Math 100A - SOLUTIONS TO WORKSHEET 2 LIMITS. ASYMPTOTES, AND CONTIJUITY

(1) Review of asymptotics: analyze the expression $\frac{e^x + A \sin x}{e^x - x^2}$ as $x \to \infty$, $x \to 0$, $x \to -\infty$. **Solution:** This is a ratio. As $x \to \infty e^x$ grows rapidly while $A \sin x$ is bounded, so $e^x + A \sin x \sim e^x$, while in the denominator e^x dominates x^2 so $e^x - x^2 \sim e^x$ and we get $\frac{e^x + A \sin x}{e^x - x^2} \sim 1$. As $x \to 0$ $e^x + A\sin x$ is close to 1 + 0 = 1 and $e^x - x^2$ is close to 1 - 0 = 1 so $\frac{e^x + A\sin x}{e^x - x^2} \sim 1$ in that regime. Finally as $x \to -\infty e^x$ decays rapidly, so $e^x - x^2 \sim -x^2$ which is large. But $A \sin x$ oscillates so there is no clear asymptotic.

1. Limits

(2) Either evaluate the limit or explain why it does not exist. Sketching a graph might be helpful. (a) $\lim_{x\to 5} (x^3 - x)$

Solution: When the function is defined by expression the limit can be obtained by plugging in. $\lim_{x\to 5} (x^3 - x) = 125 - 5 = 120.$ (_

(b)
$$\lim_{x \to 1} f(x)$$
 where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1\\ 3 & x = 1\\ 2 - x^2 & x > 1 \end{cases}$
Solution: $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (2 - x^2) = 2 - 1^2 = 1$ and $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \sqrt{x} = \sqrt{1} = 1$ so
 $\lim_{x \to 1^+} f(x) = 1$.

(c)
$$\lim_{x \to 1} f(x)$$
 where $f(x) = \begin{cases} \sqrt{x} & 0 \le x < 1\\ 1 & x = 1\\ 4 - x^2 & x > 1 \end{cases}$

Solution: $\lim_{x\to 1^+} f(x) = \lim_{x\to 1^+} (4-x^2) = 4-1^2 = 3$ and $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} \sqrt{x} = 1$ $\sqrt{1} = 1$ so the limit does not exist (but the one-sided limits do).

(3) Let $f(x) = \frac{x-3}{x^2+x-12}$.

S

(a) (Final 2014) What is $\lim_{x\to 3} f(x)$?

plution:
$$f(x) = \frac{x-3}{(x-3)(x+4)} = \frac{1}{x+4}$$
 so $\lim_{x \to 3} f(x) = \frac{1}{3+4} = \boxed{\frac{1}{7}}.$

(b) What about $\lim_{x\to -4} f(x)$?

Solution: The limit does not exist: if x is very close to -4 then x + 4 is very small and $\frac{1}{x+4}$ is very large. That said, when x > -4 we have $\frac{1}{x+4} > 0$ and when x < -4 we have $\frac{1}{x+4} < 0$ so (in the extended sense)

$$\lim_{x \to -4^+} \frac{1}{x+4} = +\infty$$
$$\lim_{x \to -4^-} \frac{1}{x+4} = -\infty.$$

(4) Evaluate

(a) $\lim_{x\to\infty} \frac{e^x + A\sin x}{e^x - x^2}$ Solution: By problem 1 this is 1. (b) $\lim_{x\to 0} \frac{e^x + A \sin x}{e^x - x^2}$ **Solution:** By problem 1 this is 1 also.

Date: 11/9/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(c) $\lim_{x \to -\infty} \frac{e^x + A \sin x}{e^x - x^2}$

Solution: By problem 1 the numerator is bounded while the denominator grows like x^2 , so the whole expression tends to 0.

- (5) Evaluate
 - (a) $\lim_{x \to 2} \frac{x+1}{4x^2-1}$ **Solution:** The expression is well-behaved at x = 2 so $\lim_{x \to 2} \frac{x+1}{4x^2-1} = \frac{2+1}{4 \cdot 2^2-1} = \frac{3}{15} = \frac{1}{5}$.
 - (b) (Final, 2014) $\lim_{x\to -3^+} \frac{x+2}{x+3}$. **Solution:** As $x \to -3$ the numerator is close to -1 and while the denominator goes to 0 so the whole expression blows up: we have $\frac{x+2}{x+3} \sim \frac{-1}{x+3}$. Now when x > -3 we have x + 3 > 0 so the whole expression is negative and $\lim_{x\to -3^+} \frac{x+2}{x+3} = \lim_{x\to -3^+} -\frac{1}{x+3} = -\infty$.
 - (c) $\lim_{x \to 1} \frac{e^x(x-1)}{x^2+x-2}$ Solution: $\lim_{x \to 1} \frac{e^x(x-1)}{x^2 + x - 2} = \lim_{x \to 1} \frac{e^x(x-1)}{(x-1)(x+2)} = \lim_{x \to 1} \frac{e^x}{x+2} = \frac{e^1}{1+2} = \frac{e^1}{3}.$
 - (d) $\lim_{x \to -2^-} \frac{e^x(x-1)}{x^2+x-2}$

