case where OL is not of this form localize at p first.
Furthermore, if [OL :OK[α]] is prime to p (the rational prime under p) then there is no need to

localize since these two rings have the same localization.

1.4.3. Galois extensions (Lecture 8). We assume now that L/K is Galois, with Galois group
G = Gal(L : K). It is clear that G acts on the set of primes {Pi}g

i=1 lying over p.

PROPOSITION 59. G acts transitively on the primes above p.

PROOF. Suppose that P′ is not in the G-orbit of P. By the CRT there exists x ∈ OL such that
x ∈P′ but x /∈ (σP) for all σ ∈ G. It follows that σx /∈P for all σ ∈ G, and since P is prime we
have NL

Kx /∈P. But NL
Kx ∈P′∩OK = p⊂P, a contradiction. �

COROLLARY 60. All primes above p have the same residual degree and ramification index,
and we have e f r = n.

DEFINITION 61. The decomposition group at P is the subgroup GP = {σ ∈ G | σP=P}.

Note that the action of σ ∈P preserves congruence mod P, and hence descends to an action
on kP =OL/P, fixing kp =OK/P. In other words, there is a natural homomorphism

GP→ Gal
(
kP : kp

)
.

LEMMA 62. Let K ⊂ E ⊂ L be the fixed field of GP. Then P is the unique ideal of OL lying
above P∩OE , and the injection OK/p→OE/P∩OE is an isomorphism.

PROOF. GP = Gal(L : E) acts transitively on the set of primes lying above P∩OE ; this set
includes the fixed point P. Finally, let α ∈ OE . There is β ∈ OE such that β ≡ α (P∩OE) and
β ≡ 1 (σP∩OE) for all σ ∈ G\GP (note that σP does not lie over P∩OE in that case). Then
NE

K β ∈ OK and NE
K β ≡ α (P). It follows that NE

K β ≡ α (P∩OE). �

PROPOSITION 63. This map GP→ Gal
(
kP : kp

)
is surjective.

PROOF. WLOG may replace K with E, p with P∩OE (same residue field) so may assume
there is a unique prime of L over p, and that GP = G. Let α ∈OL project to ᾱ ∈ kP generating the
extension, and let f ∈ K[x] be the minimal polynomial of α . Then every root of f is an algebraic
integer, so f ∈ OK[x] and f splits in OL[x] by normality. It follows that f̄ splits in kP[x]. Let
σ̄ ∈ Gal

(
kP : kp

)
. Then σ̄ ᾱ is also a root of f̄ , and hence of the form β̄ for a root there exists

σ ∈ Gal(L/K) such that σ �

DEFINITION 64. The kernel of this map is called the inertia subgroup I. Any element of GP

projecting to the generator of Gal
(
kP : kp

)
(given by x 7→ xqp) is called a Frobenius element and is

denoted

Note the following interpretation: σ ∈ GP iff x ≡ y(P) implies σx ≡ σy(P). In addition,
σ ∈ IP iff σx≡ x(P) and σ is a Frobenius element iff σx≡ xqp (P).

.
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CHAPTER 2

Local fields

2.1. Valuations and absolute values

Fix a field F .

2.1.1. Definitions; basic properties (Lecture 9).

DEFINITION 65. A valuation is a map v : F → R∪{∞} such that:
(1) v(xy) = v(x)+ v(y)
(2) v(x)+ v(y)≥min{v(x),v(y)}
(3) v−1 (∞) = {0}.

EXAMPLE 66. (Valuations)
(1) F =Q, vp

(
pr a

b

)
= r where p - ab.

(2) F = K(t) (K a field), p ∈ K[t] irreducible, vp
(

pr a
b

)
= r where p - ab.

(3) F = K(t), v∞

(a
b

)
= degb−dega.

DEFINITION 67. An absolute value on F is a map |·| : F → R≥0 such that:
(1) |xy|= |x| |y|
(2) |x+ y| ≤ |x|+ |y|
(3) |x|= 0 iff x = 0.

Further, call the absolute value trivial if |F×| = {1}, ultrametric or non-archimedean if |x+ y| ≤
max{|x| , |y|}.

Note that |1|= |1|2 but |1| 6= 0 so |1|= 1.

EXAMPLE 68. Let v be a valuation on F , and let q> 1. Then |x|v = q−v(x) is a non-archimedean
absolute value. On Q we let |x|p = p−vp(x) so that |pr|p = 1

pr .

PROPOSITION 69 (Product formula). Let x ∈Q×. Then |x|
∞
·∏p |x|p = 1.

LEMMA 70. Let |·| be an absolute value on F. Then |·| is non-archimedean iff it is bounded on
the set {n ·1F | n ∈ Z≥1}, and this is implied by |n ·1F | ≤ 1 for some n≥ 2.

PROOF. If |·| is non-archimedean then |n ·1F |= |∑n
i=1 1F | ≤max{|1F |}= 1. Conversely, sup-

pose that |n ·1F | ≤M for all n. Then for any x,y ∈ F we have

|x+ y|n =

∣∣∣∣∣ ∑
k+l=n

(
n
k

)
xkyl

∣∣∣∣∣≤ ∑
k+l=n

∣∣∣∣(n
k

)∣∣∣∣(max{|x| , |y|})n

≤ (n+1)M (max{|x| , |y|})n

and the claim follows by taking nth roots and letting n→ ∞.
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Finally, suppose that |b| ≤ 1 for some b≥ 2. let A = {0,1, . . . ,b−1} and let M = maxa∈A |a|.
Writing any n ∈ N to base b we have n = ∑i≤logb n aibi where ai ∈ A. It follows that |n| ≤C(1+

logb n) for some C. Then |n| ≤C (1+d logb n)1/d for all d, and taking d→ ∞ we find |n| ≤ 1. �

COROLLARY 71. Every absolute value on a field of positive characteristic is non-archimedean.

Given an absolute value |·| on F , we have an associated metric d(x,y) = |x− y| (check). This
is ultrametric iff |·| is non-archimedean.

DEFINITION 72. Two absolute values are equivalent if they define the same topology on F .

LEMMA 73 (Snowflake). If |·| is an absolute value then |·|λ is an absolute value for all 0 <
λ ≤ 1 (and sometimes for other values too).

PROOF. Check. �

LEMMA 74. Let |·|1 , |·|2 be non-trivial and define the same topology. Then they are equivalent
iff |·|1 = |·|

λ

2 for some λ > 0.

PROOF. Sufficiency is clear. For necessity note that xn→ 0 in (F, |·|) iff |x|< 1. In particular,
the sets {x | |x|< 1} ,{x | |x|> 1} ,{x | |x|= 1} only depend on the topology induced by |·|. Now
choose some a ∈ F satisfying |a|1 > 1. Then |a|2 > 1 and there is a uniqueλ such that |a|1 = |a|

λ

2 .
Let b ∈ F× be another such that |b|1 > 1, and suppose that |b|1 > |b|λ2 . For any ε > 0 we can

find arbitrarily large m,n such that |b|n2 ≤ |a|
m
2 ≤ |b|

n
2 (1+ ε). Then 1 ≤

∣∣∣am

bn

∣∣∣
2
≤ (1+ ε) while∣∣∣am

bn

∣∣∣
1
=
∣∣∣am

bn

∣∣∣λ
2
·
(
|b|λ2
|b|1

)n

≤ (1+ε)λ

(
|b|λ2
|b|1

)n

. For n large enough this is less than 1, a contradiction.

Similar argument if |b|1 < |b|
λ

2 . �

DEFINITION 75. |F | will denote the set of equivalence classes of non-trivial absolute values of
F .

THEOREM 76 (Ostrowski). |Q|=
{
|·|p
}

p≤∞

.

PROOF. See Problem Set 4. �

REMARK 77. We see that the purely metric notion of “absolute value” contains information
about the arithmetic of Q.

THEOREM 78 (Weak approximation [Generalized CRT]; Artin–Whaples). Let {|·|i}
n
i=1 be

pairwise inequivalent non-trivial absolute values on a field F. Let x ∈ Fn and let ε > 0. Then
there is y ∈ F such that |y− xi|i < ε .

PROOF. We first construct for each 2≤ k≤ n some z1 ∈ F such that |z1|1 > 1 and |z1| j < 1 for
2≤ j≤ k. When k = 2 this is just the inequivalence of the valuations; suppose that we have z1 like
this. If |z|k+1 < 1 then we are done. If |z|k+1 ≥ 1 choose w such that |w|1 > 1 and |w|k+1 < 1. If
|z|k+1 = 1 then for all s≥ 1, |zsw|1 > 1, |zsw|k+1 < 1, and if s is large enough then also |zsw| j < 1
if 2 ≤ j ≤ k. If |z|k+1 > 1 consider zsw

1+zs . For s large this has small |·| j-value while the |·|1 , |·|k+1-
values tend to those of w.

It follows that there are zi such that |zi|i > 1 and |zi| j < 1 if j 6= i. Now let wi =
zs

i
∑

n
j=1 zs

j
. Then

∑
n
i=1 wi = 1 and lims→∞ |wi| j = δi j. It follows that for for any ε > 0 there is s large enough such

17



that
∣∣wi−δi j

∣∣
j < ε . Now given x ∈ F let y = ∑

n
i=1 wixi. Then

∣∣y− x j
∣∣

j =
∣∣∑n

i=1
(
wi−δi j

)
xi
∣∣

j ≤
ε ∑

n
i=1 |xi| j. �

REMARK 79. Note the parallel with the proof of the CRT, and the fact this this is non-arithmetic
– holds for any field.

2.1.2. Completion – Qp (Lecture 10).
LEMMA 80. Let (X ,dX) ,(Y,dY ) be metric spaces with Y complete, and let f : Xn→ Y be uni-

formly continuous on every ball. Then there is a unique continuous function f̂ : X̂n→Y extending
f , and f̂ is also uniformly continuous on balls.

PROOF. Uniqueness is clear since Xn is dense in X̂n. For existence for 1≤ i≤ n let
(

xi
j

)∞

j=1
⊂

X be a Cauchy sequence. Let R be such that dX

(
xi

j,x
i
1

)
≤ R for all i, j. Then since f is uniformly

continuous on
{

x ∈ Xd |maxi dX
(
xi,xi

1
)
≤ R

}
,
(

f
(
x j
))∞

j=1 is a Cauchy sequence in Y . Letting x j

be the join of two Cauchy sequences with the same limit shows that lim j→∞ f
(
x j
)

only depends
on the limit of the x j, giving the desired extension. Furthermore, every ball in X̂d is contained in a
ball with center in Xd . �

COROLLARY 81. Let |·|v be an absolute value on F. Then the field operations and the absolute
value on F extend uniquely to the completion Fv, giving it the structure of a topological field,
complete with respect to the extension of the absolute value (which will have the same notation).

EXAMPLE 82. The completions of Q will be denoted Qp and Q∞ = R.

LEMMA 83 (Student’s dream). Let F be a field complete wrt a non-archimedean absolute value
|·|. Let (an)n≥1 ⊂ F be a sequence. Then the series ∑

∞
n=0 an converges in K iff limn→∞ an = 0.

PROOF. Exercise (PS3) �

DEFINITION 84. Zp =
{

x ∈Qp | |x|p ≤ 1
}

.

LEMMA 85 (Zp). (1) Zp is an open (hence closed) subring of Qp.
(2) Z is dense in Zp.
(3) The map Z/pkZ→ Zp/pkZp is an isomorphism.
(4) Every element of Zp can be uniquely represented in the form ∑

∞
j=0 a j p j where a j ∈

{0, . . . , p−1} (or any set of representatives of Z/pZ).
(5) Zp is compact.

PROOF. (1) is true for any ultrametric absolute value. For (2) given x ∈ Zp suppose that∣∣pk a
b − x

∣∣
p ≤ p−r for some r ≥ 0. Then p−k =

∣∣pk a
b

∣∣
p ≤ max

{∣∣pk a
b − x

∣∣
p , |x|p

}
≤ 1 so k ≥ 0.

Now let b̄ ∈ Z be an inverse to b mod pr. Then pkab̄ ∈ Z and∣∣∣pkab̄− x
∣∣∣

p
≤ max

{∣∣∣pkab̄− pk a
b

∣∣∣
p
,
∣∣∣pk a

b
− x
∣∣∣

p

}
= max

{
p−k ∣∣1−bb̄

∣∣
p , p−r

}
≤ max

{
p−k−r, p−r

}
= p−r .

Note that our purely metric construction “knows about modular arithmetic”.
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Picture - 1. All balls in Qp are open since the set of distances are discrete. All sets a+ pkZp

are balls, so are open. Let x 6= y ∈ Zp. Then |x− y| = p−(k−1) for some k ≥ 1 at which point
x 6≡ y(pkZp). Now y+ pkZp and

⊔
a6≡x(pk) a+ pkZp are disjoint and cover Zp. It follows that x,y

are in different connected components of Zp - that it is totally disconnected. But it is not discrete.
We now prove the next part.

(3) Zp is open in Qp, so pkZp is open in Zp and the quotient Zp/pkZp is therefore discrete.
Now Z∩ pkZp = pkZ (exercise) so the injection Z→Zp gives an injection Z/pkZ→Zp/pkZ with
dense image, hence an isomorphism.

Picture - 2. Z3 is the disjoint union of 3Z3,1+3Z3,2+3Z3. Each of those is a further union,
for example 3Z3 = 9Z3t3+9Z3t6+9Z3 and 2+3Z3 = 2+9Z3t5+9Z3t8+9Z3, 5+9Z3 =
5+27Z3t14+27Z3t23+27Z3. Get a (p+1)-regular rooted tree, rooted at Zp. Every element
of Zp corresponds to an infinite path in the tree (equivalently, a point on the boundary). Given a
point get a path (reduce mod pk successively) and given a path take representatives of the classes
mod pk, which is a Cauchy sequence [and any two clearly have the same limit]). Not obvious in
this picture which paths correspond to elements of Z, of course.

(4) Let A ⊂ Z be a set of representatives for Z/pZ and let f : AN → Zp be the map f (a) =
∑

∞
j=0 a j p j. We show the map is a homeomorphism. By Lemma 83, each such series converges

in Zp (it is a closed subset of Qp, hence complete) so f is well-defined; for continuity note
that the inverse image of a+ pkZp only depends on the first k coordinates in AN. For injectiv-

ity suppose that
(

a′j
)

j≥0
is a second sequence, and that j0 is the first time they disagree. Then(

∑
∞
j=0 a j p j

)
−
(

∑
∞
j=0 a′j p

j
)
= p j0(a j0−a′j0)+ p j0+1

∑ j> j0

(
a j−a′j

)
p j. Since p - (a j0−a′j0) we

have
∣∣∣(∑

∞
j=0 a j p j

)
−
(

∑
∞
j=0 a′j p

j
)∣∣∣

p
= p− j0 > 0 and the sums are distinct. For surjectivity use

the “path in the tree” picture, or use the density of Z≥0 and the fact (exercise) that those have
representations as finite power series.

