Math 538, Lecture 11, 14/2/2024

Last time: Extended non-arch valuations to algebraic extensions via:
\[|x|_L = |N_f^L x|_F^n \]

(if \(F \) complete)
\[n = \left\lceil \frac{1}{e} \right\rceil. \]

Ex: remove completeness hypothesis.

Today: (1) degression
 (2) Ramification

(2) pf of extension relied on bounding \(|1+x|_L \)
for \(x \in \mathbb{Z} \) st. \(|x|_L \leq 1 \) (\(1.L \) defined as above)

we get the bound \(|1+x|_L \leq 2 \) if \(|x|_L \leq 1 \)

\[|\alpha + \beta|_L \leq \max \{ |\alpha|_L, |\beta|_L \}. \]

Enough to have \(|1+x|_L \) bounded. Better to define absolute values via:
(1) \(|xy| = |x| |y| \)
(2) \(|x| = 0 \) if \(x = 0 \) ; for some \(C \).
\[
(C = \sup \{ |1 + x| : |x| \leq 1 \})
\]

Observations:
1. Strong enough to give usual theory of convergence.

 \[\text{Ex: if } x_n \to x, \quad y_n \to y, \quad \text{then} \]
 \[(|x_n + y_n| - |x+y|) \leq C \cdot \max \{ |x_n - x|, |y_n - y| \} \]

 so still get topological field.

2. Still true: either \(|l| \) bounded on \(\mathbb{D} \), [then \(C = 1 \)], or \(|l| \) unbounded, then \(|l_n| \geq 1 \) for all \(n > 1 \).

3. Now \(|l|^\lambda \) is an absolute value for \(\lambda > 0 \)

 \[|l|, |l|^\lambda \text{ define same topology iff } |l|, |l|^\lambda \text{ are equivalent}. \]

 (In particular, natural on \(\mathbb{C} \) to take \(|x+iy| = x^2 + y^2 \).)
Example:

Theorem: Let \(K \) be a non-discrete locally compact field ("local field"). Then \(K \) is isomorphic to one of the following:

1. A finite extension of \(\mathbb{R} \)
2. A finite extension of \(\mathbb{Q}_p \), \(p \) prime
3. \(F_q((t)) \), \(q \) prime power

Proof: (Sketch) Let \(\mu \) be the Haar measure of \((K,+).\) For any \(a \in K^*\), \(x \mapsto ax \) is an automorphism, so \(\mu(aE) = |a| \cdot \mu(E) \) for all \(E \subset K \), for some number \(|a| \in \mathbb{R}_+ \) (also true if \(a = 0 \), with \(|0| = 0 \)).

Clearly, \(|ab| = |a| \cdot |b| \), \(|a| = \infty \) if \(a \neq 0 \).

Need to show \(|1| \) is cts, \(\exists \) \(\delta > 0 \) such that \(|x| < 1 \Rightarrow |1+x| < 1 + \delta \), \(x > 0 \).

\[C = \sup \{ |1 + x| : |x| < 1 \} < \infty \]

\(\Rightarrow |1| \) is an absolute value, local compactness \(\Rightarrow K \) complete.
in char \(0, K \subset K, \) Ostrowsky: \(IR \) or \(\mathbb{Q}_p \subset K\)

local compactness \(\Rightarrow \sum k: \frac{E}{k} < \infty\)

In char \(p\) fields of constants = residue field

Details: see Weil, "Basic Number Theory.

Ramification

Fix \(K\) complete wrt non-discrete non-arch absolute value \(1.1\), equip every algebraic extension with the unique extension of \(1.1\)

\(\mathcal{O}_K\subset K\) valuation ring, \(\mathfrak{p}\subset \mathcal{O}_K\) max ideal

\(K = \mathcal{O}_K/\mathfrak{p}\) residue field

write \(v = -\log 1.1\), a valuation on \(K\).

For an algebraic extension \(L/K\), write \(n=[L:K]\),

\(L_2 = \{x \in L : |x| \leq 1\}, \quad \mathfrak{p}_L = \{x \in L : |x| < 1\}, \quad \lambda = \mathcal{O}_K/\mathfrak{p}_L.\)
Def: The ramification index is

\[e = e(L/k) = \left[v(L^x) : v(k^x) \right] = \left[L^x : k^x \right] \]

The residue degree is \(f = f(L/k) = [\lambda : k] \).

