Math 100A – SOLUTIONS TO WORKSHEET 3 THE DERIVATIVE

1. Three views of the derivative

- (1) Let $f(x) = x^2$, and let $a = 2$. Then $(2, 4)$ is a point on the graph of $y = f(x)$.
	- (a) Let (x, x^2) be another point on the graph, close to $(2, 4)$. What is the slope of the line connecting the two? What is the limit of the slopes as $x \to 2$? **Solution:** The slope of the line connecting two points is $\frac{\Delta y}{\Delta x}$, here $\frac{x^2-4}{x-2} = \frac{(x-2)(x+2)}{x-2} = x+2$, which tends to $|4|$ as $x \to 2$.
		- (b) Let h be a small quantity. What is the asymptotic behaviour of $f(2+h)$ as $h \to 0$? What about $f(2+h) - f(2)$?

Solution: $f(2+h) = (2+h)^2 = 4 + 4h + h^2 \sim 4 = f(2)$ as $h \to 0$ but then $f(2+h) - f(2) =$ $4h + h^2 \sim |4|h \text{ as } h \to 0.$

(c) What is
$$
\lim_{h \to 0} \frac{(2+h)^2 - 2^2}{h}
$$
?
Solution: $\frac{(2+h)^2 - 2^2}{h} = \frac{4h + h^2}{h} = 4 + h \xrightarrow[h \to 0]{} \boxed{4}$

- (d) What is the equation of the line tangent to the graph of $y = f(x)$ at $(2, 4)$?
- **Solution:** We need a line of slope 4 through the point $(2, 4)$ so its equation is $y = 4(x-2)+4$. (2) An enzymatic reaction occurs at rate $k(T) = T(40 - T) + 10T$ where T is the temperature in degrees celsius. The current temperature of the solution is 20◦C. Should we increase or decrease the temperature to increase the reaction rate?

Solution: We have $P(T) = 50T - T^2$ so $P(20) = 600$. If we change the temperature to $T = 20 + h$ we'd have

$$
P(20 + h) = 50 (20 + h) - (20 + h)2
$$

= 1000 + 50h - 400 - 40h - h²
= 600 + 10h - h²
 $\approx 600 + 10h$

to first order in h . We conclude that increasing the temperature by h units will increase the rate by about $10h$ – and in particular the temperature should be increased.

Solution: Once we know about the derivative, we can write $P'(T) = 50 - 2T$ so $P'(20) = 10 > 0$ and the function is increasing about 20.

2. Definition of the derivative

(3) Use a definition of the derivative to find $f'(a)$ if (a) $f(x) = x^2, a = 3.$

Solution: $\lim_{h\to 0} \frac{(3+h)^2 - (3)^2}{h} = \lim_{h\to 0} \frac{9+6h+h^2-9}{h} = \lim_{h\to 0} \frac{6h+h^2}{h} = \lim_{h\to 0} (6+h) = 6.$ **Solution:** $(3+h)^2 = 3 + 6h + h^2 \approx 3 + 6h$ to second order so $f'(3) = 6$. (b) $f(x) = \frac{1}{x}$, any a. x **Solution:** $\lim_{h\to 0} \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \lim_{h\to 0} \frac{1}{h} \left(\frac{a - (a+h)}{a(a+h)} \right)$ $\frac{a^{(n-1)}(a+h)}{a(a+h)}$ = $\lim_{h\to 0} \frac{-h}{h \cdot a(a+h)}$ = $-\lim_{h\to 0} \frac{1}{a(a+h)}$ = $-\frac{1}{a^2}$.

Solution:
$$
\frac{1}{a+h} - \frac{1}{a} = \frac{a}{a(a+h)} - \frac{a+h}{a(a+h)} = -\frac{h}{a(a+h)} \sim -\frac{h}{a^2}
$$
 so $f'(a) = -\frac{1}{a^2}$.

Date: 18/9/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(c) $f(x) = x^3 - 2x$, any a (you may use $(a+h)^3 = a^3 + 3a^2h + 3ah^2 + h^3$). Solution: We have

$$
\frac{(a+h)^3 - 2(a+h) - a^3 + 2a}{h} = \frac{a^3 + 3a^2h + 3ah^2 + h^3 - 2a - 2h - a^3 + 2a}{h}
$$

$$
= \frac{3a^2h + 3ah^2 + h^3 - 2h}{h}
$$

$$
= 3a^2 - 2 + 3ah + h^2 \xrightarrow[h \to 0]{} 3a^2 - 2.
$$

Solution: We have

$$
(a+h)^3 - 2(a+h) = a^3 + 3a^2h + 3ah^2 + h^3 - 2a - 2h
$$

= $(a^3 - 2a) + (3a^2 - 2)h + 3ah^2 + h^3$
 $\approx (a^3 - 2a) + (3a^2 - 2)h$

so the derivative is $3a^2 - 2$.

- (4) Express the limits as derivatives: $\lim_{h\to 0} \frac{\cos(5+h)-\cos 5}{h}$ press the limits as derivatives: $\lim_{h\to 0} \frac{\cos(5+h)-\cos 5}{h}$, $\lim_{x\to 0} \frac{\sin x}{x}$
Solution: These are the derivative of $f(x) = \cos x$ at the point $a = 5$ and of $g(x) = \sin x$ at the
- point $a = 0$.
- (5) (Final, 2015, variant gluing derivatives) Is the function

$$
f(x) = \begin{cases} x^2 & x \le 0\\ x^2 \cos \frac{1}{x} & x > 0 \end{cases}
$$

differentiable at $x = 0$?

