Math 100A - WORKSHEET 5 THE CHAIN RULE

1. The Chain Rule

- (1) We know $\frac{d}{dy}\sin y = \cos y$. (a) Expand $\sin(y+h)$ to linear order in h. Write down the linear approximation to $\sin y$ about
 - (b) Now let $F(x) = \sin(3x)$. Expand F(x+h) to linear order in h. What is the derivative of $\sin 3x$?

Fact. (f(g(x)))' = f'(g(x))g'(x) or $\frac{d}{dx}(f(g(x))) = \frac{df}{dg} \cdot \frac{dg}{dx}$.

- (2) Write each function as a composition and differentiate (a) e^{3x}
 - (b) $\sqrt{2x+1}$
 - (c) (Final, 2015) $\sin(x^2)$
 - (d) $(7x + \cos x)^n$.
- (3) (Final, 2012) Let $f(x) = g(2\sin x)$ where $g'(\sqrt{2}) = \sqrt{2}$. Find $f'(\frac{\pi}{4})$.

- (4) Differentiate
 - (a) a^x for fixed a > 0 (hint: $a = e^{\log a}$)
 - (b) $7x + \cos(x^n)$
 - (c) $e^{\sqrt{\cos x}}$
 - (d) $\left(\tan(e^{-x^2})\right)^3$
 - (e) (Final 2012) $e^{(\sin x)^2}$
 - (f) $\sqrt{x + \sqrt{x + \sqrt{x}}}$
- (5) Suppose f, g are differentiable functions with $f(g(x)) = x^3$. Suppose that f'(g(4)) = 5. Find g'(4).
 - 2. Logarithmic differentiation

$$\log_b(b^x) = b^{\log_b x} = x$$

$$\log_b(xy) = \log_b x + \log_b y$$

$$\log_b(x^y) = y \log_b x$$

$$\log_b \frac{1}{x} = -\log_b x$$

Fact.
$$\frac{d}{dx} \log x = \frac{1}{x}$$
(6) $\log (e^{10}) =$

$$(6) \log (e^{10}) =$$

$$\log(2^{100}) =$$

(in terms of $\log 2$)

(7) Differentiate
(a)
$$\frac{d(\log(ax))}{dx} =$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\log\left(t^2+3t\right) =$$

(b)
$$\frac{d}{dx}x^2 \log(1+x^2) =$$

$$\frac{\mathrm{d}}{\mathrm{d}r} \frac{1}{\log(2+\sin r)} =$$

(8) (Logarithmic differentiation) Use $\log(fg) = \log f + \log g$ to differentiate $y = (x^2 + 1) \cdot \sin x \cdot \frac{1}{\sqrt{x^3 + 3}} \cdot e^{\cos x}$.

(9) Differentiate using $f' = f \times (\log f)'$ (a) x^n

(b) x^x

(c) $(\log x)^{\cos x}$

(d) (Final, 2014) Let $y = x^{\log x}$. Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x only.

3. More problems

- (10) Let $f(x) = g(x)^{h(x)}$. Find a formula for f' in terms of g' and h'.
- (11) Let $f(\theta) = \sin^2 \theta + \cos^2 \theta$. Find $\frac{df}{d\theta}$ without using trigonometric identities. Evaluate f(0) and conclude that $\sin^2 \theta + \cos^2 \theta = 1$ for all θ .
- (12) ("Inverse function rule") suppose f(g(x)) = x for all x. (a) Show that $f'(g(x)) = \frac{1}{g'(x)}$.
 - (b) Suppose $g(x) = e^x$, $f(y) = \log y$. Show that f(g(x)) = x and conclude that $(\log y)' = \frac{1}{y}$.

(c) Suppose $g(\theta) = \sin \theta$, $f(x) = \arcsin x$ so that $f(g(\theta)) = \theta$. Show that $f'(x) = \frac{1}{\sqrt{1-x^2}}$.

(13) (Final, 2015) Let $xy^2 + x^2y = 2$. Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ at the point (1,1).