Example: \(\mathbb{Q}_2(\sqrt{2}) : V_2(\sqrt{2}) = \frac{1}{2} \)

\(V_2(\mathbb{Q}_2(\sqrt{2})) = \frac{1}{2} \mathbb{Z} \), \(V_2(\mathbb{Q}_2) = \mathbb{Z} \)

\(e(\mathbb{Q}_2(\sqrt{2})/\mathbb{Q}_2) = 2 \)

Cf. in \(\mathbb{Q}(\sqrt{2}) \), \(V = \mathbb{Z}[\sqrt{2}] \), \((2) = (\sqrt{2})^2 \)

(in general, \(L/k \) fields, \(p \in \mathcal{O}_L \) prime,

\[p\mathcal{O}_L = \prod_{i} \mathfrak{p}_i^{e_i} \]

See: completing \(K \) at \(p \), \(\mathcal{L} \) at \(\mathfrak{P}_i \); set ramification index \(e_i \))

In relevant situation \(\mathcal{L}, K \) complete, \(p\mathcal{O}_L = p_L^e \)
Prop: \(n \geq e_0 \), if \(1K^* | c \mathbb{B}_0^* \) is discrete
have equality.

Proof: Let \(2w_i \choose i = c U_2 \) project to \(2 \times \beta \)-basis \(A \).

Let \(\sum_j \prod_i c U_2 \) be \(2 \times \beta \)-basis one coset representatives for \(1K^* / 1K^* \).

Suppose \(\sum_{ij} x_{ij} w_i \prod_j = 0 \) for some \(x_{ij} \in K \)

Let \(s_j = \sum_i x_{ij} w_i \), so \(\sum_j s_j \prod_j = 0 \).

Fix \(j \), if not all \(x_{ij} = 0 \), define \(s'_j = \alpha_j \sum_i x_{ij} w_i \),
\(\alpha_j \in K^* \)
where \(\alpha_j x_{ij} \in U_2 \), at least one in \(U_2^* \).

\(\alpha_j = \frac{1}{x_{ij}} \) if \(|x_{ij}| \) largest.

Then \(s'_j \in U_2 \), mod \(p_2 \), \(s'_j = \sum_i (\alpha_j x_{ij}) \bar{w}_i \to 0 \).

Since \(2\bar{w}_i \beta c \alpha \) are a basis, at least one \(\alpha_j x_{ij} \)
is nonzero.
So $|s_j| = 1$, $|s_j| = |x_j| = \max_I |x_{ij}| \leq |k^x^i|$

$\Rightarrow \forall j \in \sum s_j \Pi_j$, all nonzero summands have distinct absolute values, so if some $s_j \neq 0$

$\left| \sum_j s_j \Pi_j \right| = \max_j |s_j \Pi_j| \neq 0 \Rightarrow$

so all $s_j = 0$. Now $\exists \omega_i$'s indep Π_k, so all $\omega_{ij} = 0$

Assume now $v(k^x) = \mathbb{Z}$, $v(z^x) = \frac{1}{2} \mathbb{Z}$

Take $\Pi'_i = \Pi^i$ to be a absolute value $\frac{1}{2}$

("uniformize" = generator of value group $\mathfrak{v} \subset L$)

Take $\Pi_j = \Pi_j^j$, want: $\exists \omega_i \Pi_j \subset L$ is a basis

For this let $M = \bigoplus U_k \omega_i \Pi_j^j \subset U_L$

let $N = \bigoplus U_k \omega_i$. N surjects on $U_2 / \Pi^2 = \sum_k U_k / \Pi^j$\n
so $U_2 = N + \Pi U_L$
(If $\alpha \in O$, have $x_i \in O$ so $\alpha = \sum x_i \omega_i e_F$.
\(\pi O \)

\(\pi O \)

(\(\rho \leq \pi O \) since

\(\{ x \in O : |x| < 1 \} = \{ x \in O : |x| < 1 \} \pi \)

\(= \{ x \in O : |x| \leq 1 \} = \pi O \))

So
\(O = N + \pi O \)

\(= N + \pi N + \pi^2 O \)

\(= N + \pi N + \pi^2 N + \pi^3 O \)

\(\vdots \)

\(\omega \),

\(= \sum_{j=0}^{\infty} \pi^j N + \pi^j \omega O = N + \omega \omega O \)

\(\omega \) uniformise for \(K \)

So
\(O = N + \omega (N + \omega O) = N + \omega^2 O \)

by induction,
\(O = N + \omega^k O \) for all \(k \).
\[M \text{ is dense in } U_2 \quad (\mathcal{U}^k U_2 \text{ is a basis for the topology at } 0) \]

But \(U_1 \) closed in \(K \), so \(M = U_2^{ef} \) is closed in its \(K \)-span = \(K^{ef} \).

So \(N \) closed in \(L \), so \(M = U_2 \),
so \(\exists w_i \) span \(L \).

(to get \(n = \sum e_i f_i \); for \(\forall K \) \(A \) fields,
need: \(V \) place of \(K \) corresp to \(\mathbb{P}_V \mathcal{U}_K \)

Then \(L \otimes_{K} \mathcal{K}_V = \bigoplus_{w \in \Pi L} L w \)

Remark: Argument did not use \(n < \infty \)

Prove: if \(V(K^X) \) discrete \(e, f < \infty \)

Then \(n = ef < \infty \)
What if $|k^x|, |\ell^y|$ non-discrete.

maybe $v(k^x) = \mathbb{Z}[\mathbb{N}] \cap \mathbb{R}$