Math 100A - SOLUTIONS TO WORKSHEET 3 THE DERIVATIVE

1. Three views of the derivative

- (1) Let $f(x) = x^2$, and let a = 2. Then (2, 4) is a point on the graph of y = f(x).
 - (a) Let (x, x^2) be another point on the graph, close to (2, 4). What is the slope of the line connecting the two? What is the limit of the slopes as $x \to 2$? **Solution:** The slope of the line connecting two points is $\frac{\Delta y}{\Delta x}$, here $\frac{x^2-4}{x-2} = \frac{(x-2)(x+2)}{x-2} = x+2$, which tends to 4 as $x \to 2$.
 - (b) Let h be a small quantity. What is the asymptotic behaviour of f(2+h) as $h \to 0$? What about f(2+h) - f(2)? Solution: $f(2+h) = (2+h)^2 = 4 + 4h + h^2 \sim 4 = f(2)$ as $h \to 0$ but then f(2+h) - f(2) = f(2) = 1

 $4h + h^2 \sim \boxed{4}h$ as $h \to 0$.

(c) What is
$$\lim_{h \to 0} \frac{(2+h)^2 - 2^2}{h}$$
?
Solution: $\frac{(2+h)^2 - 2^2}{h} = \frac{4h+h^2}{h} = 4 + h \xrightarrow[h \to 0]{4}$

- (d) What is the equation of the line tangent to the graph of y = f(x) at (2, 4)?
- **Solution:** We need a line of slope 4 through the point (2, 4) so its equation is y = 4(x-2)+4. (2) An enzymatic reaction occurs at rate k(T) = T(40 - T) + 10T where T is the temperature in
- degrees celsius. The current temperature of the solution is 20°C. Should we increase or decrease the temperature to increase the reaction rate?

We have $P(T) = 50T - T^2$ so P(20) = 600. If we change the temperature to Solution: T = 20 + h we'd have

$$P(20 + h) = 50 (20 + h) - (20 + h)^{2}$$

= 1000 + 50h - 400 - 40h - h²
= 600 + 10h - h²
\approx 600 + 10h

to first order in h. We conclude that increasing the temperature by h units will increase the rate by about 10h – and in particular the temperature should be increased.

Solution: Once we know about the derivative, we can write P'(T) = 50 - 2T so P'(20) = 10 > 0and the function is increasing about 20.

2. Definition of the derivative

Definition. $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ or $f(a+h) \approx f(a) + f'(a)h$

(3) Use a definition of the derivative to find f'(a) if

Solution: $\lim_{h\to 0} \frac{(3+h)^2 - (3)^2}{h} = \lim_{h\to 0} \frac{9+6h+h^2-9}{h} = \lim_{h\to 0} \frac{6h+h^2}{h} = \lim_{h\to 0} (6+h) = 6.$ Solution: $(3+h)^2 = 3+6h+h^2 \approx 3+6h$ to second order so f'(3) = 6.(b) $f(x) = \frac{1}{x}$, any a. Solution: $\lim_{h \to 0} \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \lim_{h \to 0} \frac{1}{h} \left(\frac{a - (a+h)}{a(a+h)} \right) = \lim_{h \to 0} \frac{-h}{h \cdot a(a+h)} = -\lim_{h \to 0} \frac{1}{a(a+h)} = -\lim_{h \to 0} \frac{1}{a(a+h$ $-\frac{1}{a^2}.$ Solution: $\frac{1}{a+h} - \frac{1}{a} = \frac{a}{a(a+h)} - \frac{a+h}{a(a+h)} = -\frac{h}{a(a+h)} \sim -\frac{h}{a^2}$ so $f'(a) = -\frac{1}{a^2}.$

Date: 18/9/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(c) $f(x) = x^3 - 2x$, any *a* (you may use $(a+h)^3 = a^3 + 3a^2h + 3ah^2 + h^3$). Solution: We have

$$\frac{(a+h)^3 - 2(a+h) - a^3 + 2a}{h} = \frac{a^3 + 3a^2h + 3ah^2 + h^3 - 2a - 2h - a^3 + 2a}{h}$$
$$= \frac{3a^2h + 3ah^2 + h^3 - 2h}{h}$$
$$= 3a^2 - 2 + 3ah + h^2 \xrightarrow[h \to 0]{} 3a^2 - 2.$$

Solution: We have

$$(a+h)^3 - 2(a+h) = a^3 + 3a^2h + 3ah^2 + h^3 - 2a - 2h$$

= $(a^3 - 2a) + (3a^2 - 2)h + 3ah^2 + h^3$
 $\approx (a^3 - 2a) + (3a^2 - 2)h$

so the derivative is $3a^2 - 2$.

- (4) Express the limits as derivatives: $\lim_{h\to 0} \frac{\cos(5+h)-\cos 5}{h}$, $\lim_{x\to 0} \frac{\sin x}{x}$ Solution: These are the derivative of $f(x) = \cos x$ at the point a = 5 and of $g(x) = \sin x$ at the
- point a = 0. (5) (Final, 2015, variant – gluing derivatives) Is the function

$$f(x) = \begin{cases} x^2 & x \le 0\\ x^2 \cos \frac{1}{x} & x > 0 \end{cases}$$

differentiable at x = 0?

