Lior Silberman’s Math 100 31
13. DIFFERENTIAL EQUATIONS (27/11/2024)

Goals.

(1) Differential equations
(a) What is a differential equation?
(b) What is a solution to a differential equation?

(c) Plugging ansatze into equations
(2) First order Linear DE
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Math 100A — WORKSHEET 13
DIFFERENTIAL EQUATIONS

1. DIFFERENTIAL EQUATIONS

(1) For each equation: Is y = 3 a solution? Is y = 2 a
solution? What are all the solutions?

y' =4 ; y® =3y
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(2) For each equation: Is y(z) = z* a solution? Is
y(x) = e a solution?
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(4) Which of the following (if any) is a solution of % =

A y=—ux B.y=xz+5 C.y=va*+5
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(5) The balance of a bank account satisfies the differen-
tial equatlon = 1.04y (this represents interest of
4% compounded continuously). Sketch the solutions
to the differential equation. What is the solution for
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(6) Suppose B — gy dx = bz. Can you find a differ-
ential equatlon satisfied by w = £7 Hint: calculate
dw
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2. SOLUTIONS BY MASSAGING AND ANSATZE é

(7) For which value of the constant w is y(t) = sin(wt)
a solution of the oscillation equation 2 =5 +4dy =07
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(9) Consider the equation % = a(y — b).

(a) Define a new function u(t) = y(t) — b. What is
the differential equation satisfied by u?

g—&z Zlﬁ +0= a(y-b) =au
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(b) What is the general solution for u(¢)?

VIV Ceﬁ.

(¢c) What is the general solution for y(t)?

49 = 0l +b = b o



(d) Suppose a < 0. What is the asymptotic behaviour
of the solution as t — o00?
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(e) Suppose we are given the initial value y(0). What
is C7 What is the formula for y(t) using this?
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(10) Example: Newton’s law of cooling. Suppose we place
an object of temperature T(0) in an environment of
temperature T,y It turns out that a good model
for the temperature T'(t) of the object at time ¢ is

dT
— =—k(T - Teny

where k > 0 is a positive constant.
(a) Suppose T'(t) > Teny. Is T'(t) positive or nega-
tive? What if T'(t) < T, ? Explain this in words.
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(b) A body is found at 1:30am and its temperature
is measured to be 32.5°C. At 2:30am its temper-
ature is found to be 30.3°C. The temperature of
the room in which the body was found is measured
to be 20°C and we have no reason to believe the
ambient temperature has changed. What was the
time of death?
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