Math 538: Problem Set 2

Number fields and rings of integers

Let $\mathbb{Q} \subset K \subset L$ be number fields with rings of integers $\mathcal{O}_K, \mathcal{O}_L$ respectively.

- 1. (Integers and Units) Let $\alpha \in \mathcal{O}_L$.
 - (a) Show that $\operatorname{Tr}_{K}^{L} \alpha, N_{K}^{L} \alpha \in \mathcal{O}_{K}$.
 - (b) Show that $\alpha \in \mathcal{O}_L^{\times}$ is a unit iff $N_K^L \varepsilon \in \mathcal{O}_K^{\times}$.
- 2. (Ideals)
 - (a) Let $\alpha \in \mathcal{O}_L$. Show that $N_K^L \alpha \in \alpha \mathcal{O}_L$.
 - (b) Conclude that any non-zero ideal $\mathfrak{a} \triangleleft \mathcal{O}_L$ contains an ideal of the form $m\mathcal{O}_L, m \in \mathbb{Z} \setminus \{0\}$.
 - (c) Show that every non-zero ideal of \mathcal{O}_L is a free Abelian group of rank $n = [L : \mathbb{Q}]$.
- 3. (Dedekind) Let $K = \mathbb{Q}(\theta)$ where θ is a root of $f(x) = x^3 x^2 2x 8$.
 - (a) Show that f is irreducible over \mathbb{Q} .
 - (b) Verify that $\eta = \frac{\theta^2 + \theta}{2}$ satisfies $\eta^3 3\eta^2 10\eta 8 = 0$.
 - (c) Let $M = \mathbb{Z} \oplus \mathbb{Z} \theta \oplus \mathbb{Z} \eta$ and let $N = \mathbb{Z}[\theta] = \mathbb{Z} \oplus \mathbb{Z} \theta \oplus \mathbb{Z} \theta^2$. Show that $N \subset M \subset \mathcal{O}_K$ are orders and that [M:N] = 2.
 - (d) Use problem 7 to show the discriminant of N is $-4 \cdot 503$, and problem 6(d) to conclude that that M is the maximal order of K.
 - (e) Let $\delta = A + B\theta + C\eta$ with $A, B, C \in \mathbb{Z}$. Show that the discriminant of $\mathbb{Z}[\delta]$ is even, and conclude that $\mathbb{Z}[\delta] \neq \mathcal{O}_K$.

RMK Meditate on the conclusion of (e)

4. Let
$$K = \mathbb{Q}\left(\sqrt[3]{2}\right)$$
 and recall (PS1) that $\mathcal{O}_K = \mathbb{Z}[\sqrt[3]{2}]$.

- (a) For each rational prime p find the numbers g, e_i, f_i in the factorization $p\mathcal{O}_K = \prod_{i=1}^g \mathfrak{P}_i^{e_i}$.
- (b) Give generators for the prime ideals over (p) where p = 2, 3, 5, 7.
- (c) Give generators for the prime ideals over (p) where $p \equiv 2(3)$.

Generalization: Orders in Q-algebras

DEFINITION. Let *R* be a commutative ring. An (associative, unital) *R*-algebra is a (possibly non-commutative) unital ring *A* equipped with a ring homomorphism $f: R \to A$ whose image is central. Equivalently, *A* is an *R*-module equipped with an associative, unital product which is *R*-bilinear.

DEFINITION. Let *A* be a \mathbb{Q} -algebra. A subring $\mathcal{O} \subset A$ is an *order* of *A* if it is the free \mathbb{Z} -module generated by a \mathbb{Q} -basis of *A*.

- 5. Fix a finite-dimensional \mathbb{Q} -algebra *A*.
 - (a) Show that A contains orders.
 - (b) Let $\mathcal{O} \subset A$ be an order. Show that every $x \in \mathcal{O}$ is integral over \mathbb{Z} .
 - (c) Suppose that *A* is commutative and that it has a maximal order (wrt inclusion). Show this maximal order is unique.

