Math 100A – SOLUTIONS TO WORKSHEET 10 TAYLOR EXPANSION

1. Taylor expansion

- (1) (Review) Use linear approximations to estimate:
- (a) $\log \frac{4}{3}$ and $\log \frac{2}{3}$. Combine the two for an estimate of $\log 2$. **Solution:** Let $f(x) = \log x$ so that $f'(x) = \frac{1}{x}$. Then $f(1) = 0$ and $f'(1) = 1$ so $f(1 + \frac{1}{3}) \approx \frac{1}{3}$ and $f(1-\frac{1}{3}) \approx -\frac{1}{3}$. Then $\log 2 = \log \frac{4}{3} / \frac{2}{3} = \log \frac{4}{3} - \log \frac{2}{3} \approx \frac{2}{3}$. **Takeaway**: Straightforward linear approximation using $f(x) \approx f(a) + f'(a)(x - a)$. **Common error:** Writing $f(x) \approx f(a) + f'(x)(x - a)$ (here: $\log x \approx \frac{1}{x}(x - 1)$). Sanity check: is the expression we wrote a *linear function*? (b) $\sin 0.1$ and $\cos 0.1$. **Solution:** Let $f(x) = \sin x$ so that $g(x) = f'(x) = \cos x$ and $g'(x) = -\sin x$. Then $f(1) = 0$ and $g(0) = f'(0) = \cos 0 = 1$ while $g'(0) = -\sin 0 = 0$. So $f(0.1) \approx 0 + 1 \cdot 0.1 \approx 0.1$ and $g(0.1) \approx 1 - 0.01 = 1.$ **Takeaway**: Sometimes $f'(a) = 0$ and the linear approximation is constant. (2) Let $f(x) = e^x$ (a) Find $f(0), f'(0), f^{(2)}(0), \cdots$ (b) Find a polynomial $T_0(x)$ such that $T_0(0) = f(0)$. (c) Find a polynomial $T_1(x)$ such that $T_1(0) = f(0)$ and $T'_1(0) = f'(0)$. 1 (d) Find a polynomial $T_2(x)$ such that $T_2(0) = f(0)$, $T'_2(0) = f'(0)$ and $T_2^{(2)}(0) = f^{(2)}(0)$. (e) Find a polynomial $T_3(x)$ such that $T_3^{(k)}(0) = f^{(k)}(0)$ for $0 \le k \le 3$. **Solution:** $f(x) = f'(x) = f^{(2)}(x) = \cdots = e^x$ so $f(0) = f'(0) = f''(0) = \cdots = 1$. Now $T_0(x) = 1$ works, as does $T_1(x) = 1 + x$. If $T_2(x) = 1 + x + cx^2$ then $T''_2(x) = 2c = 1$ means $c = \frac{1}{2}$ and $T_2(x) = 1 + x + \frac{1}{2}x^2$. Finally, $T_3(x) = 1 + x + \frac{1}{2}x^2 + dx^3$ works if $6d = 1$ so if $d = \frac{1}{6}$. **Takeaway**: To determine coefficients of x^2 , x^3 we needed to calculate with them without knowing their values, so we implement the problem-solving technique of giving names: by calling them c, d we could convert the statements $T_2^{(2)}(0) = 1$ and $T_3^{(3)}(0) = 1$ into equations for c, d which we could solve.
- (3) Do the same with $f(x) = \log x$ about $x = 1$.

Solution: $f'(x) = \frac{1}{x}$, $f''(x) = -\frac{1}{x^2}$, $f'''(x) = \frac{2}{x^3}$ so $f(1) = 0$, $f'(1) = 1$, $f''(1) = -1$, $f'''(1) = 2$. Try $T_3(x) = a + bx + cx^2 + dx^3$ (can truncate later). Need $a = 0$ to make $T_3(x) = 0$. Diff we get $T'_{3}(x) = b + 2cx + 3dx^{2}$, setting $x = 0$ gives $b = 1$. Diff again gives $T''_{3}(x) = 2c + 6dx$ so $2c = -1$ and $c = -\frac{1}{2}$. Diff again give $T_3'''(x) = 6d = 2$ so $d = \frac{1}{3}$ and $T_3(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3$. Truncate this to get T_0, T_1, T_2 .