(5) AN is compact by Tychonoff so Zp is compact. In fact, the compactness shows that f is a
closed map hence a homeomorphism. Conceretely, we prove Bolzano–Weierstraß: Every sequence
has subsequence which stablizes mod pk, so applying a diagonal argument every sequence has a
subsequence which for each mk eventually stablizes mod pk. But such a sequence is Cauchy and
hence converges (our space is complete). Alternatively, note that for each radius p−k we can cover
Zp by pk balls of radius p−k indexed by Z/pkZp. �

COROLLARY 86. Zp is a maximal compact subring of Qp; the topology of Qp is generated by
the open sets prZp.

PROOF. On any compact subring we have |·| is bounded. But if |x|> 1 then |xn| → ∞, so any
compact subring is contained in Zp. �

2.2. Complete fields (Lectures 11-13)

From now on we suppose that F is complete wrt the non-trivial absolute value |·|.

2.2.1. Finite-dimensional subspaces are closed. (Just state the result). Consider a TVS V
over F .
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LEMMA 87. Let 0 ∈ U ⊂ V be a neighbourhood of zero. Then there is a neighbourhood
0 ∈U ′ ⊂U such that xU ′ ⊂U ′ whenever |x| ≤ 1 (we say that U ′ is balanced).

PROOF. The set {(x,v) ∈ F×V | xv ∈U} is open, and hence contains a subset of the form
BF(0,r)×U1 where U1 is a neighbourhood of zero and r > 0. Let x ∈ F be such that |x| > 1

r
(this exists since the absolute value is non-trivial). Then x ·BF(0,r) = BF (0, |x|r) ⊃ BF (0,1),
U2 = x−1U1 is open, and BF(0,1)U2 ⊂ xBF(0,r)x−1U1 ⊂U . Finally, U ′ = BF(0,1)U2 =∪|x|≤1xU2
is open, BF(0,1)-invariant and contained in U . �

LEMMA 88. Let W ⊂V be a complete subspace. Then it is closed.

PROOF. Let I be a directed set and let {wi}i∈I be a net in W converging to v ∈ V . Then
{wi}i∈I is a Cauchy net, so it converges in W by assumption. Then V is Hausdorff this means that
v ∈W . �

LEMMA 89. Let V be a TVS over F. Then every 1-dimensional subspace of V is linearly
homeomorphic to F, in particular complete and closed.

PROOF. Let v ∈ V be non-zero. The map f (x) = xv is continuous by definition of TVS,
and it is enough to check that it is open.. Since V is Hausdorff there is an open neighbour-
hood 0 ∈ U ⊂ V not containing v. Let 0 ∈ U ′ ⊂ U be a balanced neighbourhood contained in
it. Then {α ∈ F | αv ∈U ′} is BF(0,1)-invariant and does not contain 1. It is therefore contained
in BF(0,1), and it follows that {αv | |α| ≤ 1} ⊃ U ′ ∩Fv, in other words that f (BF(0,1)) con-
tains a neighbourhood of f (0). By translation and rescaling it follows that f (BF(x,r)) contains a
neighbourhood of f (x), and it is now clear that f is open. �

THEOREM 90 (Finite-dimensional spaces over complete fields). Let F be a field complete with
respect to the non-trivial absolute value |·|. Let V be a finite-dimensional TVS over F. Then V is
linearly homeomorphic to FdimV . In particular, any finite-dimensional subspace of an F-TVS is
complete, hence closed.

PROOF. Induction on dimV ; we already know the case dimV = 1. Suppose that dimV = n+1
with basis {vi}n+1

i=1 . Let W1 = SpanF {vi}n
i=1, W2 = SpanF {vn+1}. Then by induction W1,W2 are

linearly homeomorphic to Fn, F respectively hence complete and closed in V . Let f : Fn+1→ V
be he map f (x) = ∑

n+1
i=1 xivi. This is a continuous isomorphism of vector space, and we want to

construct a continuous inverse. For this note that the linear isomorphism V → (V/W1)× (V/W2) is
continuous since these are closed subspaces. By induction again we have isomorphisms V/W1 ' F
and V/W2 ' Fn, and hence also a continuous linear isomorphism V → Fn+1. To make this inverse
to the original one it is enough to compose with an appropriate automorphism of Fn+1, and all of
those are continuous. �

COROLLARY 91. Let L/F be an algebraic extension. Then there is at most one absolute value
on L extending that of F.

PROOF. Any x ∈ L then generates a finite-dimensional vector space K(x). The restrictions
of any two absolute values from L to K(x) will give K(x) two topologies as a K-vector space
which much coincide, so they are equivalent on K(x). But they agree on K, so they are the same
valuation. �
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COROLLARY 92. Let L/F be a finite extension of fields, and let |·|w be an absolute value of
L whose restriction to F,|·|v, is non-trivial. Then Lw is an algebraic extension of Fv. In fact,
[Lw : Fv]≤ [L : F ].

PROOF. Consider Lw as an Fv-vector space. Then the subspace L ·Fv is finite-dimensional,
hence closed. By the density of L we have Lw = L ·Fv. �

2.2.2. Extension of valuations. Let K be a field equipped with a (non-trivial) non-archimedean
absolute value |·|.

LEMMA 93. Let O = {x ∈ K | |x| ≤ 1}, p= {x ∈ K | |x|< 1}.
(1) O is a subring of K, in fact the maximal bounded subring.
(2) K is the field of fractions of O, which is integrally closed.
(3) p is an ideal of O.
(4) O× = {x ∈ K | |x|= 1}=O\p. In particular, p is the unique maximal ideal of O.

PROOF. PS3, �

NOTATION 94. We callO the maximal bounded subring or the valuation ring, p= {x ∈ K | |x|< 1},
κ =O/p the residue field. For a ∈ O we write ā for its image in κ .

Suppose now that K is complete.
For a polynomial f = ∑

d
i=0 aixi ∈ K[x] write | f |= maxi |ai|. Call f ∈ O[x] primitive if | f |= 1,

that is if f̄ 6= 0.

PROPOSITION 95 (Hensel’s Lemma). Let f ∈ O[x].

(1) Suppose that for some α ∈O, | f (α)|< | f ′(α)|2. Then there is β ∈O such that f (β ) = 0
and |α−β | ≤

∣∣∣ f (α)
f ′(α)2

∣∣∣< 1.

(2) Suppose that f̄ 6= 0 and that f̄ = ḡh̄ in κ[x] where ḡ, h̄ are relatively prime. Then there are
g,h ∈ O[x] lifting ḡ, h̄ such that degg = deg ḡ and f = gh.

PROOF. (1) Note that for f ∈O[x], α,β ∈O we have | f (α)− f (β )| ≤ |α−β |. In particular, if
|α−β |< | f ′(α)| then | f ′(α)− f ′(β )|< | f ′(α)| so | f ′(β )|= | f ′(α)|> 0. Also, we have f ′(α) ∈
O so f (x)− f (α)− f ′(α)(x−α) ∈ O[x] and it follows that there is g(x) ∈ O[x] such that

f (x) = f (α)+ f ′(α)(x−α)+g(x)(x−α)2 .

Now set c =
∣∣∣ f (α)

f ′(α)2

∣∣∣ < 1 and define a sequence by α0 = α , αn+1 = αn− f (αn)
f ′(αn)

. Suppose by

induction that | f ′(αn)| = | f ′(α)|,
∣∣∣ f (αn)

f ′(αn)2

∣∣∣ ≤ c2n
. Then αn,αn+1 ∈ O. Using a Taylor expansion

for f ′(x), there is γ ∈ O such that∣∣ f ′(αn+1)− f ′(αn)
∣∣ = |γ(αn+1−αn)|

≤
∣∣∣∣ f (αn)

f ′(αn)

∣∣∣∣< ∣∣ f ′(αn)
∣∣ .
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It follows that | f ′(αn+1)| = | f ′(α)|. Now using a Taylor expansion for f (x) there is γ ∈ O such
that ∣∣∣∣ f (αn+1)

f ′(αn+1)2

∣∣∣∣ =

∣∣∣∣ f (αn)+ f ′(αn)(αn+1−αn)+ γ(αn+1−αn)
2

f ′(αn+1)2

∣∣∣∣
≤

∣∣∣∣ f (αn)
2

f ′(αn)4

∣∣∣∣≤ (c2n
)2

.

It follows that αn+1−αn→ 0 and hence that β = limn→∞ αn exists. It is clear that f (β ) = 0. Also,
|αn+1−αn|=

∣∣∣ f (αn)
f ′(αn)

∣∣∣≤ c2n ≤ c so by induction |αn−α| ≤ c and |β −α| ≤ c.

(2) d = deg( f ), k = deg(ḡ), and let g0,h0 be a preimages of ḡ, h̄ of the same degree as the latter
ones. Suppose that for some π ∈ p we have constructed pi,qi with deg pi < k, degqi ≤ d− k such
that for gn = g0 +∑

n
i=1 π i pi and hn = h0 +∑

n
i=1 π iqi f ≡ gnhn (π

n+1O) (thus, we need π to divide
every coefficient of f −g0h0). Then for any pn+1,qn+1 we have

f −gn+1hn+1 = ( f −gnhn)−π
n+1(gnqn+1 +hn pn+1)−π

2n+2 pn+1qn+1

≡ ( f −gnhn)−π
n+1 (g0qn+1 +g0 pn+1) (π

n+2O)
and thus

π
−(n+1) [ f −gn+1hn+1]≡ π

−(n+1) [ f −gnhn]− (g0qn+1 +h0 pn+1) (πO) .
Our goal is then to find pn+1,qn+1 such that

(g0qn+1 +h0 pn+1)≡ π
−(n+1) [ f −gnhn] (πO) .

Let fn = π−(n+1) ( f −gnhn) ∈ O[x]. Since ḡ, h̄ are relatively prime, we could have fixed a,b ∈
O[x] such that āḡ+ b̄h̄ = 1. Now if π divides the coefficients of ag0 + bh0− 1 ∈ p[x] we have
g0(a fn)+ h0(b fn) ≡ fn (πO). The highest coefficient of g0 is a unit (it has the same degree mod
p) so we can divide with remainder b fn = qg0 + pn+1 where deg pn+1 < degg0 = k. Then we also
have

g0(a fn +h0q)+h0 pn+1 ≡ fn (πO) .
Define qn+1 by omitting from (a fn +h0q) any coefficient divisible by π . Then

g0qn+1 +h0 pn+1 ≡ fn (πO) .
Also, since the leading coefficient of g0 is a unit, and since deg(h0 pn+1)< d, deg fn ≤ d we must
have degqn+1 ≤ d− k. �

COROLLARY 96. Let f ∈K[x] be irreducible and satisfy a0ad 6= 0. Then | f |=max{|a0| , |ad|}.

PROOF. Multiply by a constant to make f ∈ O[x] and | f | = 1. If a0,ad ∈ p write f̄ = xrh̄ for
some h̄ non-vanishing at 0 ∈ κ . Then r > 0 since a0 ∈ p and r < d (otherwise ad would be a unit),
so we can lift xr to a factor of f of degree r in O[x], a contradiction. �

COROLLARY 97. Let f ∈K[x] be irreducible. Suppose that ad = 1 and a0 ∈O. Then f ∈O[x].

THEOREM 98. Let K be complete with respect to a non-trivial non-archimedean absolute value

and let L/K be an algebraic extension of degree n. Then |α| def
=
∣∣NL

K (α)
∣∣1/n defines an absolute

value on L which extends that of K.
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PROOF. This is clearly multiplicative. Let α ∈ L× satisfy NL
Kα ∈ OK . Let f ∈ K[x] be the

minimal polynomial of α . Then NL
Kα = ( f (0))[L:K]/deg f so | f (0)| ≤ 1. It follows that f ∈ OK[x]

so α is integral over OK . Conversely, if α is integral then clearly NL
Kα ∈ OK . It follows that

{α ∈ L | |α| ≤ 1} is a subring of L. In particular, if |α| ≤ 1 then |1+α| ≤ 1. Now let α,β ∈ L×

and suppose that |α| ≤ |β |. Then
∣∣∣α

β

∣∣∣≤ 1 so
∣∣∣1+ α

β

∣∣∣≤ 1 so |α +β | ≤ |β |. �

COROLLARY 99. The absolute value extends uniquely to any algebraic extension of F.

2.2.3. Digression. Noting the last proof, it’s natural to define an absolute value with slightly
different axioms, replacing the triangle inequality with ∃C : |x+ y| ≤C max{|x| , |y|}. Equivalently,
one assumes that C = sup{|1+ x| | |x| ≤ 1}< ∞. This is strong enough to define convergence with
all the usual properties, hence completion. One advantage is that now |·|λ is an absolute value for
all λ > 0. Note that in most cases checking |xy| = |x| |y| is easy, and behaviour under addition is
the difficult part.

One setting where this arises:

THEOREM 100. Let K be a non-discrete locally compact field. Then one of the following holds:
(1) K is isomorphic to a finite extension of R.
(2) K is isomorphic to a finite extension of Qp for some rational prime p.
(3) K is isomorphic to Fq((t)) for some prime power q.

SKETCH OF PROOF. Let µ be a Haar measure on (K,+). Then for any a ∈ K×, E 7→ µ (aE)
is a Haar measure also, so there is |a| ∈ R×>0 such that µ (aE) = |a|µ(E). This also holds for
a = 0 with |0|= 0. This is clearly multiplicative and non-zero for a 6= 0. Next one checks that |·| is
continuous, and that {x | |x| ≤ 1} is compact. It follows that there is C as in the modified definition.
In the non-archimedean case (absolute value bounded on Z), looking at

∣∣(1+ x)N
∣∣ now shows that

C = 1 so we have an ultrametric. In characteristic zero our field now contains some Qp or R by
Ostrowski, and is finite-dimensional over Qp since it is locally compact. In finite charactersitic one
shows that the field of constants is the residue field.

For details see �

2.3. Ramification

Fix a field K complete with respect to a non-archimedean absolute value |·|v. Equip every
algebraic extension with the unique absolute value extending this one.

For an algebraic extension L/K of degree n let |·|w be the absolute value, OL be the valuation
ring, pL the prime, λ the residue field.

2.3.1. Ramification index and residue degree.

DEFINITION 101. For a finite extension L/K set e(L/K) = [v(L×) : v(K×)] and f (L/K) =
[λ : κ].

PROPOSITION 102. n≥ e f and if |·|v is discrete then we have equality.