- 6. Define the *trace* of $x \in A$ as the trace of left multiplication by x. Given $\{x_i\}_{i=1}^n \subset A$ let $D(x_1, \ldots, x_n) \in M_n(\mathbb{Q})$ be the matrix with i, j entry $\operatorname{Tr}(x_i x_j), \Delta(x_1, \ldots, x_n) = \det D(x_1, \ldots, x_n)$.
 - (a) Let $\mathcal{O} \subset A$ be an order. Show that $\operatorname{Tr} x \in \mathbb{Z}$ for all $x \in \mathcal{O}$.
 - (b) Let $\{\omega_i\}_{i=1}^n \subset A$ be a \mathbb{Q} -basis. Show that for any $\{x_i\}_{i=1}^n \subset A$, $\Delta(x_1, \ldots, x_n) = (\det \alpha)^2 \Delta(\omega_1, \ldots, \omega_n)$ where $\alpha \in M_n(\mathbb{Q})$ is the matrix such that $x_i = \sum_{k=1}^n \alpha_{ik} \omega_k$.
 - COR Either D = 0 for all *n*-tuples (we say that the trace form is *degenerate*) or $D \neq 0$ for all bases (we say that the trace form is *non-degenerate*). We assume the second case from now on.
 - (c) Let \mathcal{O} be an order with \mathbb{Z} -basis $\{\omega_i\}_{i=1}^n$. Show that the number $\Delta(\omega_1, \ldots, \omega_n)$ is a rational integer, independent of the choice of basis. Denote this $\Delta(\mathcal{O})$ can call it the *discriminant* of the order.
 - (d) Suppose that $\mathcal{O} \subset \mathcal{O}'$ are two orders. Show that $\Delta(\mathcal{O}) = [\mathcal{O}' : \mathcal{O}]^2 \Delta(\mathcal{O}')$ and deduce that in a non-degenerate \mathbb{Q} -algebra every order is contained in a maximal order.
 - (e) Construct a degenerate finite-dimensional \mathbb{Q} -algebra without maximal orders.
- 7. Key example. Let $f \in \mathbb{Z}[x]$ be monic of degree *n*.
 - (a) Suppose f splits as $f(x) = \prod_{i=1}^{n} (x \alpha_i)$ in some extension N and define the *discriminant* of f by

$$\Delta(f) = \prod_{i < j} (\alpha_i - \alpha_j)^2.$$

Explicitly compute $\Delta(f)$ for the polynomials $x^2 + ax + b$ and $x^3 + ax^2 + bx + c$.

- (b) Suppose f = xⁿ + Σ_{i=0}ⁿ⁻¹ a_ixⁱ and recall that a_{n-i} = (-1)ⁱt_i(α₁,...,α_n) whree t_i are the elementary symmetric polynomials. Consider t_i as formal variables, with t_i formally homogenous of degree i. Show that there is a polynomial Δ = Z[t₁,...,t_n] homogenous of degree n(n-1) such that Δ(f) = Δ({(-1)ⁱa_{n-i}}ⁿ_{i=1}).
 (c) Find the discriminant of f = xⁿ + ax + b. (Hint: there aren't that many integral solutions
- (c) Find the discriminant of $f = x^n + ax + b$. (Hint: there aren't that many integral solutions to xn + x(n-1) = n(n-1)). Use this and the Vieta transformation (changing variables $x = y \frac{a}{3}$ in $x^3 + ax^2 + bx + c$) to recover the results of part (b).
- (d) Let $A = \mathbb{Q}[x]/(f)$ and let $\mathcal{O} = \mathbb{Z}[x]/(f)$. Show that \mathcal{O} is an order of A.
- (e) Show that $\Delta(\mathcal{O}) = \Delta(f)$.

REMARK. We have here a procedure for finding maximal orders in an *n*-dimensional \mathbb{Q} -algebras: start from a \mathbb{Q} -basis containing 1_A and scale its elements to obtain a Z-basis for an order \mathcal{O} , say of discriminant $\Delta(\mathcal{O})$. Let \mathcal{O}' be an order containing \mathcal{O} with index $d = [\mathcal{O}' : \mathcal{O}]$. Then $d\mathcal{O}' \subset \mathcal{O}$ so $\mathcal{O} \subset \mathcal{O}' \subset \frac{1}{d}\mathcal{O}$. Now $\frac{1}{d}\mathcal{O}/\mathcal{O} \simeq (\frac{1}{d}\mathbb{Z}/\mathbb{Z})^n \simeq (\mathbb{Z}/d\mathbb{Z})^n$, so the set of \mathbb{Z} -submodules of $\frac{1}{d}\mathcal{O}$ containing \mathcal{O} is finite and can be enumerated explicitely. It remains to check those one-by-one to see if any are orders; since $d^2 \mid \Delta(\mathcal{O})$ we only have finitely many values of d to check.

8. Now suppose that *A* is an *F*-algebra where *F* is a number field. Let $\mathcal{O} \subset A$ be an order. Show that the \mathcal{O}_F -submodule of *A* generated by \mathcal{O} is an order as well.

COR Every maximal order of A is an \mathcal{O}_F -module.

RMK In fact, every order of A which is an \mathcal{O}_F -module is a *free* \mathcal{O}_F -module. We may discuss this later.