Math 100A – SOLUTIONS TO WORKSHEET 4 COMPUTING DERIVATIVES

1. Review of the derivative

(1) Expand $f(x+h)$ to linear order in h for the following functions and read the derivative off: (a) $f(x) = bx$ **Solution:** $b(x+h) - bx = bh$ so the derivative is $|b|$. **Solution:** $b(x + h) = bx + bh$ so the derivative is $|b|$. (b) $g(x) = ax^2$ **Solution:** $a(x+h)^2 - ax^2 = 2axh + ah^2 \sim (2ax)h$ so the derivative is $|2ax|$. **Solution:** $a(x+h)^2 = ax^2 + 2axh + ah^2 \approx ax^2 + (2ax)h$ so the derivative is $2ax$. (c) $h(x) = ax^2 + bx$. **Solution:** $(a(x+h)^2 + b(x+h)) - (ax^2+bx) = 2axh + ah^2 + bh \sim (2ax+b)h$ so the derivative is $|2ax + b|$ Solution: $a(x+h)^2 + b(x+h) = ax^2 + 2axh + ah^2 + bx + bh$ $=(ax^2+bx)+(2ax+b)h+ah^2$ $\approx (ax^2 + bx) + (2ax + b) h$ so the derivative is $|2ax + b|$. **Solution:** $a(x+h)^2 \approx ax^2 + 2axh$ by part (a) and $b(x+h) = bx + bh$ by part (b) so $a(x+h)^2 + b(x+h) \approx (ax^2 + 2axh) + (bx + bh)$ $= (ax^2 + bx) + (2ax + b) h$ so the derivative is $\boxed{2ax + b}$ (d) $i(x) = \frac{1}{b+x}$ **Solution:** $\frac{1}{b+x+h} - \frac{1}{b+x} = \frac{(b+x)-(b+x+h)}{(b+x+h)(b+x)} = -\frac{h}{(b+x+h)(b+x)} \sim -\frac{h}{(b+x)^2}$ so the derivative is $-\frac{1}{(1+i)}$ $(b+x)^2$. Solution: 1 $\frac{1}{b + x + h} = \frac{1}{b + x}$ $\frac{1}{b + x + h} - \frac{1}{b + h}$ $\frac{1}{b + x} + \frac{1}{b + x}$ $b + x$ $=\frac{1}{1}$ $\frac{1}{b+x} + \frac{(b+x)-(b+x+h)}{(b+x+h)(b+x)}$ $(b + x + h)(b + x)$ $=\frac{1}{1}$ $\frac{1}{b+x} - \frac{h}{(b+x+h)}$ $(b + x + h)(b + x)$ $\approx \frac{1}{1}$ $\frac{1}{b + x} - \frac{1}{(b + x)}$ $\frac{1}{(b+x)^2} \cdot h$ so the derivative is $\left|-\frac{1}{\sqrt{1-\epsilon}}\right|$ $(b+x)^2$.

Date: 25/9/2024, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

(e) $j(x) = 4x^4 + 5x$ (hint: use the known linear approximation to $2x^2$) **Solution:** We have $j(x) = (2x^2)^2 + 5x$. Now $2(x+h)^2 \approx 2x^2 + 4xh$, so

$$
f(x+h) = (2(x+h)^2)^2 + 5(x+h)
$$

\n
$$
\approx (2x^2 + 4xh)^2 + 5(x+h)
$$

\n
$$
= 4x^4 + 16x^3h + 16x^2h^2 + 5x + 5h
$$

\n
$$
= (4x^4 + 5x) + (16x^3 + 5)h + O(h^2)
$$

\n
$$
\approx (4x^4 + 5x) + (16x^3 + 5)h
$$

so the derivative is $|16x^3 + 5|$.

2. Arithmetic of derivatives

- (2) Differentiate
	- (a) $f(x) = 6x^{\pi} + 2x^{e} x^{7/2}$
	- **Solution:** This is a linear combination of power laws so $f'(x) = 6\pi x^{\pi-1} + 2e^{e-1} \frac{7}{2}x^{5/2}$. (b) (Final, 2016) $g(x) = x^2 e^x$ (and then also $x^a e^x$)

Solution: Applying the product rule we get $\frac{dg}{dx} = \frac{d(x^2)}{dx} \cdot e^x + x^2 \cdot \frac{d(e^x)}{dx} = (2x + x^2)e^x =$ $x(x+2)e^x$, and in general

$$
\frac{d}{dx}(x^a e^x) = ax^{a-1}e^x + x^a e^x = x^{a-1}(x+a)e^x.
$$

(c) (Final, 2016) $h(x) = \frac{x^2+3}{2x-1}$ **Solution:** Applying the quotient rule the derivative is $\frac{2x \cdot (2x-1) - (x^2+3) \cdot 2}{(2x-1)^2} = \frac{4x^2 - 2x - 2x^2 - 6}{(2x-1)^2}$ $2\frac{x^2-x-3}{(2x-1)^2}$. (d) $\frac{x^2+A}{\sqrt{x}}$

Solution: We write the function as $x^{3/2} + Ax^{-1/2}$ so its derivative is $\frac{3}{2}x^{1/2} - \frac{A}{2}x^{-3/2}$. (3) Let $f(x) = \frac{x}{\sqrt{x}+A}$. Given that $f'(4) = \frac{3}{16}$, give a quadratic equation for A.