PROOF. Let {ωi} f
i=1 ⊂OL reduce mod P to a basis of λ over κ . Let

{
Π j
}e−1

j=0 ⊂OL be such
that

∣∣Π j
∣∣
w are coset representatives. Suppose that for some xi j ∈ K we have

∑
i, j

xi jωiΠ j = 0 .
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Let s j = ∑i xi jωi. Suppose not all the xi j here are zero. For each j we rescale s j by an element of
K× so that all the

{
xi j
} f

i=1 ⊂OK but that not all are in p. Call the resulting sum s′j. Then s′j ∈ OL

but reducing mod pL not all cofficients are zero in κ , so s′j /∈ pL by the choice of ω̄i. It follows

that s′j ∈ O
×
L so

∣∣∣s′j∣∣∣ = 1, at which point
∣∣s j
∣∣ ∈ |K×|. Now in the sum ∑ j s jΠ j = 0 two non-zero

summands must have the same absolute value, which is a contradiction.
Suppose now that v is discrete and let Π j =Π j where Π is a uniformizer. Then M =⊕i jOKωiΠ j⊂

OL. We will show equality. Let N = ⊕iOKωi. Then N +ΠOL =OLsince ωi are a generating set
for OL/ΠOL as an OK-module. Iterating we find

OL = N +Π(N +Π(· · ·)) =
e−1

∑
j=0

Π
jN +Π

eOL = M+Π
eOL = M+ϖOL .

It now follows by induction that
OL = M+ϖ

kOL

for all k ≥ 1. But then M is dense in OL (ϖkOL is a basis of neighbourhoods of the identity!). On
the other hand since OK is closed in K, M 'Oe f

K is closed in its K-span, which is a K-subspace of
L, hence closed. It follows that M is closed in L, so M =OL. �

REMARK 103. This gives an alternative proof of the claim from chapter 1.

2.3.2. Unramified extensions.

DEFINITION 104. A finite extension L/K is unramified if λ : κ is separable and [λ : κ] =
[L : K]. An infinite extension is unramified if every finite subextension is unramified.

LEMMA 105. Let L/M/K be a tower of extensions with [L : K] finite. Then L/K is unramified
iff both of L/M,M/K are.

PROOF. First, λ/κ is separable iff µ/κ and λ/µ are. Since f ≤ n we have

[λ : κ] = [λ : µ] [µ : κ]≤ [L : M] [M : K] = [L : K] .

If L/K is unramified then the equality [λ : κ] = [L : K] forces equality throughout. If L/M,M/K
are unramified then we have equality throughout and [λ : κ] = [L : K]. �

PROPOSITION 106. Inside a fixed algebraic closure K̄ let L/K be unramified, M/K any exten-
sion. Then LM/M is unramified.

PROOF. Enough to consider the case of L finite. Then λ = κ(ᾱ) for some α ∈OL. Let f ∈OK
be the minimal polynomial of α . Then f̄ ∈ κ[x] is monic, and f̄ (ᾱ) = 0 [λ : κ]≤ deg f̄ ≤ deg f ≤
[L : K] = [λ : κ]. It follows that f̄ is the minimal polynomial of ᾱ , in particular it is irreducible.
Also, deg f = [L : K] so L = K(α). Now let g ∈ OM[x] be the minimal polynomial of α over
M. Then ḡ ∈ µ[x] is separable (it divides f̄ ) and hence irreducible (if it factored then the factors
would be relatively prime and then by Hensel’s Lemma we could lift this to a factorization of g).
It follows that [M(α) : M] = [µ(ᾱ) : µ]≤ [M(α) : M] and hence we have equality. �

COROLLARY 107. Let L/M/K be a tower of algebraic extensions. Then L/K is unramified iff
both of L/M,M/K are.

PROOF. PS4 �

24



THEOREM 108. The compositum of unramified extensions is unramified.

DEFINITION 109. The maximal unramified subextension of L/K is the compositum T of all
unramified subextensions of L/K. In particular, we let Kur denote the maximal unramified subex-
tension of K̄/K, that is the compositum of all unramified extensions of K.

PROPOSITION 110. Let T/K be the maximal unramified subextension of L/K. Then τ is the
separable closure of κ in λ , and T,K have the same value groups.

PROOF. We have e = 1 in every finite subextension of T/K, so the value groups are the same.
Now let ᾱ ∈ λ be separable over κ , and let f ∈ OK[x] be a monic lift of its minimal polynomial
f̄ . Then f is irreducible by Hensel’s Lemma, and f̄ (ᾱ) = 0 while f̄ ′(ᾱ) 6= 0 since f̄ is separable.
It follows from Hensel’s Lemma again that f has a root α ∈ L lifting ᾱ . Then K(α) is unramified
over K since [K(α) : K] = deg f = deg f̄ = [κ(ᾱ) : κ]. �

2.3.3. Ramification. Suppose now that κ is prefect and that the absolute value |·|K is discrete.

DEFINITION 111. Say that L/K is totally ramified if it has no unramified subextensions.
Say that L/K is tamely ramified if it is totally ramified and every finite subextension has order

prime to p = char(κ).

PROPOSITION 112. Let L/K be totally ramified and finite. Then the minimal polynomial of a
uniformizer Π ∈ pL is an Eisenstein polynomial and L = K(Π). Conversely, such a polynomial is
irreducible and generates a totally ramified extension.

DEFINITION 113. f ∈ OK[x] is an Eisenstein polynomial if it is monic, if f̄ = xe where e =
deg( f ) and if f (0) ∈ pK \p2

K .

PROOF. Suppose [L : K] = e and that [K(Π) : K] = d|e. Every conjugate of Π has the same
absolute value, so all the coefficients are in the prime ideal. The first coefficient is the product of
the conjugates, so up to units is equal to Πd . But this coefficient is in K×, so its absolute value
is an integer power of Πe. It follows that e|d so e = d and the constant coefficient of the minimal
polynomial is ϖ up to units.

For the converse let f ∈OK[x] be an Eisenstein polynomial of degree e, and let L=K(Π) where
Π is a root of f . Say f (x) = ∑

e
i=0 aixi with ae = 1 and ai ∈ pK for i < e. Now for i < e

∣∣aiΠ
i
∣∣< |Π|i.

If |Π| ≥ 1 were true then |Π|i ≤ |Π|e would hold, so that | f (Π)|= |Π|e > 0, which is impossible.
Thus |Π|< 1. Now for 1≤ i≤ e−1,

∣∣aiΠ
i
∣∣< |ai| ≤ |a0|. Since f (Π)= 0 it follows that |Πe|= |a0|,

and since |K×| is generated by |a0| this means that e(K(Π) : K)≥ e. We thus have:

e≤ e(K(Π) : K)≤ [K(Π) : K]≤ deg f = e .

It follows that we have equality throughout. That [K(Π) : K] = deg f shows that f is irreducible;
that e(K(Π) : K) = [K(Π) : K] shows that the extension is totally ramified.

Then |Π|=
∣∣NL

KΠ
∣∣1/e

= |ϖ |1/e by assumption, so e(L/K) = e = [L : K]. �

THEOREM 114. Qp has at most finitely many extensions of a given degree.

PROOF. There’s a unique unramified extension of any degree (PS5), so enough to count totally
ramified extensions.

First, let f be a fixed Eisenstein polynomial with root α generating a field K = Qp(α). Then
f ′(α) 6= 0 ( f is irreducible and separable). If g is close to f then g(α),g′(α) ∈ OK are close
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to f (α), f ′(α). In particular, in a neighbourhood of f we have
∣∣∣ g(α)

(g′(α))2

∣∣∣ < 1. Then by Hensel’s
Lemma g has a root in K so (g being an Eisenstein polynomial hence irreducible) f ,g determine
the same extension.

It follows that every Eisenstein polynomial has a neighbourhood determining the same exten-
sion. But the set of Eisenstein polynomials is compact! �

2.4. Places of number fields

We can now recover the results of Section 1.4 using the technology of completion instead of
localization.

2.4.1. Extension of absolute values for non-complete fields.

LEMMA 115. Let L/K be an extension of fields, and let w be an absolute value on L, trivial on
K. Then w is trivial on the algebraic closure of K in L.

PROOF. Let |·| be an absolute value of L, trivial on K. Then |·| is non-archimedean. Choose
α ∈ L such that |α|> 1 and let f (x) = ∑

d
i=0 aixi ∈ K[x] be its monic minimal polynomial. Then for

i < d we have
∣∣aiα

i
∣∣= |α|i < |α|d and hence | f (α)|= |α|d > 0. It follows that α is transcendental

over K. �

DEFINITION 116. Let L/K be an algebraic extension of fields. Let w ∈ |L|, v ∈ |K|. We say
that w extends v (or lies above v) and write w|v if the restriction of w to K is equivalent to v (note
that the restriction is an absolute value).

From now on fix a finite extension of fields L/K and a place v of K.

LEMMA 117. There is a natural bijection between {w ∈ |L| | w|v} and Hom(L, K̄v)/Gal(Kv).

PROOF. v has a unique extension to K̄v, which is therefore Galois-invariant. This gives a map
HomK(L, K̄v)/Gal(Kv)→ {w ∈ |L| | w|v}. For surjectivity let Lw be the completion of L under
an absolute value. Then the compositum L ·Kv ⊂ Lw is a finite-dimensional Kv-subspace, hence
closed. The density of L in Lw now shows that Lw =LKv and in particular that it is finite over Kv. We
therefore have an embedding Lw ↪→ K̄v and the pullback absolute value must be w by uniqueness.
For injectivity let K ⊂ L,L′ ⊂ K̄v be two subfields which are finite over K and suppose we have
an isometric K-homomorphism σ : L→ L′. Then σ extends to an isometry of the topological
closures of L,L′ in K̄v. These closures are subfields containing Kv and the extension is still a field
isomorphism. Extend this isomorphism to an automorphism of K̄v to obtain an element of the
Galois group conjugating the two subfields. �

COROLLARY 118. Suppose L = K(α) with minimal polynomial f ∈ K[x]. Then the places of
L lying above v are in bijection with the irreducible divisors of f in Kv[x].

PROOF. HomK(L, K̄v) is in bijection with the irreducible factors. Moreover, the absolute values
are obtained by finding roots of f in K̄v and pulling back the absolute value. �

REMARK 119. This is a new proof of 56, in a form suitable for primes dividing the discrminant
of α .
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EXAMPLE 120. Let K be a number field, v an archimedean place, L/K a finite extension.
Suppose L = K(α). If Kv ' C then Kw ' C for all w|v; α has n = [L : K] Kv-embeddings in C so
there are n places, all complex. If Kv ' R then the min poly f factors into some linear and some
quadratic factors, so there are both real and complex places. Finally, we see that if K has r real
places and s complex places then r+2s = [K : Q] (complex places come in pairs since the roots of
real polynomials come in complex conjugate pairs). Note that for archimedean places it is normal
to talk about real and complex embeddings rather than “places over R”.

EXAMPLE 121. Let K =Q, L =Q
(

3
√

2
)

, with minimal polynomial f (x) = x3−2.

• Over Q∞ = R, f factors as
(

x− 3
√

2
)(

x2 + 3
√

2x+ 3
√

4
)

with the latter factor irreducible.
Thus three embeddings in C, but only two places since complex conjugate embeddings
give the same absolute value.
• Over Q2, f is Eisentein hence irreducible. Thus there is a unique place w2|2 and the

extension is totally (but tamely) ramifield
• Over Q3, f ≡ (x− 2)3 (3). We have f (2) = 3 · 2, f ′(2) = 3 · 4 so Hensel’s Lemma does

not apply, and indeed f has no root mod 9. In fact, g(y) = f (y−1) = y3−3y2 +3y−3 is
Eisenstein, so again only only place and the extension is totally (and strongly) ramified.
• Over Q5, we reduce mod 5 to get f̄ = (x−3)(x2+3x+4) where the second factor is irred

(no root) and rel prime to the linear factor, so by Hensel’s Lemma f factors in Q5[x] as
a product f1 f2 with f1 linear, f2 quadratic. Thus two places over 5, one with completion
isomorphic to Q5, the other to a quadratic extension. In fact, to the unramfied extension:
since f̄2 is irred, we have f

(
Lw2

5
: Q5

)
≥ deg f̄2 = 2 =

[
Lw2

5
: Q5

]
.

• Over Qp, p ≥ 5 f̄ ′(x) = 3x2 is relatively prime to f̄ , so by Hensel’s Lemma f factors as
f = ∏i fi where f̄ = ∏i f̄i and the f̄i are irred and distinct. It follows that the places over
p correspond to the fi and they are all unramified since again f

(
Lwi

p
: Qp

)
≥ deg f̄i =

deg fi =
[
Lwi

p
: Qp

]
.

– If p≡ 1(3) then Z/pZ has cube roots of unity, so f̄ is either irred (p inert) or splits
to linear factors (p splits completely).

– f splits iff f has a root mod p, that is iff 2 is a cube in Z/pZ. Let p = ππ̄ in the
Eisenstein integesr Z[ω]. Then f (π : p) = 1 (e f g = 2 and g = 2) so Z[ω]/πZ[ω]'
Z/pZ and thus we need to decide if

( 2
π

)
3 = 1 and by cubic reciprocity this is

(
π

2

)
3 if

we choose π to be primary (π ≡±2(3)). Now 2 is prime in Z[ω], so Z[ω]/2Z[ω]'
F4, and the cubes there are just the identity. Thus

( 2
π

)
3 = 1 iff π ≡ 1(2). Writing

p = a2 +3b2 where a,b ∈ Z (take the norm of π) p is primary if
– If p≡ 2(3) then x 7→ x3is an automorphism of (Z/pZ)×. In particular, f̄ has a root.

This root is unique since there are no cube roots of unity, so f splits as a product of
a linear factor and a quadratic factor.

Retunring to the general case, for each w|v we have a Kv-algebra hom Kv⊗K L→ Lw. We therefore
have a Kv-algebra homomorphism Kv⊗K L→∏w|v Lw.

THEOREM 122. If L/K is separable, this is an isomorphism.
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PROOF. Say L = K(α) with minimal polynomial f ∈ K[x]. Let f = ∏w fw be the factorization
of f in Kv[x]. Then by the CRT ∏w Lw = ∏w (Kv[x]/( fw)) = Kv[x]/ f Kv[x] = Kv⊗K (K[x]/ f K[x]).

�

COROLLARY 123 (Reproof of Theorem 55). If L/K is separable we have [L : K] =∑w|v [Lw : Kv] =

∑w|v e(w|v) f (w|v)

.

COROLLARY 124. If L/K is separable we have for all v ∈ |K| and β ∈ L that TrL
K β =

∑w|v TrLw
Kv

β and NL
Kβ = ∏w|v NLw

Kw
β .

PROOF. TrL
K β let Mβ ∈ EndK-vsp(L) and Mv

β
∈ EndKv-vsp(Kv⊗L) be multiplication by β . Then

Mv
β
= 1⊗Mβ so TrMβ = TrMv

β
. But under the decomposition Kv⊗L ' ⊕wLw each Lw is Mv

β
-

invariant, so
TrMv

β
= ∑

w|v
Tr
(

Mv
β
�Lw

)
= ∑

w|v
TrLw

Kv
β .

�

2.4.2. Galois extensions.

PROPOSITION 125 (Reproof of 59). Suppose L/K is finite and Galois. Then G = Gal(L/K)
acts transitively on the places above v.