Solution: We have f(0) = 0, so we'd have $f'(0) = \lim_{x\to 0} \frac{f(x)-f(0)}{x} = \lim_{x\to 0} \frac{f(x)}{x}$ provided the limit exists, and since we have different expressions for f(x) on both sides of 0 we compute the limit as two one-sided limits. On the left we have

$$\lim_{x \to 0^{-}} \frac{f(x)}{x} = \lim_{x \to 0^{-}} \frac{x^2}{x} = \lim_{x \to 0^{-}} x = 0$$

Alternatively, we could recognize the limit as giving the derivative of $f(x) = x^2$ at x = 0. Using differentiation rules (to be covered later in the course) we know that $\left[\frac{d}{dx}x^2\right]_{x=0} = [2x]_{x=0} = 0$ and it would again follow that $\lim_{x\to 0^-} \frac{f(x)}{x} = 0$. On the right we have

$$\lim_{x \to 0^+} \frac{f(x)}{x} = \lim_{x \to 0^+} \frac{x^2 \cos \frac{1}{x}}{x} = \lim_{x \to 0^+} x \cos \left(\frac{1}{x}\right) = 0$$

since $x \to 0$ while $\cos\left(\frac{1}{x}\right)$ is bounded. Thus the function is differentiable and its derivative is zero.

3. The tangent line

- (6) (Final, 2015) Find the equation of the line tangent to the function f(x) = √x at (4, 2).
 Solution: f'(x) = 1/(2√x), so the slope of the line is f'(4) = 1/4, and the equation for the line line itself is y 2 = 1/4(x 4) or y = 1/4(x 4) + 2 or y = 1/4x + 1.
- (7) (Final 2015) The line y = 4x + 2 is tangent at x = 1 to which function: $x^3 + 2x^2 + 3x$, $x^2 + 3x + 2$, $2\sqrt{x+3}+2$, $x^3 + x^2 x$, $x^3 + x + 2$, none of the above?

Solution: The line has slope 4 and meets the curve at (1,6). The last two functions don't evaluate to 6 at 1.We differentiate the first three.

$$\frac{d}{dx}|_{x=1} \left(x^3 + 2x^2 + 3x\right) = \left(3x^2 + 4x + 3\right)|_{x=1} = 10$$
$$\frac{d}{dx}|_{x=1} \left(x^2 + 3x + 2\right) = \left(2x + 3\right)|_{x=1} = 5$$
$$\frac{d}{dx}|_{x=1} \left(2\sqrt{x+3} + 2\right) = \left(\frac{2}{2\sqrt{x+3}}\right)|_{x=1} = \frac{1}{2}.$$

The answer is "none of the above".

(8) Find the lines of slope 3 tangent to the curve $y = x^3 + 4x^2 - 8x + 3$.

Solution: $\frac{dy}{dx} = 3x^2 + 8x - 8$, so the line tangent at (x, y) has slope 3 iff $3x^2 + 8x - 8 = 3$, that is iff $3(x^2 - 1) + 8(x - 1) = 0$. We can factor this as (x - 1)(3x + 11) = 0 so the x-coordinates of the points of tangency are $1, -\frac{11}{3}$ and the lines are:

$$y = 3(x-1)$$

$$y = 3(x+\frac{11}{3}) + \left(\left(\frac{11}{3}\right)^3 + 4\left(\frac{11}{3}\right)^2 - 8\left(\frac{11}{3}\right) + 3\right).$$

(9) The line y = 5x + B is tangent to the curve $y = x^3 + 2x$. What is B?

Solution: At the point (x, y) the curve has slope $\frac{dy}{dx} = 3x^2 + 2$, so the curve has slope 5 at the points where $x = \pm 1$, that is the points (-1, -3) and (1, 3). The line needs to meet the curve at the point, so there are two solutions:

y = 5x + 2 (tangent at (-1, -3)) y = 5x - 2 (tangent at (1, 3))

4. LINEAR APPROXIMATION

Definition. $f(a+h) \approx f(a) + f'(a)h$

(10) Estimate

(a) $\sqrt{1.2}$

Solution: Let $f(x) = \sqrt{x}$ so that $f'(x) = \frac{1}{2\sqrt{x}}$. Then f(1) = 1 and $f'(1) = \frac{1}{2}$ so $f(1.2) \approx f(1) + f'(1) \cdot 0.2 = 1 + \frac{1}{2} \cdot 0.2 = 1.1$.

Better: f(1.21) = 1.1 and $f'(1.21) = \frac{1}{2.2}$ so $f(1.2) = f(1.21 - 0.01) \approx 1.1 - 0.01 \cdot \frac{1}{2.2} \approx 1.09545$. (b) (Final, 2015) $\sqrt{8}$

Solution: Using the same f we have $f(9-1) \approx f(9) + f'(9) \cdot (-1) = 3 - \frac{1}{6} = 2\frac{5}{6}$. (c) (Final, 2016) $(26)^{1/3}$

Solution: Let $f(x) = x^{1/3}$ so that $f'(x) = \frac{1}{3}x^{-2/3}$. Then f(27) = 3 and $f'(27) = \frac{1}{3 \cdot 27^{2/3}} = \frac{1}{27}$ so

 $f(26) = f(27 - 1) \approx f(27) + (-1) \cdot f'(27) = 3 - \frac{1}{27} = 2\frac{26}{27}.$