Solution:
$$
f'(x) = \frac{1 \cdot (\sqrt{x} + A) - x(\frac{1}{2}x^{-1/2})}{(\sqrt{x} + A)^2} = \frac{\sqrt{x} + A - \frac{1}{2}\sqrt{x}}{(\sqrt{x} + A)^2} = \frac{\frac{1}{2}\sqrt{x} + A}{(\sqrt{x} + A)^2}
$$
. Plugging in $x = 4$ we have

$$
\frac{3}{16} = f'(4) = \frac{1+A}{(2+A)^2}
$$

so we have

$$
3(2+A)^2 = 16(1+A)
$$

that is

$$
3A^2 + 12A + 12 = 16 + 16A
$$

that is

$$
3A^2 - 4A - 4 = 0.
$$

In fact this gives $A = -\frac{2}{3}, 2$.

- (4) Suppose that $f(1) = 1$, $g(1) = 2$, $f'(1) = 3$, $g'(1) = 4$.
	- (a) What are the linear approximations to f and g at $x = 1$? Use them to find the linear approximation to fg at $x = 1$.

Solution: We have

$$
f(x) \approx f(1) + f'(1)(x - 1) = 1 + 3(x - 1)
$$

$$
g(x) \approx g(1) + g'(1)(x - 1) = 2 + 4(x - 1)
$$

multiplying them we have

$$
(fg)(x) \approx (1 + 3(x - 1))(2 + 4(x - 1))
$$

= 2 + 1 \cdot 4(x - 1) + 2 \cdot 3(x - 1) + 12(x - 1)²

$$
\approx 2 + 10(x - 1)
$$

to first order.

(b) Find
$$
(fg)'(1)
$$
 and $\left(\frac{f}{g}\right)'(1)$.
\n**Solution:** $(fg)'(1) = f'(1)g(1) + f(1)g'(1) = 3 \cdot 2 + 1 \cdot 4 = 10$.

$$
\left(\frac{f}{g}\right)'(1) = \frac{f'(1)g(1) - f(1)g'(1)}{(g(1))^2} = \frac{3 \cdot 2 - 1 \cdot 4}{2^2} = \frac{1}{2}.
$$

- (5) Evaluate
	- (a) $(x \cdot x)'$ and $(x') \cdot (x')$. What did we learn? **Solution:** $(x \cdot x)' = (x^2)' = 2x$ while $(x') \cdot (x') = 1 \cdot 1 = 1$. We learn that the "naive product" rule" $(fg)' = f'g'$ is wrong, and we need to be careful to use the true product rule.
	- (b) $\left(\frac{x}{x}\right)'$ and $\frac{\left(x'\right)}{\left(x'\right)}$ $\frac{y(x)}{y(x')}$. What did we learn?

Solution: $\left(\frac{x}{x}\right)' = (1)' = 0$ while $\frac{x'}{(x')} = \frac{1}{1} = 1$. We learn that the "naive quotient rule" $\left(\frac{f}{g}\right)'=\frac{f'}{g'}$ $\frac{f}{g'}$ is **wrong**, and we need to be careful to use the true quotient rule.

(6) The Lennart–Jones potential $V(r) = \epsilon \left(\left(\frac{R}{r} \right)^{12} - 2 \left(\frac{R}{r} \right)^6 \right)$ models the electrostatic potential energy of a diatomic molecule. Here $r > 0$ is the distance between the atoms and $\epsilon, R > 0$ are constants. (a) What are the asymptotics of $V(r)$ as $r \to 0$ and as $r \to \infty$?

Solution: For small r, $\frac{1}{r^{12}}$ blows up faster than $\frac{1}{r^6}$ so $V(r) \sim \epsilon \left(\frac{R}{r}\right)^{12}$ as $r \to 0$. For large r, $\frac{1}{r^{12}}$ decays faster than $\frac{1}{r^6}$ so $V(r) \sim -2\epsilon \left(\frac{R}{r}\right)^6$ as $r \to \infty$. (b) Sketch a plot of $V(r)$.

Solution: $V(r) = \epsilon R^{12} r^{-12} - 2\epsilon R^6 r^{-6}$ so

$$
V'(r) = \epsilon R^{12} \cdot (-12r^{-13}) - 2\epsilon R^6 (-6r^{-7})
$$

= $-12\epsilon R^{12}r^{-13} + 12\epsilon R^6 r^{-7}$
= $12\epsilon R^6 r^{-13} (r^6 - R^6)$.

(d) Where is $V(r)$ increasing? decreasing? Find its minimum location and value. **Solution:** $V'(r)$ has the same sign as $r^6 - R^6$, so V' is negative when $r < R$ and is positive when $r > R$. We conclude that V is decreasing on $(0, R)$ and increasing on (R, ∞) , and hence has a minimum at $r = R$, where $V(R) = \epsilon(1 - 2) = -\epsilon$. This makes ϵ the *binding energy* of the molecule.