PROOF. Suppose not. Then there are two disjoint orbits. By weak approximation (Theorem
78) can find α ∈ L such that |x|w < 1 in one orbit, but |x|w > 1 in the other orbit. Taking norms we
get a contradiction. �

DEFINITION 126. The decomposition group is Gw = StabG(w). If v is non-archimedean we
also have the inertia subgroup Iw = Ker(Gw→ Aut(λw : κv)) = {σ ∈ Gw | σx≡ x(Pw)}.

LEMMA 127. Lw/Kv is Galois with Galois group Gw.

PROOF. Let L = K(α) with minimal polynomial f . Then Lw = L ·Kv = Kv(α) so the extension
Lw/Kv is a splitting field for the separable polynomial f hence Galois. Let fw ∈ Kv[x] be the
irreducible factor of f such that Lw ' Kv[x]/( fw) and suppose without loss of generality that α

is a root of fw. Then Gw = {σ ∈ G | fw(σα) = 0} so that |Gw| = deg fw = [Lw : Kv] and hence
Gw ' Gal(Lw : Kv). �

LEMMA 128. Let Lw/Kv be a Galois extension of complete non-archimedean fields. Then the
extension λw/κv of residue fields is normal and the map Gal(Lw : Kv)→Aut(λw : κv) is surjective.

PROOF. Given ᾱ ∈ λw let α ∈ Ow be any preimage, and let f ∈ Kv[x] be its minimal polyno-
mial. Then f splits in Lw since the extension is Galois, its reduction f̄ splits in λw, so finally the
minimal polynomial of ᾱ splits. �

2.4.3. Places of number fields.

DEFINITION 129. Let F be a number field. Call a place of F infinite if it is archimedean (equiv-
alently, lies over the archimedean place of Q), finite otherise (it if lies over a non-archimedean place
ofQ). Write |F |

∞
, |F |f for the two sets of places.
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PROPOSITION 130. Let F be a number field. Then
(1) |F |

∞
= Hom(F,C)/Gal(C/R).

(2) |F |f =
{
|·|p | pCOF prime

}
.

PROOF. (1) This is Lemma 117.
(2) Let pCOF be prime, and for x∈OF let vp(x)= e where pe‖xOF . This is clearly a valuation,

and the valuations corresponding to distinct primes are inequivalent: if x belongs to one prime but
not the other then xn will behave differently.

Conversely, let |·|v be a non-archimdean absolute value on F , normalized so that the restric-
tion to Qis |·|p for some p. Let α ∈ F have |α|v > 1 and let f ∈ Z[x] be monic, of degree d.
Then | f (α)|v = |α|dv > 0 so α /∈ OF . It follows that |x|v ≤ 1 for all x ∈ OF and hence that
p = {x ∈ OF | |x|v < 1} is a prime ideal of OF . Since |p|v = |p|p < 1 we have p ∈ p so p|p.
Let |·|p be the absolute value corresponding to this ideal, normalized the same way. Then the two
absolute values agree on p and on the complement OF \p, hence on the invertible elements of the
localization (OF)p. But that ring is a local PID, so it is now enough to check that they agree on a
generator of the maximal ideal. For this note that (up to units of the localization) p is a power of
that generator, and the absolute values agree on p. �

LEMMA 131. Let v be a finite place of F, corresponding to the prime pCOF . Then OF is
dense in the valuation ring Ov ⊂ Fv and p is dense in the prime ideal pvCOv. More generally for
a fractional ideal a of F of order e at p its closure in Fv is pe

v. Conversely, pe
v∩OF = pe.

PROOF. The closure of a in Lw is O-invariant, hence Ow invariant. Also, if a ⊂ αOL then its
closure is contained in αOw. It is therefore a fractional ideal, so we have a=Pe′

w for some e′ ∈ Z
and we need to show e = e′.

We have already checked that the closure of P is Pw and that P
The claim is invariant under multiplication by elements of L× (including the rational prime p

below P), so we may assume a is an ideal of OL. From a ⊂ Pe we get a ⊂ Pe
w that is e′ ≥ e.

Conversely, a⊂ a∩OL
The argument above shows thatOF ⊂Ov and p⊂ pv. To get the density it’s enough to approx-

imate x ∈ F such that |x|v ≤ 1 by elements of OF . By hypothesis the prime factorization of the
principal fractional ideal (x) has p to a positive power. In other words, there is an ideal a prime to
p such that (x)a ⊂OF . Since p - a there is α ∈ a which is not in f rakp. By the choice α ∈ a we
have αx ∈OF . Since α is prime to f rakp, it is prime to pk for each k, so that (α)+pk = (1). Then
for each k there is ᾱ ∈ OF such that αᾱ ≡ 1(pk) and then ᾱαx ∈ OF satisfies

vp (αᾱx− x) = vp(x)+ vp (αᾱ−1)≥ k

(recall that vp(x) ≥ 0 by hypothesis). Letting k→ ∞ these elements approximate x to arbitrary
precision with respect to |·|v. Finally, if |x|v < 1 then by the ultrametric property we have |αᾱx|< 1
once k is large enough so elements of pv can be approximated by elements of f rakp. �

Next, we reconcile our notions of residue degree and ramification index.

LEMMA 132. Let L/K be an extension of number fields of degree n. Let v ∈ |K|, w ∈ |L| be
non-archimedean places such that w|v. Then e(Lw/Kv) = e(P/p) and f (Lw/Kv) = f (P/p).

PROOF. Lemma 131 shows that OKv/pv ' OK/p and OLw/Pw ' OL/P in compatible fash-
ions. For the ramification indices localize at p, Pfirst. This does not change the ramification index,
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and now after localization we have (P)e = p and that both ideals are principal, so there is nothing
to prove. �

For the final claim we introduce a new normalization of the absolute values.

DEFINITION 133. Fix a place w of the number field F , and write |·|v for an absolute value in
the class of v which restricts to the absolute value |·|p on Q (perhaps p = ∞). We then write ‖·‖v

for the absolute value ‖·‖v = |·|
[Fv:Qp]
v .

LEMMA 134. For an infinite place v associated to an embedding ϕ : F → C, we have ‖x‖v =

|ϕ(x)|R if ϕ is real, ‖x‖v = ϕ(x)ϕ(x) if ϕ is complex. For a finite place v associated to the prime
pCOF let qv = #κv = [Ov : pv] be the size of the residue field. Then

‖x‖v = q−vp((x))
v .

PROOF. The claims for infinite places are immediate. For finite places let Fv be a finite exten-
sion of Qp. Then

‖x‖′v = q−v(x)
v

is an absolute value on Fv equivalent to the absolute value |·|v extending that of Qp. To see the
power relating the two it’s enough to consider the case x = p. In that case v(p) = e where e is the
ramification index (for which pOv = pe

v) and certainly qv = p f where f is the residue degree. It
follows that

‖p‖′v = p−e f = |p|−[Fv:Qp]
v = ‖p‖v

and hence
‖x‖′v = ‖x‖ v

for all x. �

PROPOSITION 135 (Product formula). For all x ∈ F×,

∏
v∈|F |
‖x‖v = 1 .

PROOF. The claim for F =Q is an exercise in unique factorization (see PS3). Recall now that

if v ∈ |F | restricts to the p-adic absolute value on Q (perhaps p = ∞) then |x|v =
∣∣∣NFv

Qp
x
∣∣∣1/[Fv:Qp]

p
(that’s Theorem 98), in which case

‖x‖v =
∣∣∣NFv

Qp
x
∣∣∣

p
.

But then

∏
v|p
‖x‖v = ∏

v|p

∣∣∣NFv
Qp

x
∣∣∣

p
=

∣∣∣∣∣∏v|p NFv
Qp

x

∣∣∣∣∣
p

=
∣∣NF

Qx
∣∣

p

by Corollary 124. We therefore have

∏
v
‖x‖v = ∏

p≤∞

∏
v|p
‖x‖v = ∏

p≤∞

∣∣NF
Qx
∣∣

p = 1

by the product formula for Q. �
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CHAPTER 3

Different, Discriminant and ramification

Let K be either a number field or a field complete with respect to a discrete absolute value.
Let OK be the ring of integers in the first case, the valuation ring in the second. Let L be a finite
separable extension of K, OL the integral closure of OK in L (which is the valuation ring in the
second case).

In this section we develop two invariants of this extension; an ideal of OL called the (relative)
different and an ideal ofOKcalled the (relative) discriminant. These encode the ramification of the
extension: a prime PCOL divides the different iff e(P : P∩OK) > 1, while pCOKdivides the
discrminant iff there is P|p a prime of OL such that e(P : p)> 1.

3.1. The trace form and duality (1 hour, 8/3/2013)

3.1.1. Analytic motivation. Recall that (basic Fourier analysis on the circle)

L2(R/Z) =
⊕̂
k∈Z

Cek

where ek(x) = e2πikx. This underlines much of classical analytic number theory.
Now let K be a number field. Then K∞ = ∏v|∞ Kv is an R-algebra with dimRK∞ = ∑v|∞ f (Kv :

R) = n where n = [K : Q]. The product embedding OK ↪→ K∞ has discrete image, since any non-
zero element of OK has norm in Z\{0} whereas NK∞

R is continuous.

EXAMPLE 136. Z[
√

2] ↪→ R×R.
√

2 on the left is a formal symbol whose only property is
that it squares to 2, but in R there are two genuinely distinct roots of 2 (one is positive, the other
negative), so two embeddings in R. The image is discrete since if a+b

√
2,a−b

√
2 are both close

to 0 in R for a,b∈Z not then the norm a2−2b2 would be an integer close to zero, so that a= b= 0.
Alternatively, recover a,b from linear combinations.

It follows that OK is a discrete subgroup of K∞. Since rkZOK = n = [K : Q] (see xxx), OKis
cocompact.

EXERCISE. For k=(kv)v|∞ ,x=(xv)v|∞ ∈K∞ define ek(x)= exp
(

2πi∑v|∞ TrKv
R kvxv

)
. Now that

if k,x are images of k,x ∈ K then ek(x) = exp(2πiTrK
Q(kx)) (see Corollary 124). It now follows

(for general k) that ek is OK-periodic iff TrK
Q(kx) ∈ Z for all x ∈ OK . In other words, characters of

K∞/OK are parametrised by the dual lattice O∗K .

L2 (K∞/OK)'
⊕̂
k∈Z

Cek
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3.1.2. The trace form. The trace form (x,y) = TrL
K(xy) is a non-degenerate bilinear form on

L, and so gives an idenfication of L with its dual K-vector space (for its first use in the course, see
Proposition 19). From now on write simply Tr unless we need to specify the field.

DEFINITION 137. Let Λ ⊂ L be an OK-submodule. We define the dual of Λ to be Λ∗ ={
x ∈ L | TrL

K (xΛ)⊂OK
}

.

Note that Λ∗ is always an OK-submodule of L.

LEMMA 138. Let {ωi}n
i=1 be a K-basis for L, and let {ω∗i }

n
i=1 be the dual basis with respect

to the trace form. Then (
n⊕

i=1

OKωi

)∗
=

n⊕
i=1

OKω
∗
i .

PROOF. Let Λ=
⊕n

i=1OKωi. Since TrL
K(ωiω j)∈Z for all i, ω j ∈Λ∗. Conversely, let ∑

n
j=1 a jω

∗
j ∈

Λ∗ where ai ∈ K. Then a j = TrL
K

(
ωi ∑

n
j=1 a jω

∗
j

)
∈ OK . �

COROLLARY 139. The dual of a fractional ideal is a fractional ideal.

PROOF. First note that OL ⊂ O∗L and that if α ∈ L× then (αL)∗ = α−1L∗ (so that we may
freely replace a with αa without loss of generality). Now let a be a fractional ideal of L. Then if
x∈ a∗and α ∈ L we have TrL

K (αxa) = TrL
K (αxa) = TrL

K (xa)∈ a∗ so a∗ is anOL-module. If a⊂OL
then a∗ ⊃O∗L ⊃OL so it is non-zero. Finally, let α ∈ abe non-zero and let {ωi}n

i=1 be a K-basis of
L contained in OK . Then a ⊃ αOL ⊃ ⊕n

i=1OK(αωi). Then by the Lemma a∗ ⊂ ⊕n
i=1OKα−1ω∗i .

Let m ∈ Z\{0} be such that mωi ∈ OL for all i, at which point we see that (mα)a∗ ⊂OLso a∗ is
indeed a fractional ideal. �

3.2. The different

3.2.1. Definition; first properties (Lecture 22).

DEFINITION 140. The complementary module (or inverse relative different) of L/K is the

fractional ideal CL/K
def
= O′L. The relative different of the extension is then the ideal DL/K

def
= C−1

L/K .

REMARK 141. We saw in the proof of Corollary 139 that OL ⊂ CL/K so C−1
L/K is an ideal.

LEMMA 142. The dual of the fractional ideal a is the fractional ideal CL/Ka
−1.

PROOF. We clearly have TrL
K
(
aCL/Ka

−1) = TrL
K
(
CL/K

)
= OK so CL/Ka

−1 ⊂ a∗. Conversely,
Tr(OKaa

∗)⊂OK by definition so aa∗ ⊂ CL/K and hence a∗ ⊂ CL/Ka
−1 �

LEMMA 143 (Different in towers). Let M/L/K be a tower. Then DM/K =DL/KDM/L.

PROOF. We have TrM
K
(
CL/KCM/LOM

)
=TrL

K TrK
M
(
CL/KCM/LOM

)
=TrL

K
(
CL/K TrK

M
(
CM/LOM

))
⊂

TrL
K
(
CL/KOL

)
⊂OK so CL/KCM/L ⊂ CM/K .

Conversely, sinceOLOM =OM, TrL
K
(
OL TrM

L
(
CM/KOM

))
=TrM

K
(
CM/KOM

)
⊂OK so TrM

L
(
CM/KOM

)
⊂

CL/K . Thus TrM
L

(
C−1

L/KCM/KOM

)
⊂OL and hence C−1

L/KCM/K ⊂ CM/L and CM/K ⊂ CL/KCM/L. �

We now calculate another dual basis, giving us a bound on the different.
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PROPOSITION 144. Let L = K(α) be a separable extension of degree n. Define bi ∈ L by
f (x)
x−α

= ∑
n−1
i=0 bixi where f ∈ K[x] is the minimal polynomial of α . Then the basis dual to

{
α i}n−1

i=0

is
{

bi
f ′(α)

}n−1

i=0
. If, in addition, α ∈ OLthen OK[α]∗ = 1

f ′(α)OK[α].

PROOF. Let g(x) = f (x)
x−α

, and let β be a root of f . Then g(β ) =

{
f ′(β ) β = α

0 β 6= α
. Now let

{αi}n
i=1 be the roots of f in a splitting field consider the polynomial

hr(X) =
n

∑
i=1

f (X)

X−αi

αr
i

f ′(αi)
.