Solution: As $x \to -2$ we have $\frac{e^x(x-1)}{x^2+x-2} = \frac{e^x(x-1)}{(x-1)(x+2)} = \frac{e^x}{x+2} \sim \frac{e^{-2}}{x+2}$ and the expression blows up (we have a vertical asymptote). If x < -2 then x + 2 < 0 and thus

$$\lim_{x \to -2^{-}} \frac{e^x(x-1)}{x^2 + x - 2} = -\infty.$$

(e) $\lim_{x \to 1} \frac{1}{(x-1)^2}$

Solution: The function blows up at both sides, and remains positive on both sides. Therefore

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = \infty.$$

(f) $\lim_{x \to 4} \frac{\sin x}{|x-4|}$ Solution: $|x-4| \to 0$ as $x \to 4$ while $\sin x \xrightarrow[x \to 4]{} \sin 4 \neq 0$, so the function blows up there. Since |x-2| is positive and $\sin 4$ is negative $(\pi < 4 < 2\pi)$ we have

$$\lim_{x \to 4} \frac{\sin x}{|x-4|} = -\infty$$

(g) $\lim_{x\to\frac{\pi}{2}^+} \tan x$, $\lim_{x\to\frac{\pi}{2}^-} \tan x$.

Solution: We have $\tan x = \frac{\sin x}{\cos x}$. Now for x close to $\frac{\pi}{2}$, $\sin x$ is close to $\sin \frac{\pi}{2} = 1$, so $\sin x$ is positive. On the other hand $\lim_{x \to \frac{\pi}{2}} \cos x = \cos \frac{\pi}{2} = 0$ so $\tan x$ blows up there. Since $\cos x$ is decreasing on $[0, \pi]$ it is positive if $x < \frac{\pi}{2}$ and negative if $x > \frac{\pi}{2}$, so:

$$\lim_{x \to \frac{\pi}{2}^+} \tan x = -\infty$$
$$\lim_{x \to \frac{\pi}{2}^-} \tan x = +\infty$$

2. Asymptotes

(6) For each expression, determine its vertical and horizontal asymptotes.

(a)
$$\frac{x^2+1}{x-3}$$

Solution: As $x \to \pm \infty$ we have $\frac{x^2+1}{x-3} \sim \frac{x^2}{x} \sim x$ so $\lim_{x\to\infty} \frac{x^2+1}{x-3} = \infty$ and there is no horizontal asymptote. As $x \to 3$ we have $x^2 + 1 \sim 10$ so $\frac{x^2+1}{x-3} \sim \frac{10}{x-3}$ which blows up at that point so we have a vertical asymptote.

(b) (Final, 2015) $\frac{x+1}{x^2+2x-8}$

Solution: As $x \to \pm \infty$ we have $\frac{x+1}{x^2+2x-8} \sim \frac{x}{x^2} \sim \frac{1}{x}$ so $\lim_{x\to-\infty} \frac{x+1}{x^2+2x-8} = 0$ and we have a horizontal asymptote y = 0 at both ends. Since $x^2 + 2x - 8 = (x-2)(x+4)$ we have $\frac{x+1}{x^2+2x-8} \sim \frac{3}{6(x-2)}$ as $x \to 2$ and $\frac{x+1}{x^2+2x-8} \sim \frac{-3}{-6(x+4)} = \frac{1}{2(x+4)}$ as $x \to -4$ we have and blowup and vertical asymptotes at x = 2 and x = -4.