Solution: We have $f(0) = 0$, so we'd have $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{f(x)}{x}$ $\frac{(x)}{x}$ provided the limit exists, and since we have different expresions for $f(x)$ on both sides of 0 we compute the limit as two one-sided limits. On the left we have

$$
\lim_{x \to 0^-} \frac{f(x)}{x} = \lim_{x \to 0^-} \frac{x^2}{x} = \lim_{x \to 0^-} x = 0.
$$

Alternatively, we could recognize the limit as giving the derivative of $f(x) = x^2$ at $x = 0$. Using differentiation rules (to be covered later in the course) we know that $\left[\frac{d}{dx} x^2\right]_{x=0} = \left[2x\right]_{x=0} = 0$ and it would again follow that $\lim_{x\to 0^-} \frac{f(x)}{x} = 0$. On the right we have

$$
\lim_{x \to 0^+} \frac{f(x)}{x} = \lim_{x \to 0^+} \frac{x^2 \cos \frac{1}{x}}{x} = \lim_{x \to 0^+} x \cos \left(\frac{1}{x}\right) = 0
$$

since $x \to 0$ while cos $(\frac{1}{x})$ is bounded. Thus the function is differentiable and its derivative is zero.

3. The tangent line

- (6) (Final, 2015) Find the equation of the line tangent to the function $f(x) = \sqrt{x}$ at (4, 2). **Solution:** $f'(x) = \frac{1}{2\sqrt{x}}$, so the slope of the line is $f'(4) = \frac{1}{4}$, and the equation for the line line
- itself is $y 2 = \frac{1}{4}(x 4)$ or $y = \frac{1}{4}(x 4) + 2$ or $y = \frac{1}{4}x + 1$. (7) (Final 2015) The line $y = 4x + 2$ is tangent at $x = 1$ to which function: $x^3 + 2x^2 + 3x$, $x^2 + 3x + 2$, (Final 2013) The line $y = 4x + 2$ is tangent at $x = 1$ to w
 $2\sqrt{x+3} + 2$, $x^3 + x^2 - x$, $x^3 + x + 2$, none of the above?

Solution: The line has slope 4 and meets the curve at $(1, 6)$. The last two functions don't evaluate to 6 at 1.We differentiate the first three.

$$
\frac{d}{dx}|_{x=1} (x^3 + 2x^2 + 3x) = (3x^2 + 4x + 3)|_{x=1} = 10
$$

$$
\frac{d}{dx}|_{x=1} (x^2 + 3x + 2) = (2x + 3)|_{x=1} = 5
$$

$$
\frac{d}{dx}|_{x=1} (2\sqrt{x+3} + 2) = \left(\frac{2}{2\sqrt{x+3}}\right)|_{x=1} = \frac{1}{2}.
$$

The answer is "none of the above".

(8) Find the lines of slope 3 tangent to the curve $y = x^3 + 4x^2 - 8x + 3$.

Solution: $\frac{dy}{dx} = 3x^2 + 8x - 8$, so the line tangent at (x, y) has slope 3 iff $3x^2 + 8x - 8 = 3$, that is iff $3(x^2 - 1) + 8(x - 1) = 0$. We can factor this as $(x - 1)(3x + 11) = 0$ so the x-coordinates of the points of tangency are $1, -\frac{11}{3}$ and the lines are:

$$
y = 3(x - 1)
$$

$$
y = 3(x + \frac{11}{3}) + \left(\left(\frac{11}{3}\right)^3 + 4\left(\frac{11}{3}\right)^2 - 8\left(\frac{11}{3}\right) + 3\right).
$$

(9) The line $y = 5x + B$ is tangent to the curve $y = x^3 + 2x$. What is B?

Solution: At the point (x, y) the curve has slope $\frac{dy}{dx} = 3x^2 + 2$, so the curve has slope 5 at the points where $x = \pm 1$, that is the points $(-1, -3)$ and $(\tilde{1}, 3)$. The line needs to meet the curve at the point, so there are two solutions:

> $y = 5x + 2$ (tangent at $(-1, -3)$) $y = 5x - 2$ (tangent at (1,3))

4. Linear approximation

Definition. $f(a+h) \approx f(a) + f'(a)h$

(10) Estimate

 $\frac{\text{csumate}}{\text{(a) } \sqrt{1.2}}$

Solution: Let $f(x) = \sqrt{x}$ so that $f'(x) = \frac{1}{2\sqrt{x}}$. Then $f(1) = 1$ and $f'(1) = \frac{1}{2}$ so $f(1,2) \approx$ $f(1) + f'(1) \cdot 0.2 = 1 + \frac{1}{2} \cdot 0.2 = 1.1.$

Better: $f(1.21) = 1.1$ and $f'(1.21) = \frac{1}{2.2}$ so $f(1.2) = f(1.21 - 0.01) \approx 1.1 - 0.01 \cdot \frac{1}{2.2} \approx 1.09545$. (b) (Final, 2015) $\sqrt{8}$

Solution: Using the same f we have $f(9-1) \approx f(9) + f'(9) \cdot (-1) = 3 - \frac{1}{6} = 2\frac{5}{6}$. (c) (Final, 2016) $(26)^{1/3}$

Solution: Let $f(x) = x^{1/3}$ so that $f'(x) = \frac{1}{3}x^{-2/3}$. Then $f(27) = 3$ and $f'(27) = \frac{1}{3 \cdot 27^{2/3}} = \frac{1}{27}$ so 1 26

$$
f(26) = f(27 - 1) \approx f(27) + (-1) \cdot f'(27) = 3 - \frac{1}{27} = 2\frac{20}{27}.
$$