By the observation we have hr(α j) = αr
j so if 0≤ r ≤ n−1, hr(X)−X r is a polynomial of degree

at most n−1 with n roots. It follows that hr(X) = X r. Writing hr(X) = TrL
K

f (X)
X−α

αr

f ′(α) we see that

Tr bi
f ′(α)α

r = δir.

Now suppose that f (x) = ∑
n
i=0 aixi where ai ∈ OK and an = 1. Then (x− α)∑

n−1
i=0 bixi =

∑
n
i=0 aixi is equivalent to bi−αbi+1 = ai+1 (set b−1 = bn = 0). Thus bn−1 = 1 and it follows by

induction that all bi ∈ OK[α]. Conversely, starting from 1 = bn−1 again suppose by induction that
α i ∈SpanOK

{
b j}

n−1−i≤ j≤n−1. Since αb j = b j−1−a jbn−1 it follows that α i+1 ∈SpanOK

{
b j}

n−1−i−1≤ j≤n−1
and we are done. �

COROLLARY 145. Let L = K(α) where α ∈OL, and let f ∈OK[x] be the minimal polynomial
of α . Then DL/K divides f ′(α)OL.

PROOF. We have OK[α] ⊂ OL so CL/K ⊂ OK[α]∗ = 1
f ′(α)OK[α] ⊂ 1

f ′(α)OL. It follows that
DL/K ⊃ f ′(α)OL as claimed. �

FACT 146. DL/K is the GCD of all the ideals f ′(α) where α ranges over all integral generators
of L.

COROLLARY 147. Let L/K be an unramified extension of local fields. Then DL/K = (1).

PROOF. Let α ∈ OLbe such that λ = κ(ᾱ), and let f be its minimal polynomial. Then f̄ is
the minimal polynomial of ᾱ . By definition of separability f̄ ′(ᾱ) 6= 0 and it follows that f ′(α) ∈
O×L . �

3.2.2. Local-to-global (Lecture 23).

DEFINITION 148. For a finite set S⊂ |L|f the set of S-integers isOS
L = {x ∈ L | ∀w ∈ |L|f \S : |x|w ≤ 1}.

Also set LS = ∏w∈S Lw.

LEMMA 149. let S be as above. Then OS
L is dense in LS = ∏w∈S Lw.

PROPOSITION 150. Let K be a number field, and let w be a finite place of L corresponding to
the prime ideal PCOL and lying over the place v of K. Then the exponent of P in DL/K is the
exponent of Pw in DLw/Kv .

PROOF. By Lemma 131 it is enough to show that the closure of CL/K in Lw (which is a frac-
tional ideal) is CLw/Kv . In one direction let x∈ CL/K and let y∈OLw . By Lemma 149 there is z∈OS

L
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such that z is sufficiently w-close to y (see below) and z is w′-close to 0 for all w′|v other than w.
Then z is everywhere integral so z ∈ OL. We thus have TrL

K(xz) ∈ OK ⊂OKv . But

TrL
K(xz) = TrLw

Kv
(xz)+ ∑

w′|v
w′ 6=v

TrLw′
Kv

(xz) .

By assumption z ∈ OLw′ so TrLw′
Kv

(xz) ∈ OKv for all w′. It follows that TrLw
Kv
(xz) ∈ OKv and hence

that TrLw
Kv
(xy) = TrLw

Kv
(xz)+TrLw

Kv
(x(y− z)) ∈ OKv as long as |y− z|w |x|w ≤ 1.

Conversely, let x ∈ CLw/Kv and let z ∈ OS
L be w-close to x and w′-close to 0 for all w′|v other

than w. Then for y ∈ OL we have z,y ∈ OLw′ for all w′ so TrLw′
Kv

(zy) ∈ OKv . Also, TrLw
Kv
(zy) =

TrLw
Kv

((z− x)y)+TrLw
Kv

(xy) ∈ OKv as long as |z− x|w ≤ 1. It follows that TrL
K(zy) is v-integral. It

is also v′ integral for all other finite places of K since both z,y are integral for any w′|v′. Thus
TrL

K(zy) ∈ OK and z ∈ CL/K . �

3.2.3. The different and ramification (Lecture 23 continued).

PROPOSITION 151. Let Lw/Kv be an extension of complete fields with discrete valuations and
perfect residue fields, and let e be the ramification index. Then Pe−1

w divides DLw/Kv , exactly if the
extension is at most tamely ramified. If the ramification is wild then Pe

w divides DLw/Kv .

PROOF. By multiplicativity in towers and Corollary 147 we may assume that the extension
is totally ramified, hence of the form Lw = Kv(Π) where Π satisfies an Eisenstein polynomial:
f (Π) = Πe +∑

e−1
i=0 aiΠ

i = 0 where ai ∈ pv, a0 a uniformizer of Kv.
We begin with the identity OLw =OKv [Π]. In problem 9 of Problem Set 4 it is shown that for

any set A⊂OLw of representatives for the residue field λw, OLw =
{

∑
∞
i=0 aiΠ

i | ai ∈ A
}

. Under the
hypothesis that the extension is totally ramified, Lw and Kv have the same residue field, so we may
choose A ⊂ OKv , which shows that OKv [Π] is dense in OLw . But OKv [Π] ' (OKv)

e is compact, so
equal to its closure.

Finally, by Proposition 144 we have DLw/Kv =
(
eΠe−1 +∑

e−1
i=1 iaiΠ

i−1)OLw . Since Πe|ai we
see see that DLw/K =

(
Πe−1) if e is prime to p. If p|e then Πe|DLw/Kv . �

We now summarize the discussion so far.

THEOREM 152. Let L/K be a finite extension of number fields. For each prime PCOL, say
lying over pCOK , we have vP

(
DL/K

)
≥ e(P/p)−1 with equality unless the extension is wildly

ramified at P, at which point the inequality is strict. In particular
(1) P | DL/K iff P is ramified.
(2) There are finitely many ramified primes.

PROOF. The first claim is the Proposition; the last claim follows from Corollary 145. �

3.3. The Discriminant

3.3.1. General extensions of fields. Let L/K be a finite separable extension of fields. Let
Ω = {ωi}n

i=1 ⊂ L be a K-basis, let
{

σ j
}n

i=1 = HomK (L, K̄), and set

DL/K (Ω) =
(

det
(
σ jωi

)
i, j

)2
.
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This is independent of the ordering of the basis and the set of embeddings. It is therefore Gal(Ksep/K)-
invariant and hence an element of K (we will verify momentarily that it is non-zero).

Let A∈Mn(K̄) be the matrix ai j =σ j(ωi). Then DL/K (Ω)= (det(A))2. Suppose Ω′=
{

ω ′k
}n

k=1
is another basis associated to the matrix B where bk j = σ jω

′
k, and let S ∈ GLn(K) be the change-

of-basis matrix given by ωi = ∑k sikω ′k. Then

ai j = σ jωi = σ j

(
∑
k

sikω
′
k

)
= ∑

k
sikσ jω

′
k = ∑

k
sikbk j ,

in other words
A = SB .

In particular,
DL/K(Ω) = (detS)2 DL/K(Ω

′)

and (once we prove DL/K(Ω) 6= 0) we can define a discrimimant DL/K ∈ K×/(K×)2. We also note
that if the two bases generate the same R-module for a subring R⊂ K then det(S) ∈ R× so we can
associate to free R-module generated by the basis a discriminant in K×/(R×)2.

EXERCISE 153 (PS6). For β ∈ L× we have

DL/K(βΩ) =
(
NL

Kβ
)2

DL/K(Ω)

LEMMA 154. Let Ω,Ω′ be two bases with associated matrices. Then (ABt)ik = TrL
K
(
ωiω

′
k

)
. In

particular, leeting Ω′ be the dual basis with respect to the trace form (always non-degenerate on a
separable extension) we have AB× = In so A is always invertible, and letting Ω′ = Ω instead gives

DL/K(Ω) = det
(
TrL

K(ωiω j)
)
.

We also relate our discriminant to a different point-of-view.

LEMMA 155. Suppose that L = K(α) and let
{

α j
}n

j=1 ⊂ K̄ be the Galois conjugates of α

(=the roots of its minimal polynomial). Then for the basis ωi = α i (0≤ i≤ n−1) we have

DL/K(Ω) = ∏
j<k

(
α j−αk

)2
= ∆( f )

where f = ∏
n
j=1
(
x−α j

)
is the minimal polynomial of α .

PROOF. Let α j = σ j(α). Then ai j = σ j(α
i) = α i

j so by the Vandermonde determinant,

det(A) = ∏
j<k

(
α j−αk

)
and the claim follows. �

3.3.2. Number fields and p-adic fields. Assume now that L,K are either number fields or
fields complete with respect to a discrete valuation.

LEMMA-DEFINITION 156. Let a⊂ L be a fractional ideal. Then the OK-submodule K gener-
ated by

{
DL/K(Ω) |Ω⊂ a is a K-basis of L

}
(denoted henceforth DL/K(a)) is a fractional ideal,

to be called the (relative) discriminant of f raka.
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PROOF. If Ω ⊂ OL then TrL
K
(
ωiω j

)
∈ OK so that DL/K(Ω) ∈ OK \ {0}, and we see that for

any non-zero aCOL, DL/K(a) is a non-zero ideal in OK . For general fractional ideals it remains

to observe that DL/K (βa) =
(
NL

K (β )
)2 DL/K (a) follows from Exercise 153. �

REMARK 157. By definition a⊂ b implies DL/K(a)⊂DL/K(b), that is b|a⇒DL/K(b)|DL/K(a).

EXERCISE 158 (PS6). Suppose a=⊕n
i=1OKωi happens to be a free OK-module (e.g. because

OK is a PID). Then DL/K(a) =
(
DL/K (Ω)

)
.

DEFINITION 159. The relative discriminant of L/K is the ideal DL/K = DL/K (OL).

COROLLARY 160. Let α ∈ OL be such that L = K(α). Then DL/K | (∆( f )) where f ∈ OK[x]
is the minimal polynomial of α .

PROPOSITION 161 (local-to-global). Let L/K be an extension of number fields and let v∈ |K|f.
Then the closure of DL/K in Ov is ∏w|v DLw/Kv .

PROOF. We first verify that in the identification

L⊗K Kv '
⊕
w|v

Lw

the closure of OL (under the diagonal embedding) is OL =
⊕

w|vOLw . Indeed the closure of OLin
each Lw isOLw so we just need to show surjectivity. For this use thatOS

L is dense in
⊕

w|v Lw where
S = {w : w|v}. But any element of OS

L can be approximated by an element of OL modulu a large
power of the product of primes in S.

Now if Ωw ⊂ OLw are Kv-bases of th Lw let Ω = ∪w|vΩw be the resulting Kv-basis of
⊕

w|v Lw

and let Ω′ consists of elements ofOL approximating those of Ω. Then they are linearly independent
(determinant is continuous) and DL/K (Ω′) is close to

∏
w|v

DLw/Kv (Ωw) .

It follows that the closure of DL/K contains ∏w|v DLw/Kv .
Conversely, let Ω ⊂ OL be any K-basis of L. We need to show that DL/K(Ω) ∈ ∏w|v DLw/Kv .

For this note that its image in L⊗K Kv '
⊕

w|v Lw is a Kv-basis, and the claim follows from the
following: �

LEMMA 162. Let A ∈Mn(Kv). Then there is g ∈ GLn(OKv) such that gA is diagonal. Equiva-

lently, in a finite-dimentional Kv-vectorspace V given two bases Ω = {ωi}n
i=1 and Ω′ =

{
ω ′j

}n

j=1

there is g ∈ GLn(OKv) such that ∑ j gi jω
′
j = ϖ

di
v ωi.

PROOF. Do Gaussian elimination, selecting as a pivot in each column an element of maximal
absolute value. �

THEOREM 163 (Different and discriminant). DL/K = NL
KDL/K .

PROOF. Localizing and completing it is enough to consider the case where L,K are complete
wrt discrete valuations. Since OK is a PID we have
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OL =
n⊕

i=1

OKωi

for a basis Ω which means both that DL/K =
(
DL/K (Ω)

)
and that the complementary module is

CL/K =
⊕n

i=1OKω∗i where Ω∗ = {ω∗i } is the basis dual to Ω.
We now compute the discriminant of the complementary module in two different ways. On the

one hand, by Lemma 154 we have DL/K (Ω)DL/K (Ω∗) = 1 (the relevant matrices are inverse!).
On the other hand, CL/K is a principal fractional ideal, say of the form

(
β−1) for β ∈ OL. Then

DL/K
(
CL/K

)
= NL

K(β
−1)2DL/K . Combining both identities we get

D−1
L/K =

(
NL

KDL/K
)−2

DL/K ,

that is (
DL/K

)2
=
(
NL

KDL/K
)2

.

Since the group of fractional ideals is torsion-free the claim follows. �

COROLLARY 164. In a tower M : L : K, DM/K = D[M:L]
L/K NL

KDM/L.

3.3.3. On calculating the discriminat. WhenOL =OK[α], DL/K =D(α)=∏i< j
(
αi−α j

)2
=

D( f ) where f is the minimal polynomial of α and αi are the conjugates. We note that in special
cases this can be calculated explicitely.

Indeed, D( f ) is a symmetric polynomial in the roots, hence a polynomial in the coefficients of
f . This polynomial is homogenous of degree n(n−1) in the roots, so if f is a fewnominal explicit
formulas can be written down. For example:

PROPOSITION 165 (Discriminant formulas).

(1) Let f (x) = xn +b. Then D( f ) = (−1)
n(n−1)

2 nn ·bn−1.
(2) Let f (x) = xn +ax+b. Then

D( f ) = (−1)
n(n−1)

2

[
nnbn−1 +(−1)n−1(n−1)(n−1)an

]
.

REMARK 166. Note that the only homogenous polynomials of degree n(n− 1) in the roots
have the form c1bn−1 + c2an so it remained to find the coefficients.

PROOF. PS6 �

COROLLARY 167. D(x3 +ax+b) =−
[
4a3 +27b2]

3.4. Example: Cyclotomic fields

Let ζn be a primitive root of unity of order n. Then Q(ζn) is the splitting field of xn−1, hence
Galois. There is an injection Gal(Q(ζn) : Q)→ (Z/nZ)× from the action on the primitive roots of
unity, hence the extension is Abelian and [Q(ζn) : Q]≤ φ(n) (Euler Totient).
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3.4.1. K =Q(ζn); n = pr, p prime.

PROPOSITION 168. [Q(ζn) : Q] = pr−1(p−1) = φ(pr), the extension is ramified only over p
where it is totally ramified and π = 1−ζpr is a prime element.

PROOF. Approach 1: Let Φpr(X) = X pr−1
X pr−1−1

= ∑
p−1
j=0 X jpr−1

. Then ζpr −1 is a root of Φpr(Y +

1) which is Eisenstein at p.