(7) (Quiz, 2015) Evaluate $\lim_{x\to-\infty} \frac{3x}{\sqrt{4x^2+x-2x}}$ Solution: As $x\to-\infty$ since $\sqrt{x^2} = |x| = -x$ we have

$$\frac{3x}{\sqrt{4x^2 + x} - 2x} \sim \frac{3x}{\sqrt{4x^2 - 2x}} \sim \frac{3x}{2|x| - 2x}$$
$$\sim \frac{3x}{2(-x) - 2x} \sim \frac{3x}{-4x} = -\frac{3}{4}$$

and hence $\lim_{x \to -\infty} \frac{3x}{\sqrt{4x^2 + x} - 2x} = \boxed{-\frac{3}{4}}.$

Solution: Change variables via x = -y with $y \to \infty$. We are then looking at

$$\begin{aligned} \frac{-3y}{\sqrt{4y^2 - y} + 2y} &\sim -\frac{3y}{\sqrt{4y^2} + 2y} \sim -\frac{3y}{2y + 2y} \\ &\sim -\frac{3y}{4y} \sim -\frac{3}{4} \,. \end{aligned}$$

and hence $\lim_{x \to -\infty} \frac{3x}{\sqrt{4x^2 + x} - 2x} = \left[-\frac{3}{4} \right].$

3. Continuity

- (8) Determine where each expression/function is continuous.
 - (a) $f(x) = \frac{x}{x}$. Can you "fix" the problem at 0?

Solution: This expression makes sense when $x \neq 0$, so it's continuous on the punctured axis $(-\infty,0)\cup(0,\infty)$. We also have $\lim_{x\to 0}\frac{x}{x}=1$ so defining f(0)=1 will "remove" the hole at zero and give a function continuous on the entire axis (in fact the function which is identically 1).

(b) ("Heaviside step function") $H(x) = \begin{cases} 1 & x > 0\\ 1/2 & x = 0. \end{cases}$ Can you "fix" the problem at 0? $0 & x < 0 \end{cases}$

On each ray $(-\infty, 0), (0, \infty)$ the function is constant, hence continuous. Since Solution: $\lim_{x\to 0^-} H(x) = \lim_{x\to 0^-} 0 = 0$ while $\lim_{x\to 0^+} H(x) = \lim_{x\to 0^+} 1 = 1$ the one-sided limits exist but disagree (a "jump discontinuity") and no definition of H(0) will make the function continuous. The function is thus continuous exactly on $(-\infty, 0) \cup (0, \infty)$.

(c) $g(x) = \sqrt{\log x}$

Solution: The logarithm makes sense when x > 0, but when 0 < x < 1 we have $\log x < 0$ so the square root won't make sense. The expression thus makes sense on $[1,\infty)$ and that's where the function will be continuous.

- (9) ("Gluing functions") In each problem find the value of the constant k such that the function is continuous.
 - (a) $f(x) = \begin{cases} \frac{x^3 2x^2}{x 2} & x \neq 2\\ k & x = 2 \end{cases}$

Solution: For $x \neq 2$ we have $f(x) = \frac{x^2(x-2)}{x-2} = x^2$ so $\lim_{x \to 2} f(x) = \lim_{x \to 2} x^2 = 4$ and setting |k=4| makes the function continuous at 2. It is continuous everywhere else since for any $x \neq 2 f$ is defined by formula around x.

(b) $g(x) = \begin{cases} 8 - kx & x < k \\ x^2 & x \ge k \end{cases}$

Solution: The only relevant point is x = k. At that point the value of the expression on the left is $8-k^2$, on the right is k^2 , so the function will be continuous when $8-k^2 = k^2$, equivalently when $2k^2 = 8$ or $k^2 = 4$, that is when $k = \pm 2$.

(c)
$$h(x) = \begin{cases} Ax^2 + Bx & x \le k \\ Akx + D & x > k \end{cases}$$
 (here A, B, D are constants with $B \ne 0$)

Solution: The only relevant point is x = k. At that point the value of the expression on the left is $Ak^2 + Bk$, on the right is $Ak^2 + D$, so the function will be continuous when $Ak^2 + Bk = Ak^2 + D$, equivalently when $k = \frac{D}{B}$.

(d)
$$j(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x > 0\\ k + \cos x & x \le 0 \end{cases}$$

Solution: Since the expression on the right doesn't make sense at x = 0 we can't just glue and need to resort to the definition. As $x \to 0$ we have that $\sin\left(\frac{1}{x}\right)$ is bounded while $x^2 \to 0$, so $x^2 \sin\left(\frac{1}{x}\right)$ will still decay to zero and $\lim_{x\to 0^+} j(x) = \lim_{x\to 0^+} x^2 \sin\left(\frac{1}{x}\right) = 0$. On the other side we have $k + \cos 0 = k + 1$ and the function will be continuous when this vanishes, in otherwords when k = -1.