Math 100A - WORKSHEET 1 EXPRESSIONS AND ASYMPTOTICS

1. The ladder of functions

- (1) Classify the following functions into power laws / power functions and exponentials: x^3 , πx^{102} , e^{2x} , $c\sqrt{x}$, $-\frac{8}{x}$, 7^x , $8 \cdot 2^x$, $-\frac{1}{\sqrt{3}} \cdot \frac{1}{2^x}$, $\frac{9}{x^{7/2}}$, x^e , π^x , $\frac{A}{x^b}$.
- (2) Order the following functions from small to large asymptotically as $x \to \infty$: (a) 1, \sqrt{x} , $x^{-1/2}$, $x^{1/3}$, e^x , $x^{-1/3}$, $10^6 x^{2024}$, e^{-x} , e^{x^2} , $\frac{2024}{x^{100}}$, 5^x , x.
 - (b) Extra: add in $\log x$, $e^{\sqrt{x}}$, $(\log x)^2$, $\log \log x$, $\frac{1}{\log x}$.
 - (c) Repeat (a), this time as $x \to 0^+$.

2. Asymptotics: simple expressions

(3) How does the each expression behave when x is large? small? what is x is large but negative? Sketch a plot (a) $1 - x^2 + x^4$ ("Mexican hat potential")

Date: 4/9/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(b)
$$ax^3 - bx^5$$
 $(a, b > 0)$

(c) $e^x - x^4$

(d) Wages in some country grow at 2% a year (so the wage of a typical worker has the form $A \cdot (1.02)^t$ where t is measured in years and A is the wage today). The cost of healthcare grows at 4% a year (so the healthcare costs of a typical worker have the form $B \cdot (1.04)^t$ where B is the cost today). Suppose that today's workers can afford their healthcare (A is much bigger than B). Will that be always true? Why or why not?

(e) Three strains of a contagion are spreading in a population, spreading at rates 1.05, 1.1, and 0.98 respectively. The total number of cases at time t behaves like

$$A \cdot 1.05^t + B \cdot 1.1^t + C \cdot 0.98^t$$

(A, B, C are constants). Which strain dominates eventually? What would the number of infected people look like?

(f) Are the expressions e^{2x+1} and e^{2x} asymptotic as $x \to \pm \infty$? What about $e^{(x+1)^2}$ and e^{x^2} ?

(4) The interaction between two molecules is often modeled by the Lennard-Jones potential

$$V(r) = \epsilon \left[\left(\frac{r}{R}\right)^{-12} - 2\left(\frac{r}{R}\right)^{-6} \right]$$

where $\epsilon, R > 0$ are constants and r > 0 is the distance between the molecules. Which term dominates as $r \to 0^+$? As $r \to \infty$? Sketch the potential.

(5) The (attractive) interaction between two hadrons (say protons) due to the strong nuclear force can be modeled by the Yukawa potential $V_{\rm Y}(r) = -g^2 \frac{e^{-\alpha m r}}{r}$ where r is the separation between the particles, and g, α, m are positive constants. The electrical repulsion between two protons is described by the Columb potential $V_{\rm C}(r) = kq^2 \frac{1}{r}$ where k, q are also positive constants. Which interaction will dominate for large distances? Will the net interaction be attractive or repulsive? Note that g^2 is much larger than kq^2 .

3. Asymptotics of complicated expressions

- (6) Describe the following expressions in words (a) $x + \log x$
 - (b) $e^{|x-5|^3}$
 - (c) $\frac{1+x}{1+2x-x^2}$
 - (d) $\frac{e^x + A \sin x}{e^x x^2}$
 - (e) $\frac{Ae^{rt}+Be^{-st}}{t+t^2}$ where r, s > 0 and $A, B \neq 0$.
- (7) For each of the functions above determine its asymptotics near 0 and near $+\infty$. (a)
 - (b)
 - (c)
 - (d)
 - (e)