Approach 2:
1−ζ k

pr

1−ζpr
= ∑

k−1
j=0 ζ

j
pr ∈ Z[ζpr ]. If (p,k) = 1 then ζ k

pr is also a primtive root of unity

and therefore
(

1−ζ k
pr

1−ζpr

)−1

∈ Z[ζ k
pr ] = Z [ζpr ]. It follows that these ratios are all units (“cyclotomic

units”) and hence that 1−ζ k
pr are all associate in Z[ζpr ]. In particular, πϕ(pr)∼∏k∈(Z/pZ)×

(
1−ζ k

pr

)
=

Φpr(1) = p. It follows that the ramification index of (π) is at least φ(pr), so [Q(ζn) : Q] = φ(pr),
and the extension is totally ramified at p, with a unique prime π over it.

Since ζn satisfies xn−1 whose derivative is nxn−1, the only ramified prime is p. �

LEMMA 169. The ring of integers of Q(ζn) is Z[ζn].

PROOF. Consider the orders O = Z[ζn] ⊂ OK . Now OK/πOK = Z/pZ since the extension
is totally ramified. It follows that OK = Z+ πOK = O+ πOK . Multiplying by π we see that
πOK = πO+π2OK soOK =O+πO+π2OK =O+π2OK . Continuing by induction we see that
OK =O+πkOK for all k.

Approach 1: Since D(O) is a power of p, [OK :O] is a power of p. Therefore if we pass to
the π-adic completion, this index will remain the same. But taking k→ ∞, shows that the π-adic
completions are the same.

Approach 2: We have OK = O+ pkOK for all k since pk is a power of π up to a unit. Since
[OK :O] is a power of p, for k large enough we have pkOK ⊂O. �

COROLLARY 170. The discrmimant of Q(ζn) is ±ppr−1(rp−r−1).

PROOF. PS6 �

3.4.2. K = Q(ζn); n = ∏
s
i=1 pri

i . Since (Xn−1)′ = nXn−1, the different divides n and hence
only primes dividing n might ramify. Since the extension contains Q(ζpi), we see that all the pi do
ramify.

Let Ki =Q
(

ζpr1
1
, . . . ,ζpri

i

)
, K = Ks (K0 =Q). Then for 1≤ i≤ s, pi is unramified in Ki−1, so

the ramification index of pi in Ki/Ki−1 is the same as in Ki/Q which is at least that of Q(ζpr)/Q,
which is totally ramified at p. It follows that [Ki : Ki−1] = φ(pri

i ) and hence that [Q(ζn) : Q] = φ(n)
for all n.

THEOREM 171. OK = Z[ζn].

PROOF. Using the same induction scheme, suppose that pr‖n and let n = prm. Then the ring
of integers of M = Q(ζm) is OM = Z[ζm]. The rational prime p is unramified there, splitting as a
product pOM = ∏ j p j. The polynomial Φpr(Y +1) has constant term p and we see Φpr(Y +1) is
Eisenstein over all the p j (in particular, irreducible). For each j we have a unique prime P j of OK
above p j. Now π|p so π is a product of the P j. From (π)e = (p) we get that π = ∏ jP j and hence
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that
OK/πOK = ∏

j
OK/P j = ∏

j
OM/p j =OM/pOM .

The argument now proceeds as before. �

PROPOSITION 172. |DK|=
(

∏pr‖n p
rp−r−1

p−1

)φ(n)
= nφ(n)

∏p|n p
φ(n)
p−1

.

PROOF. PS6 �

What about the sign?

LEMMA 173 (Brill). Let K be a number field. Then the sign of DK is (−1)s where s is the
number of complex places.

PROOF. Fix an integral basis {ωi}n
i=1, n= [K : Q]. Let Ai j =σ j(ωi) where

{
σ j
}n

j=1 =HomQ(K,C).
Then Ā is obtained by exchanging σ j with σ̄ j, which involves exchanging s columns. It follows
that det Ā = (−1)s detA. It follows that DK = (detA)2 = (−1)s |detA|2. �

3.5. Everywhere unramified extensions

LEMMA 174. Let K be a field, f ∈ K[x]. Let ∆ = ∆( f ). Then any splitting field of f contains
K(
√

∆).

PROOF. Let {αi}n
i=1 be the roots of f in a splitting field L. Then ∆ = ∏i< j

(
αi−α j

)2 so√
∆ = ∏i< j

(
αi−α j

)
∈ L. �

LEMMA 175. Let f ∈ Z[x] be monic. Let L be the splitting field of f . Suppose that ∆ = ∆( f ) is
squarefree and let K =Q(

√
∆). Then L/K is everywhere unramified.
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CHAPTER 4

Geometry of Numbers

4.1. Lattices in Rn

DEFINITION 176. A lattice Λ < Rn is discrete and cocompat subgroup, equivalently a free
Z-submodule generating by a basis.

LEMMA 177. The two definitions are equivalent.

COROLLARY 178. (Of the proof of the Lemma) Let Λ=⊕iZvi. ThenF = {∑n
i=1 aivi | ai ∈ [0,1]}

is a bounded fundamental domain.

DEFINITION 179. The covolume of Λ is vol(F) = det(· · ·vi · · ·) =
√

det
(〈

vi,v j
〉)

i, j
.

PROPOSITION 180. #{λ ∈ Λ∩B(0,R)} ∼ volB(R)
vol(F) .

PROOF. The set
⋃

λ∈Λ∩B(0,R) (F +λ ) has volume #{λ ∈ Λ∩B(0,R)}vol(F) and its symmet-
ric difference with B(R) is contained in a spherical shell of radius R and constant thickness, hence
has volume O(R−1 vol(B(R))). �

COROLLARY 181. vol(F) is indpendent of the choice of F , and will be denoted vol(Rn/Λ) or
covol(Λ).

THEOREM 182 (Minkowski). Let Λ <Rn be a lattice (discrete and cocompat subgroup, equiv-
alently a free Z-submodule generating by a basis). Let X ⊂ Rn be convex, bounded and symmetic
aboud the origin. Suppose that vol(X)≥ 2n vol(Rn/Λ). Then there is 0 6= λ ∈ X ∩Λ.

PROOF. Suppose first that vol(X)> 2n vol(Rn/Λ). Assume by contradiction that X ∩Λ = {0}.
Then all translates of 1

2X are disjoint: if there are x,y ∈ X and a non-zero λ ∈ Λ such that 1
2x =

1
2y+λ then λ = 1

2x+ 1
2(−y) ∈ X by assumption. Now let r = diam(F) . Then for all R > 0,⋃

λ∈Λ∩B(0,R)

(
1
2

X +λ

)
⊂ B(0,R+ r) .

Since the union on the left is disjoint, we have

#{λ ∈ Λ∩B(0,R)} vol(X)

2n ≤ vol(BRn(R+ r)) .

But #{λ ∈ Λ∩B(0,R)} ∼ volB(R)
vol(Rn/Λ) and vol(B(R+ r))∼ vol(B(R)). It follows that, as R→ ∞,

vol(X)

2n vol(Rn/Λ)
vol(B(R))≤ (1+o(1))vol(B(R))

which is impossible.
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Now suppose that vol(X) = 2n vol(Rn/Λ). The set of lattice points in N1(X) = X +B(0,1) is
discrete and compact, hence finite. In particular there is ε > 0 such that Λ∩X = Λ∩Nε(X) 6= {0}
and we are done. �

4.2. Discriminant bounds

LEMMA 183. For a number field K the image of OK in K∞ is a lattice of covolume 2−s
√
|dK|.

REMARK 184. The lemma implicitely depends on the choice of inner product on K∞ made in
its proof.

PROOF. Let T ⊂ HomQ (K,C) be a set of representatives for the infinite places of K, say
T = TR t TC, and let ι : K → K∞ = ∏τ∈T Kτ be the embedding. We have seen (Theorem 122)
that ι induces an isomorphism K⊗QQ∞→ K∞, and in particular ι maps every Q-basis of K to an
R-basis of K∞. Since OK is the Z-span of an integral basis, it follows that its image is a lattice in
K∞. On K∞ we take the Hermitian product 〈(xτ) ,(yτ)〉= ∑

n
i=1 xτ ȳτ . Then for ωi,ω j ∈OK we have〈

ι(ωi), ι(ω j)
〉
= ∑τ∈T τ(ωi)τ̄(ω j). �

THEOREM 185. Let K be a number field. There are at most finitely many extensions of degree
n having a given discriminant.

PROOF. Can easily reduce to the case K = Q and counting extensions L such that i ∈ L (the
discriminant of L(i) diffes by a constant). Thus we are counting totally complex L. Fix an infinite
place v0 and let

X =
{
(xv) ∈ L∞ | |ℑxv0| ≤C

√
|D|, |ℜxv0|< 1, |xv|< 1v 6= v0

}
.

This is convex, symmetric about the origin, and has volume C′
√

D where C′ depends only on C,n.
Choosing C depending on n we can ensure the volume is more than 2n2−n/2

√
|D| ≥ 2n vol(L∞/OL)

and it follows that there is α ∈ OL ∩X . Then from NL
Q(α) ≥ 1 it follows that |α|v0

> 1. Hence
ℑαv0 6= 0 and all conjugates of α are distinct, so L =Q(α). But this means that the coefficients of
the min poly are bounded in terms of D,α . �

THEOREM 186. |dK|1/2 ≥ nn

n!

(
π

4

)s ≥ nn

n!

(
π

4

)n/2.

PROOF. Let

Xt =

{
(xv) ∈ K∞ |∑

v|∞
|xv| ≤ t

}
.

A calculation shows vol(Xt) = 2r (2π)s tn

n! . For tn = n!
( 4

π

)s√|dK| one has vol(Xt) = 2n2−s
√
|dK|

and hence Xt contains a non-zero lattice point α . Since

1≤
∣∣NK

Q(α)
∣∣= ∏

v|∞
|α|v ≤

1
nn

(
∑
v
|α|v

)n

=
tn

nn

the bound follows. �

COROLLARY 187 (Hermite). There are finitely many extensions of bounded disciminant.

-

COROLLARY 188 (Minkowski). Q has no unramified extensions.
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PROOF. By Stirling’s formula, n! ≤
√

2πnnn

en e
1

12n , we have |dk| ≥ 1
2πn

(
πe2

4

)n
e−1/6n, which

grows exponentially with n. For n = 2 we see |dK|1/2 ≥ π

2 > 1 so dK > 1. �

4.3. Finiteness of the class group

A variant of the above proof will give:

THEOREM 189. Let CK = nn

n!

(
π

4

)s. Then every ideal class contains a representative of norm at
most C−1

K |dK|1/2.

PROOF. Let aCOK . Since Na = [OK : a], the image of a in K∞ is a lattice of covolume
Na2−s |dK|1/2. As in the proof of Theorem 186 there is non-zero α ∈ a such ∑v|∞ |α|v ≤ t where
tn = n!

( 4
π

)s
Na
√
|dK|, and again we have∣∣NK

Q(α)
∣∣≤ tn

nn =CKNa |dK|1/2 .

Let b be the ideal such that (α) = ab. Then
∣∣∣NK

Q(α)
∣∣∣= N(α) = NaNb so

Nb≤CK |dK|1/2 .

Note that b is in the class of a−1. �

4.4. The Unit Theorem

Let K be a number field. We restrict the injectionOK ↪→ K∞ to the unitsO×K , and take absolute
values. We obtain a multiplicative map

O×K → ∏
v|∞

R×>0

ε 7→ (‖ε‖v)v|∞ .

It is natural to compose with the logarithm function and obtain a map

log: O×K → Rr+s

ε 7→ (log‖ε‖v)v|∞ .

In view of the product formula ∏v ‖ε‖v = 1, we have for ε ∈ O×K that ∑v|∞ log‖ε‖v = 0. Thus the
image of O×K lies in the obvious hyperplane.

LEMMA 190. The image of O×K in Rr+s is discrete.

PROOF. Suppose ‖ε‖v≤ 2 for all v. This bounds the coefficients of the polynomial ∏σ∈HomQ(K,C) (x−σ(α)),
which are rational integers. It follows that a neighbourhood of the identity in ∏vR×>0 contains only
finitely many elements of the image. �

COROLLARY 191. The image of log is isomorphic to Zt for some t ≤ r+ s−1.

LEMMA 192 (Kronecker). Let α ∈OQ be non-zero and have all its conjugates in the unit disc.
Then z is a root of unity.
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PROOF. Let K =Q(α), n= [K : Q]. Then for every β ∈OK, fβ (x)=∏σ∈HomQ(K,C) (x−σ(β ))∈
Z[x]. If., furthermore, |σ(β )| ≤ 1 for all σ then the coefficients of fβ are On(1). It follows that
there are only finitely many such β . But

{
αk}

k≥1 all have this property. By the pigeon-hole
principle αk = α` for some k 6= l so α is a root of unity. �

COROLLARY 193. The kernel of log consists of the roots of unity.

It follows that O×K ' µn×Zt .

THEOREM 194 (Dirichlet’s Unit Theorem). O×K ' µn×Zr+s−1.

This follows from Lemmata 196 and 197 below.

EXAMPLE 195. Some cases

(1) K =Q, r = 1, s = 0, Z× = {±1}.
(2) K =Q(

√
−d), r = 0, s = 1, O×K is the group of roots of unity (see PS1 for classification)

(3) K =Q(
√

2). r = 2, s = 0, O×K =
{
±
(

1+
√

2
)n}

n∈Z
.

(4) K =Q(
√

d), Pell’s equation.

(5) K =Q( 3
√

2), r = 1, s = 1, O×K =
{
±
(

1− 3
√

2
)n}

n∈Z
.

LEMMA 196. For each v0|∞ there is ε ∈ O×K such that |ε|v < 1 for all infinite v 6= v0.

PROOF. Fix M > 2−s
√
|dK|. Identifying K∞ =Rn, consider the rectangle Xε =

[
Mε−(n−1),Mε−(n−1)

]
×

[−ε,ε]n−1 of volume 2nM. For all ε we have Xε ∩OK 6= {0}. The norm of α ∈ Xε ∩OK is a ratio-
nal integer, bounded in terms of M. In particular, there are at most finitely many norms occuring.
There are finitely many ideals of a given norm, so the set of ideals (α) occuring is finite. In partic-
ular, there is an infinite sequence αi such that αi ∈ Xεi with εi→ 0 and (αi) all equal. Then αiα

−1
j

is a unit for all i. Furthermore, fixing j and letting i→ ∞ gives the desired unit. �

LEMMA 197. Let X =
(
xi j
)
∈Mn(R) be a matrix with xi j < 0 for i 6= j, xii > 0. Suppose that

X

1
...
1

= 0. Then rkX ≥ n−1.

