
Math 100A – SOLUTIONS TO WORKSHEET 1
EXPRESSIONS AND ASYMPTOTICS

1. The ladder of functions

(1) Classify the following functions into power laws / power functions and exponentials: x3, πx102, e2x,
c
√
x, − 8

x , 7x, 8 · 2x, − 1√
3

· 1
2x , 9

x7/2 , xe, πx, A
xb .

Solution: Power laws: x3, πx102, c
√
x = cx−1/2, − 8

x = −8x−1, 9
x7/2 = 9x−7/2, xe, A

xb = Ax−b

Exponentials: e2x = (e2)x, 7x, 8 · 2x, − 1√
3

· 1
2x = − 1√

3
2−x, πx.

(2) Order the following functions from small to large asymptotically as x → ∞:
(a) 1,

√
x, x−1/2,x1/3, ex, x−1/3, 106x2024, e−x, ex

2

, 2024
x100 , 5x, x.

Solution: As x → ∞ we have

e−x ≪ 2024

x100
≪ x−1/2 ≪ x−1/3 ≪ 1 ≪ x1/3 ≪ x1/2 ≪ x ≪ 106x2024 ≪ ex ≪ 5x ≪ ex

2

(b) Extra: add in log x, e
√
x, (log x)2, log log x, 1

log x .
Solution: As x → ∞ we have

e−x ≪ 2024

x100
≪ x−1/2 ≪ x−1/3 ≪ 1

log x
≪ 1 ≪ log log x ≪ log x ≪ (log x)

2 ≪ x1/3 ≪ x1/2 ≪ x ≪ 106x2024 ≪ e
√
x ≪ ex ≪ 5x ≪ ex

2

.

(c) Repeat (a), this time as x → 0+.
Solution: As x → 0 we have

106x2024 ≪ x ≪ x1/2 ≪ x1/3 ≪ 1 ∼ ex ∼ e−x ∼ ex
2

∼ 5x ≪ x−1/3 ≪ x−1/2 ≪ 2024

x100

2. Asymptotics: simple expressions

(3) How does the each expression behave when x is large? small? what is x is large but negative? Sketch
a plot
(a) 1− x2 + x4 (“Mexican hat potential”)

Solution: When x is large (positive or negative), x4 ≫ x2 ≫ 7 so 7 + x2 + x4 ∼ x4 while
when x is small, 7 ≫ x2 ≫ x4 so 7 + x2 + x4 ∼ 7.

(b) ax3 − bx5 (a, b > 0)
Solution: When x is very large, x5 dominates x3 so ax3 − bx5 ∼ −ax5 (which is negative
for x positive, positive for x negative!). When x is very small (close to zero), x3 dominates (is
bigger than x5 though both are very small) and ax3 − bx5 ∼ ax3.

(c) ex − x4

Solution: When x → ∞ is very large, ex ≫ x4so ex − x4 ∼ ex. Near we have ex ∼ 1 ≫ x4,
so ex − x4 ∼ 1. Finally when x is large but negative (x → −∞) we have that ex decays while
x4 grows, so ex ≪ x4 and ex − x4 ∼ −x4.

(d) Wages in some country grow at 2% a year (so the wage of a typical worker has the form A · (1.02)t
where t is measured in years and A is the wage today). The cost of healthcare grows at 4% a
year (so the healthcare costs of a typical worker have the form B · (1.04)t where B is the cost
today). Suppose that today’s workers can afford their healthcare (A is much bigger than B).
Will that be always true? Why or why not?
Solution: Asymptotically (1.04)t will dominate 1.02t for large t, so eventually our assumptions
must break down.
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(e) Three strains of a contagion are spreading in a population, spreading at rates 1.05, 1.1, and
0.98 respectively. The total number of cases at time t behaves like

A · 1.05t +B · 1.1t + C · 0.98t .

(A,B,C are constants). Which strain dominates eventually? What would the number of in-
fected people look like?
Solution: When t is large, (0.98)t is actually decaying so this strain will disappear. On the
other hand since 1.1 > 1.05 over time 1.1t will be much bigger than

(f) Are the expressions e2x+1 and e2x asymptotic as x → ±∞? What about e(x+1)2 and ex
2

?
Solution: e2x+1 = e · e2x so the the first is always larger. Similarly e(x+1)2 = e2x+1 · ex

2

so
the ratio of the two expressions tends to ∞ as x → ∞ and to 0 as x → −∞.