PROOF. Suppose the first r = n− 1 columns are dependent, say ∑
r
j=1 c jxi j = 0 holds for all i

where the c j are not all zero. Wlog suppose that c1 > 0 is largest in absolute value among the c j.
Then x11 =−∑

n
j=2 x1, j ≥−∑

r
j=2 x1, j. Multiplying by c1 we find

c1x11 ≥−
r

∑
j=2

c1x1, j ≥−
r

∑
j=2

c jx1, j ,

with strict inequality unless the c j are all equal. So unless the c j are all equal we have

r

∑
j=1

c jx1, j > 0 ,
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a contradiction. But if all the c j are equal and positive then
r

∑
j=1

c jxn, j > 0 ,

a contradiction. �

DEFINITION 198. The regulator of K, denoted RK , is the covolume of O×K in the hyperplane
Rr+s−1. Equivalently,

RK = |det(log |ui|v)|
where v runs over the infinite places and ui runs over a basis for O×K modulu the roots of unity.
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CHAPTER 5

Analytic Theory: L-functions

5.1. Counting via complex analysis: Smooth cutoffs and Dirichlet Series

In this section we’ll answer problems like: how many ideals (prime ideals) are there of norm
at most X?

REMARK 199. Note that due to units, counting integers of norm at most X doesn’t make
sense. Counting integers modulu units amounts to counting principal ideals, and the techniques
we’ll discuss apply to that case as well.

5.1.1. Smooth cutoffs. Let (an)n≥1 be any sequence. We’d like to estimate the summatory
function ∑n≤x an (say, count integers, or primes). We can express this in different ways:

∑
n≤X

an = ∑
n≥1

an1[0,X ](n) = ∑
n≥1

an1[0,1]

( n
X

)
.

It is now natural to spectrally expand the cutoff function using, that is use Fourier analysis. But
the sharp cutoff above is badly discountinuous, and hence behaves badly under Fourier expansion.
This is the cause of much technical difficulties. Instead, we shall use smooth cutoffs, replacing
1[0,1](x) with a smooth function, usually compactly supported. If an ≥ 0 we can obtain lower and
upper bounds by choosing ϕ ≡ 1 on [0,1−h], supported in [0,1+h], with h chosen in terms of
X (to optimize the error term). In many cases one can simplify the analysis by dyadic counting:
letting ϕ approximate the characteristic function of [1,2] and then summing dyadically.

5.1.2. The Mellin transform.

DEFINITION 200. The Mellin transform of a function ϕ defined on R×>0 = (0,∞) is ϕ̃(s) =∫
∞

0 ϕ(x)xs dx
x .

Note that dx
x is the Haar measure of R×>0.

REMARK 201. Under the isom exp: R+→ R×>0 this is the usual Fourier transform.

LEMMA 202. If ϕ ∈Cc ((0,∞)) then ϕ̃(s) is entire. If ϕ(s) decays at infinity at least at some
polynomial rate then ϕ̃ is holomorhic in some right half-plane.

FACT 203. Let ϕ be reasonable. Then for σ large enough (for proof see later discussion of
Fourier inversion),

(5.1.1) ϕ(x) =
1

2πi

∫
(σ)

ϕ̃(s)x−s ds
s
.
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5.1.3. Counting. Let ϕ(x) be a smooth bump function. We’d like to estimate the smooth sum
∑n≥1 anϕ

( n
X

)
. Using the Mellin inversion formula (5.1.1)

∑
n≥1

anϕ

( n
X

)
=

1
2πi ∑

n≥1
an

∫
(σ)

( n
X

)−s
ϕ̃(s)

ds
s

=
1

2πi

∫
(σ)

D(s)ϕ̃(s)X s ds
s
.

where D(s) = ∑n≥1 ann−s is the associated Dirichlet series. We can justify the exchange of sum-
mation and integration when σ is large enough so that D(s) converges absolutely and ϕ̃(s) decays
by the smoothness of ϕ . Now suppose that ϕ̃(s) and D(s) continue meromorphically to the left.
We can then shift the contour, gaining since the term X s (with constant absolute value Xσ ) will
become smaller. We can do this as long as D(s) grows polynomially in vertical strips. When we
do this we will pick up contribution from poles. The conclusion is:

∑
n≥1

anϕ

( n
X

)
= ∑

σ ′<ℜρ<σ

Xρ Ress=ρ

(
D(s)ϕ̃(s)

1
s

)
+

1
2πi

∫
(σ ′)

D(s)ϕ̃(s)X s ds
s
.

Taking ϕ compactly supported away from 0,ϕ̃ is entire (and decays in the vertical direction) and
we can write this as

∑
n≥1

anϕ

( n
X

)
= ∑

σ ′<ℜρ<σ

ϕ̃(ρ)Xρ Ress=ρ

(
D(s)

1
s

)
+O

(
Xσ ′
)

5.1.4. Example: Counting integers. Consider first the case where an = 1 so that ∑n≤x an is
simply [x]. Then D(s) = ∑n≥1 n−s = ζ (s) continues to C with only a simple pole at s = 1 (where
the residue is 1). We get

∞

∑
n=1

ϕ

( n
X

)
= ϕ̃(1)− ϕ̃(0)ζ (0)+ small .

Note that ϕ̃(1) =
∫

∞

0 ϕ(x)dx, as expected.

5.1.5. Example: Counting integers mod 4. Let χ4(n)=


1 n≡ 1(4)
−1 n≡−1(4)
0 2|n

, I4(n)=

{
1 n odd
0 n even

.

Then

I4 +χ4

2
(n) =

{
1 n≡ 1(4)
0 otherwise

I4−χ4

2
(n) =

{
1 n≡−1(4)
0 otherwise

.

What is ∑n≥1 I4(n)n−s? For this note that

∑
even n≥1

n−s = ∑
m≥1

(2m)−s = 2−s
ζ (s)
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so that
∞

∑
n=1

I4(n)n−s =
(
1−2−s)

ζ (s) .

It follows that the counts we want can be done using the Dirichlet series

D(s) =
1
2
((

1−2−s)
ζ (s)±L(s; χ4)

)
where L(s; χ4) =∑n≥1 χ4(n)n−s is Dirichlet’s L-function. The latter function continues to an entire
function (no poles!) so we find

∑
n≡±1(4)

ϕ

( n
X

)
=

1
2

(
1
2

ϕ̃(1)X± ϕ̃(0)L(0; χ4)

)
+ small

(note that 1− 2−0 = 0). In other words, about a quarter of all integers are in the relevant residue
class.

5.1.6. Counting primes: Riemann’s Zeta function and Dirichlet’s L-function. This is the
key idea of Riemann’s 1859 memoir. Start with Euler’s observation that (in the region of absolute
convergence)

ζ (s) = ∏
p

(
1− p−s)−1

(note that the pole at s = 1 already shows there are infinitely many primes). It follows that

−ζ ′

ζ
(s) = ∑

n
Λ(n)n−s

where Λ(n) =

{
log p n = pe

0 otherwise
is the von Mangoldt function. The continuation of the Riemann

zetafunction applies to its logarithmic derivative again. The poles of the logarithmic derivatives
are at the zeros and poles of the function, and the residue is the order of zero/pole, so we get the
explicit formula

∞

∑
n=1

Λ(n)ϕ
( n

X

)
= ϕ̃(1)X− ∑

ζ (ρ)=0
ϕ̃(ρ)

Xρ

ρ
+ small .

Problem of course is bounding contribution from t1he zeroes. Note that there are infinitely
many, so need to be careful, but the vertical decay of ϕ̃ ensures absolute convergence. On the
Riemann hypothesis that ℜ(ρ) = 1

2 we get ∑p≤x log p = x+O(
√

x logx).

5.1.7. Primes congruent to ±1 mod 4. A Dirichlet Series is a series of the form D(s) =
∑

∞
n=1 ann−s. These are generating series for arithmetical functions, where multiplication of series

corresponds to Dirichlet convolution of arithmetical functions.

LEMMA 204. D(s) converges somewhere iff {an} grows at most polynomially. In that case the
region of absolute convergence is a half-plane (either open or closed). The domain of convergence
is an open half-plane, with the convergence uniform in any properly contained half-plane.

47



Similarly, note that χ4(mn) = χ4(m)χ4(n) and that |χ4(n)| ≤ 1 for all n, from which it is easy to
show that L(s; χ4) converges absolutely for ℜ(s)> 1 and that in that region we have the absolutely
convergent Euler product representation

L(s; χ4) = ∏
p

(
1−χ4(p)p−s)−1

and hence
,

−L′(s; χ4)

L(s; χ4)
=

∞

∑
n=1

Λ(n)χ4(n)n−s

so that
∞

∑
n=1

Λ(n)ϕ
( n

X

)
= ∑

ρ

Ress=ρ

[
−ζ ′(s)

ζ (s)

]
ϕ̃(ρ)

ρ
Xρ − ζ ′(0)

ζ (0)
ϕ̃(0)

and

∑
n≡±1(4)

Λ(n)ϕ
( n

X

)
=

1
2

[
∑
ρ

Ress=ρ

[
−ζ ′(s)

ζ (s)

]
ϕ̃(ρ)

ρ
Xρ − ζ ′(0)

ζ (0)
ϕ̃(0)

]

± 1
2

[
∑
ρ

Ress=ρ

[
−L′(s; χ4)

L(s; χ4)

]
ϕ̃(ρ)

ρ
Xρ − L′(0; χ4)

L(0; χ4)
ϕ̃(0)

]
.

Using the argument principle as before gives

∑
n≡±1(4)

Λ(n)ϕ
( n

X

)
=

1
2

ϕ̃(1)X− 1
2 ∑

ζ (ρ)=0

ϕ̃(ρ)

ρ
Xρ∓ 1

2 ∑
L(ρ;χ4)=0

ϕ̃(ρ)

ρ
Xρ− 1

2
ζ ′(0)
ζ (0)

ϕ̃(0)∓ 1
2

L′(0; χ4)

L(0; χ4)
ϕ̃(0) .

By estimating the terms invovling the roots (using the decay of ϕ̃) it is possible to deduce

THEOREM 205 (PNT; de la Valee-Pussin, Hadamard). ∑
∞
n=1 Λ(n)ϕ

( n
X

)
∼ ϕ̃(1)X.

THEOREM 206 (PNT in AP; de la Valee-Pussin, Hadamard). If (a,q)= 1 then ∑n≡a(q)Λ(n)ϕ
( n

X

)
∼

1
φ(q) ϕ̃(1)X.

5.2. Fourier Analysis and Poisson Sum

5.2.1. Analysis on R/Z. For f ∈C∞(R/Z) and k ∈ Z let

f̂ (k) =
∫
R/Z

f (x)e−2πikx dx .

Then (integration by parts) f̂ (k) decay faster than any polynomial and it follows that

∑
k∈Z

f̂ (k)e2πikx

and all its derivatives converge uniformly. In fact we have the Fourier Inversion Formula

f (x) = ∑
k∈Z

f̂ (k)e2πikx

with convergence in C∞(R/Z).
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Letting e(z) = e2πiz denote the standard characters, we note that the Fourier variables k actually
vary in the dual lattice Z∗. For example, if f is defined on rZ then the Fourier variables vary in
k ∈ 1

rZ.

5.2.2. Analysis on Rn/Λ. Now let Λ<Rn be a lattice, and let Λ∗=
{

k ∈ (Rn)∗ | ∀x ∈ Λ : k · x ∈ Z
}

be the dual lattice. Again for f ∈C∞ (Rn/Λ) we define the Fourier coefficients by

f̂ (k) =
1

vol(Rn/Λ)

∫
Rn/Λ

f (x)e(−kx)dx

and then again the coefficients decay faster than any polynomial and we have Fourier inversion as

f (x) = ∑
k∈Λ∗

f̂ (k)e(kx) .

One proof is to handle Rn/Zn = (R/Z)n using the density of (C∞(R/Z)⊗n in C∞ (Rn/Zn) and
then apply an automorphism to get the theory for a geenral lattice.

5.2.3. Poisson sum. Call f ∈ C∞(Rn) a Schwartz function if f and all its derivatives decay
faster than any power law. Write S(Rn) for the set of such functions. For f ∈ S(Rn) and k ∈ (Rn)∗

set

f̂ (k) =
∫
Rn

f (x)e(−kx)dx .

Smoothness of f implies (via integrating by parts) that the f̂ decay. Decay of f implies (by
differentiating under the integral sign) that f̂ are differentiable. Combining the arguments shows
that f̂ ∈ S

(
(Rn)∗

)
. In fact Fourier inversion holds here but we won’t need this.

For ϕ ∈ S (Rn) and a lattice Λ < Rn set Φ(x) = ∑λ∈Λ ϕ(x+λ ). This series (and all its deriva-
tives) converges uniformly so Φ ∈C∞ (Rn/Λ). We may therefore apply Fourier inversion to get

Φ(x) = ∑
k∈Λ∗

Φ̂(k)e(kx) .

Now set x = 0 to get

∑
x∈Λ

ϕ(x) = ∑
k∈Λ∗

Φ̂(k) .

To compute the terms on the right, let F ⊂ Rn be a compact fundamental domain for Λ. Then

Φ̂(k) =
1

vol(Rn/Λ)

∫
Rn/Λ

Φ(x)e(−kx)dx

=
1

vol(Rn/Λ)

∫
F

(
∑

λ∈Λ

ϕ(x+λ )

)
e(−kx)dx

=
1

vol(Rn/Λ)

∫
F

(
∑

λ∈Λ

ϕ(x+λ )e(−k(x+λ ))

)
dx
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since k ∈ Λ∗. We now exchange summation and integration (justified by putting absolute values
and redoing the calculation below) so

Φ̂(k) =
1

vol(Rn/Λ) ∑
λ∈Λ

∫
F

ϕ(x+λ )e(−k(x+λ ))dx

=
1

vol(Rn/Λ) ∑
λ∈Λ

∫
F+λ

ϕ(x)e(−kx)dx

=
1

vol(Rn/Λ)

∫
Rn

ϕ(x)e(−kx)dx

=
1

vol(Rn/Λ)
ϕ̂(k) .

We have proved

PROPOSITION 207 (Poisson Summation Formua). For ϕ ∈ S(Rn) and a lattice Λ < Rn,

∑
x∈Λ

ϕ(x) =
1

vol(Rn/Λ) ∑
k∈Λ∗

ϕ̂(k) .

5.3. Analytical continuation of the Riemann zetafunction

For ϕ(x) ∈ S(R) and r > 0 set ϕ(rZ) def
= ∑n6=0 ϕ(rn) = (∑x∈rZϕ(x))−ϕ(0). Now define the

zeta-integral

Z(ϕ;s) =
∫

∞

0
ϕ(rZ)rs dr

r
.

REMARK 208. Note that we may assume wlog that Φ(r) is even, so we may consider this an
integral on R×/Z×.

LEMMA 209. The sum defining ϕ(rZ) converges locally uniformly absolutely (in particular
this function is continuous), decays faster than any polynomial as r→ ∞ and satisfies ϕ(rZ) =
O(r−1).

PROOF. Let N be even, and let C be such that|ϕ(x)| ≤ C
1+xN for all x ∈ R. Then∣∣∣∣∣ ∞

∑
n=1

ϕ(rn)

∣∣∣∣∣ ≤
∫

∞

0

C
1+(rx)N dx

=

(∫
∞

0

C dx
1+ xN

)
r−N .

It follows that the sum conveges absolutely for |r| ≥ r0 and that it decays faster than any polyno-
mial. For r small break the sum up into |n| ≤ r−1 and |n|> r−1. �

PROPOSITION 210. The zeta-integrals converge uniformly absolutely for ℜ(s)≥ σ > 1.

PROOF. We have
∫ 1

0 |ϕ(rZ)rs| dr
r �

∫ 1
0 r−1rσ dr

r =σ−1 since σ−2>−1, and
∫

∞

1 |ϕ(rZ)rs| dr
r �∫

∞

1 r−Nrσ dr
r = N−σ if N > σ . �
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Now for ℜs > 1 we have:

Z(ϕ;s) =
∫

∞

0
ϕ(rZ)rs dr

r∫
∞

1
ϕ(rZ)rs dr

r
+
∫ 1

0

[
∑
n∈Z

ϕ(rn)

]
rs dr

r
−ϕ(0)

∫ 1

0
rs dr

r∫
∞

1
ϕ(rZ)rs dr

r
− ϕ(0)

s
+
∫ 1

0

[
∑
n∈Z

ϕ̂(r−1n)

]
rs dr

r∫
∞

1
ϕ(rZ)rs dr

r
− ϕ(0)

s
+
∫

∞

1

[
∑
n∈Z

ϕ̂(rn)

]
r1−s dr

r∫
∞

1
ϕ(rZ)rs dr

r
− ϕ(0)

s
+
∫

∞

1
ϕ̂(rZ)r1−s dr

r
− ϕ̂(0)

1− s
.

The proof of the Proposition shows that
∫

∞

1 ϕ(rZ)rs dr
r defines an entire function. We have thus

shown:

PROPOSITION 211. For all ϕ ∈ S(R), Z(ϕ;s) extends to a meromorphic function with poles
at most at s = 0,1 and satisfies the functional equation

Z(ϕ;s) = Z(ϕ̂;1− s) .

Suppose now that ϕ is even. Then for ℜ(s)> 1,

Z(ϕ;s) = 2
∫

∞

0

[
∞

∑
n=1

ϕ(rn)

]
rs dr

r

= 2
∞

∑
n=1

∫
∞

0
ϕ(rn)rs dr

r

= 2
(∫

∞

0
ϕ(r)rs dr

r

)[
∞

∑
n=1

n−s

]
.

Choose first ϕ ∈ C∞
c
(
R×>0

)
. Then

∫
∞

0 ϕ(r)rs dr
r converges for all s and hence defines an entire

function. It follows that
∞

∑
n=1

n−s =
Z(ϕ;s)

2
∫

∞

0 ϕ(r)rs dr
r

gives a meromorphic continuation of ζ (s).
Next, make the specific choice ϕ(x) = e−πx2

. In this case 2
∫

∞

0 ϕ(r)rs dr
r = 2

∫
∞

0 e−πr2
rs dr

r =∫
∞

0 e−t ( t
π

) s−1
2 π−

1
2 dt√

t = π−
s
2 Γ
( s

2

)
. Writing ξ (s) = Z(e−πx2

;s) = π−
s
2 Γ
( s

2

)
ζ (s) we find that ξ (s)

extends to an entire function with poles at s = 0,1 where the residues are −1,1 respectively. Since
ϕ̂ = ϕ we also obtain the functional equation

ξ (s) = ξ (1− s) .

Finally, since ΓR(s) = π−
s
2 Γ
( s

2

)
is everywhere non-vanishing and has a simple pole at s = 0,

ζ (s) has a pole at s = 1. From the formula above we see that Z(ϕ;s) is bounded in vertical strips
(away from the poles), so in particular this holds for the completed zetafunction ξ (s).
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5.4. The Dedekind Zetafunction

5.4.1. Preliminaries. Fix a number field K of degree n = [K : Q]. Suppose K has r1 (resp. r2)
real (resp. complex) places so that r1 +2r2 = n.

Let K∞ =
⊕

v|∞ Kv be the archimedean completion in which OK is a lattice. Write CK/Q
for the complementary module, dK for the absolute discriminant and write V for the covolume
vol(K∞/OK) = 2−r2

√
|dK| as computed in Lemma 183.

Let K1
∞ = {r ∈ K×∞ | ‖r‖= 1} , and note that K1

∞ contains the image of the units O×K . Recalling
the map log: K×∞ → Rr1+r2 from Section 4.4 we showed there that log

(
O×K
)

is a lattice hyper-
plane log

(
K1

∞

)
, and defined the regulator RK to be the covolume vol

(
log
(
K1

∞

)
/ log

(
O×K
))

. Since

Ker log =
{
(rv)v|∞ | ∀v : |rv|= 1

}
' {±1}r1 (R/2πZ)r2 is compact we see that K1

∞/O×K is compact
as well.

We now record two volume computations we shall need later:

LEMMA 212. Let c⊂ K be a fractional ideal. Then vol(K∞/c) = Nc ·V = 2−r2Nc
√
|dK|.

LEMMA 213. W = vol
(
K1

∞/OK
)
= 1

w2r1(2π)r2RK where w = #
(
O×K
)

tors is the numebr of roots
of unity in K.

PROOF. We verified in Corollary 193 that Ker log∩O×K is exactly the group of roots of unity.
�

5.4.2. Absolute convergence.

DEFINITION 214. The Dedekind zetafunction of K is

ζK(s) = ∑
aCOK

(Na)−s .

LEMMA 215 (Euler product). The series above converges absolutely in the half-plane ℜ(s)> 1
where we also have

ζK(s) = ∏
p prime

(
1−Np−s)−1

.

PROOF. Taking the logarithm, we need to study

∑
v<∞

∞

∑
m=1

1
m

q−ms
v .

Now for each rational prime p there are at most n = [K : Q] primes p|p and these have qv = p fv . It
follows that ∣∣∣∣∣∑v<∞

∞

∑
m=1

1
m

q−ms
v

∣∣∣∣∣≤ n ∑
p<∞

∞

∑
m=1

1
m

p−mσ

which converges for σ > 1. We conclude that ∑v<∞ ∑
∞
m=1

1
mq−ms

v converges absoltuely for ℜ(s)>
1; exponentiating it follows that the Euler product converges for ℜ(s) > 1 and using unique fac-
torization it follows that the Dedekind zetarfunction converges as well.

More generally, let χ : Cl(K)→ C×be a character of the class group. We will then consider
the L-function

L(s; χ) = ∑
aCOK

χ(a)(Na)−s
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which by the same reasoning converges absolutely in ℜ(s)> 1 and admits the Euler product

L(s; χ) = ∏
p<∞

(
1−χ(p)Np−s)−1

.

�

5.4.3. Analytical continuation: single ideal class. For an ideal class I let

ζK(s;I) = ∑
a∈C

Na−s .

Fix a representative cCOK of the inverse class. Then for each a ∈ C, ac is a principal ideal
represented by an element α ∈ c, and the converse also holds modulu units. It follows that

ζK(s;I) = ∑
α∈(c\{0})/O×K

(
N
(
αc−1))−s

or equivalently

Nc−s
ζK(s;I) = ∑

α∈(c\{0})/O×K

(Nα)−s .

Now let ϕ ∈ S(K∞) be a test function. For r ∈ K×∞ and a fractional ideal c we set

ϕ(rc) = ∑
α∈c

ϕ(rα)

(multiplication in K∞!). Note that for any ε ∈ O×K we have ϕ(εrc) = ϕ (r(εc)) = ϕ(rc). It follows
that the function r 7→ ϕ(rc) is in fact defined on O×K \K×∞ and we set

Z(s;c;ϕ) =
∫
O×K \K

×
∞

ϕ (rc)‖r‖s d×r .

Note that replacing ϕ(x) with ϕ(εx) with |εv|v = 1 for all v does not change the integral, so after
averaging we may assume that ϕ(x) only depends on the vector of absolute values (|xv|v)v|∞.

DEFINITION 216. For ϕ ∈ S(K∞) and s ∈ C write ϕ̃(s) =
∫

K×∞ ϕ(r)‖r‖s d×r .

Note that this converges if ℜ(s)> 1 (then ‖r‖s d×r = ‖r‖s−1 dr and the difference between K×∞
and K∞ is a set of measure zero) and that for ϕ ∈C∞

c (K
×
∞ ) the function ϕ̃(s) is entire.

LEMMA 217. The zeta-integral above converges absolutely for ℜ(s)> 1 where we have

Z(s;c;ϕ) = (Nc)−s
ζ (s;I) ϕ̃(s) .
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PROOF. It suffices to consider the case of ϕ real-valued and non-negative and s positive and
real, where we may change the order of summation and integration to get:

Z(s;c;ϕ) =
∫
O×K \K

×
∞

ϕ (rc)‖r‖s d×r

=
∫
O×K \K

×
∞

∑
α∈c\{0}

ϕ (rα)‖r‖s d×r

= ∑
α∈c\{0}

∫
O×K \K

×
∞

ϕ (rα)‖r‖s d×r

= ∑
α∈c\{0}/O×K

∫
K×∞

ϕ (rα)‖r‖s d×r

= ∑
α∈c\{0}/O×K

|Nα|−s
∫

K×∞
ϕ (rα)‖rα‖s d×r

= (Nc)−s
ζ (s;I)

∫
K×∞

ϕ (r)‖r‖s d×r .

Finally, the set of non-invertible points in K∞ has measure zero, so we have∫
K×∞

ϕ (r)‖r‖s d×r =
∫

K∞

ϕ(r)‖r‖s−1 dr

which converges absoltuely for ℜ(s)> 1. �

For the analytical continuation we investigate the domain of integration with more care. We
haveO×K \K×∞ '

(
O×K \K1

∞

)
×R>0 so the only asymptotics for ϕ (rc) are in terms of ‖r‖, with rapid

decay as ‖r‖ → ∞. Accordingly we split the domain according to whether ‖r‖ is at least 1 or at
most 1. The rapid decay immediately gives:

LEMMA 218. Let A = {x ∈ K×∞ | ‖x‖ ≥ 1}/O×K ⊂ K×∞ /O×K . Then the partial integral∫
A

ϕ (rc)‖r‖s d×r

converges absolutely for all s ∈ C, where it defines an entire function which si boudned in vertical
strips.

PROPOSITION 219. In the domain of absolute convergence we have

Z(s;c;ϕ) =
∫

A
ϕ (rc)‖r‖s d×r+

1
Nc ·V

∫
A

ϕ̂
(
rc−1CK/Q

)
‖r‖1−s d×r

−ϕ(0)vol
(
O×K \K

1
∞

) 1
s
− ϕ̂(0)

Nc ·V
vol
(
O×K \K

1
∞

) 1
1− s

.

COROLLARY 220. Z (s;c;ϕ) extends to a meromorphic function on C bounded in vertical
strips, having at most simple poles at s = 0,1 with residues as determined above and (for even ϕ)
satisfies the functional equation

Z (s;c;ϕ) = Z
(
s;c−1CK/Q; ϕ̂

)
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PROOF. All the claims except for the functional equation are clear. For the last we apply the
Proposition to the right-hand-side to get

Z(1− s;c−1CK/Q; ϕ̂) =
∫

A
ϕ̂
(
rc−1CK/Q

)
‖r‖1−s d×r+

1
N
(
c−1CK/Q

)
·V

∫
A

ϕ

(
rcC−1

K/QCK/Q

)
‖r‖s d×r

−ϕ̂(0)vol
(
O×K \K

1
∞

) 1
1− s

− ϕ(0)
N
(
c−1CK/Q

)
·V

vol
(
O×K \K

1
∞

) 1
s
.

Noting that Nc−1 = 1
Nc and that 1

N(CK/Q)
= N(DK/Q) = |dK|= 22s2V 2 by Theorem 163 we get:

Z(1− s;c−1CK/Q; ϕ̂)

2−2r2
1

Nc ·V
Z(1− s;c−1CK/Q; ϕ̂) =

∫
A

ϕ

(
rcC−1

K/QCK/Q

)
‖r‖s d×r+

1 ∫
A

ϕ̂
(
rc−1CK/Q

)
‖r‖1−s d×r

−ϕ̂(0)vol
(
O×K \K

1
∞

) 1
1− s

− ϕ(0)
N
(
c−1CK/Q

)
·V

vol
(
O×K \K

1
∞

) 1
s
.

�

PROOF OF PROPOSITION 219. Let Ac be the complement {x ∈ K×∞ | ‖x‖ ≤ 1}. Then

Z(s;c;ϕ) =
∫

A
ϕ (rc)‖r‖s d×r+

∫
Ac

ϕ (rc)‖r‖s d×r ,

and we need to deal with the second integral. Completing the sum to the whole lattice we have
ϕ (rc) = ∑λ∈rcϕ(λ )−ϕ(0), and we would like to apply Poisson sum for which we need to deter-
mine the lattice dual to rc. By Lemma 142 the lattice dual to c is c−1CK/Q so the lattice dual to rc
is r−1c−1CK/Q and we conclude that:

ϕ (rc) =
1

vol(K∞/rc)
ϕ̂
(
r−1c−1CK/Q

)
−ϕ(0)+

1
vol(K∞/rc)

ϕ̂(0) .

�

Integrating on Ac we have:∫
Ac

ϕ(0)‖r‖s d×r = ϕ(0)vol
(
O×K \K

1
∞

)∫ 1

0
rsd×r = ϕ(0)vol

(
O×K \K

1
∞

) 1
s

and ∫
Ac

ϕ̂(0)
vol(K∞/rc)

‖r‖s d×r =
ϕ̂(0)
Nc ·V

vol
(
O×K \K

1
∞

)∫ 1

0
rs−1d×r

=
ϕ̂(0)
Nc ·V

vol
(
O×K \K

1
∞

) 1
s−1

and hence ∫
Ac

ϕ (rc)‖r‖s d×r =
1

Nc ·V

∫
Ac

ϕ̂
(
r−1c−1CK/Q

)
‖r‖s−1 d×r

−ϕ(0)vol
(
O×K \K

1
∞

) 1
s
− ϕ̂(0)

Nc ·V
vol
(
O×K \K

1
∞

) 1
1− s

.
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As before, changing variables r→ r−1 gives finally:

Z(s;c;ϕ) =
∫

A
ϕ (rc)‖r‖s d×r+

1
Nc ·V

∫
A

ϕ̂
(
rc−1CK/Q

)
‖r‖1−s d×r

−ϕ(0)vol
(
O×K \K

1
∞

) 1
s
− ϕ̂(0)

Nc ·V
vol
(
O×K \K

1
∞

) 1
1− s

.

COROLLARY 221. ζ (s;c) extends meromorphically as well.

PROOF. For any ϕ ∈ C∞
c (K

×
∞ ) the transform ϕ̃(s) is entire, and we can choose it to be non-

vanishing at any specific s. �

THEOREM 222. L(s; χ) continues meromorhpically to C, holomorphically unless χ = χ0, with
the functional equation ...
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