(4) The interaction between two molecules is often modeled by the Lennard-Jones potential

V (r) = ϵ

[( r

R

)−12

− 2
( r

R

)−6
]

where ϵ, R > 0 are constants and r > 0 is the distance between the molecules. Which term dominates
as r → 0+? As r → ∞? Sketch the potential.

Solution: As r → ∞ the power law of index −12 decays faster than the power law of index
6, so V (r) ∼ −2ϵ

(
r
R

)−6 (and in particular is negative). When r → 0+ the power law of index −12

blows up faster than the power law of index −6, so V (r) ∼ ϵ
(
r
R

)−12 (so blowing up to ∞). The
graph must therefore come down from ∞ near 0, dip below the axis, and then approach the axis
from below as it decays toward zero when r → ∞.

(5) The (attractive) interaction between two hadrons (say protons) due to the strong nuclear force
can be modeled by the Yukawa potential VY(r) = −g2 e−αmr

r where r is the separation between
the particles, and g, α,m are positive constants. The electrical repulsion between two protons is
described by the Columb potential VC(r) = kq2 1

r where k, q are also positive constants. Which
interaction will dominate for large distances? Will the net interaction be attractive or repulsive?
Note that g2 is much larger than kq2.

Solution: At large distances the exponentially decaying factor will suppress the strong inter-
action, making the electrical interaction dominate. This is why nuclear fusion requires such high
temperatures: we need to get the protons really close to each other for the strong force to take
over, and this requires them moving very fast or the electrical repulsion will keep them apart.

3. Asymptotics of complicated expressions

(6) Describe the following expressions in words
(a) x+ log x

Solution: This is the sum of x and of the logarithm of x.
(b) e|x−5|3

Solution: This is the exponential, of the cube, of the absolute value, of x− 5.
(c) 1+x

1+2x−x2

Solution: This is the ratio of (the sum of 1 and x) and (the sum of 1, 2x, and −x2).
(d) ex+A sin x

ex−x2

Solution: This is the ratio of (the sum of ex and the product of A and sinx) and (the
difference of ex and x2).

(e) Aert+Be−st

t+t2 where r, s > 0 and A,B ̸= 0.
Solution: This is the sum of A times the exponential of r times t and B times the exponential
of −s times t, all divided by the sum of t and t2.

(7) For each of the functions above determine its asymptotics near 0 and near +∞.
(a)

Solution: (a) As x → ∞ the linear term dominates and x+log x ∼ x. As x → 0+, on the other
hand, x remains bounded while log x blows up to −∞ so it dominates and x+ log x ∼ log x.

2



(b)
Solution: (b) For x close to 0, x− 5 ∼ −5 so |x− 5| ∼ 5 so |x− 5|3 ∼ 125 so e|x−5|3 ∼ e125.
For x very large x − 5 ∼ x and since x is positive |x− 5| ∼ |x| = x so |x− 5|3 ∼ x3. e|x−5|3

therefore grows roughly like ex
3

(in truth ex
3

is actually much bigger than e(x−5)3 – the ratio is
on the scale of e15x

2

– but our expression captures the gist of the growth pattern).
(c)

Solution: (c) As x → 0 x, x2 are negligible next to the 1 so 1+x
1+2x−x2 ∼ 1

1 = 1. As x → ∞ x

dominates 1 so x+1 ∼ x and x2 dominates x, 1 so 1+2x−x2 ∼ −x2. Thus 1+x
1+2x−x2 ∼ x

−x2 = − 1
x

– in other words the whole expression decays roughly like 1
x .

(d)
Solution: (d) For x near 0 we have ex ∼ e0 = 1 and sinx → 0 (we’ll later learn that
sinx ∼ x near 0) so ex + A sinx ∼ 1 near 0. Similarly x2 ∼ 0 so ex − x2 ∼ 1 and we
have ex+A sin x

ex−x2 ∼ 1
1 = 1. For large x we have |sinx| ≤ 1 so A sinx is much smaller than ex and

ex+A sinx ∼ ex. Simliarly ex dominates any polynomial including x2 and we have ex−x2 ∼ ex.
Thus at infinity ex+A sin x

ex−x2 ∼ ex

ex = 1.
(e)

Solution: (e) As t → 0 we have t2 ≪ t so t+ t2 ∼ t. ert ∼ e0 ∼ e−st so
Aert +Be−st

t+ t2
∼ A+B

t
.

As t → ∞, t2 ≫ t while ert ≫ e−st (growing exponential dominates the decaying one!). Thus
Aert +Be−st

t+ t2
∼ Aert

t2
.

Conversely as t → −∞ we have e−st ≫ ert so
Aert +Be−st

t+ t2
∼ Be−st

t2
.
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