Let
$$
c_k = \frac{f^{(k)}(a)}{k!}
$$
. The *n*th order Taylor expansion of $f(x)$ about $x = a$ is the polynomial $T_n(x) = c_0 + c_1(x - a) + \cdots + c_n(x - a)^n$

- (4) \star Find the 4th order MacLaurin expansion of $\frac{1}{1-x}$ (=Taylor expansion about $x = 0$) **Solution:** $f'(x) = \frac{1}{(1-x)^2}$, $f''(x) = \frac{2}{(1-x)^3}$, $f^{(3)}(x) = \frac{6}{(1-x)^4}$, $f^{(4)}(x) = \frac{24}{(1-x)^5}$, $f^{(k)}(0) = k!$ and the Taylor expansion is $1 + x + x^2 + x^3 + x^4$. Takeaway: This is completely mechanical.
- (5) Find the nth order MacLaurin expansion of $\cos x$, and approximate $\cos 0.1$ using the 3rd order expansion

Date: $6/11/2024$, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

Solution: $(\cos x)' = -\sin x, (\cos x)^{(2)} = -\cos x, (\cos x)^{(3)} = \sin x, (\cos x)^{(4)} (x) = \cos x$ and the pattern repeats. Plugging in zero we see that the derivatives at 0 (starting with the zeroeth) are $1, 0, -1, 0, 1, 0, -1, 0, \ldots$ so the Taylor expansion is

$$
\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \dots
$$

In particular, $\cos 0.1 \approx 1 - \frac{1}{2}(0.1)^2 = 0.995$.

Takeaway: Again this is mechanical, but since the third derivative at $x = 0$ vanishes, we see that the third-order approximation actually only requires terms up to x^2 , or equivalently that the quadratic approximation actually gains a free order of approximation.

(6) (Final, 2015) Let $T_3(x) = 24 + 6(x-3) + 12(x-3)^2 + 4(x-3)^3$ be the third-degree Taylor polynomial of some function f, expanded about $a = 3$. What is $f''(3)$?

Solution: We have $c_2 = \frac{f^{(2)}}{2!} = 12$ so $f^{(2)} = 24$.

Takeaway: We can use the formula $c_k = \frac{f^{(k)}(a)}{k!}$ $\frac{f(a)}{k!}$ both forwards (to go from f to c_k) and backwards (to go from c_k to $f^{(k)}(a)$).

(7) In special relativity we have the formula $E = \frac{mc^2}{\sqrt{1-v^2/c^2}}$ for the kinetic energy of a moving particle. Here m is the "rest mass" of the particle and c is the speed of light. Examine the behaviour of this formula for small velocities by expanding it to second order in the *small parameter* $x = v^2/c^2$. What is the 4th order expansion of the energy? Do you recognize any of the terms?

Solution: We write the formula as $E = mc^2(1-x)^{-1/2}$. Letting $f(x) = (1-x)^{-1/2}$ we have $f'(x) = \frac{1}{2}(1-x)^{-3/2}$ and $f''(x) = \frac{3}{4}(1-x)^{-5/2}$ so $f(0) = 1$, $f'(0) = \frac{1}{2}$ and $f''(0) = \frac{3}{4}$ giving the expansion

$$
E \approx mc^2 \left(1 + \frac{1}{2}x + \frac{1}{2!} \cdot \frac{3}{4}x^2 \right)
$$

= $mc^2 \left(1 + \frac{1}{2} \frac{v^2}{c^2} + \frac{3}{8} \frac{v^4}{c^4} \right)$
= $mc^2 + \frac{1}{2}mv^2 + \frac{3}{8} \left(\frac{v^2}{c^2} \right) mv^2$

correct to 4th order in v/c . In particular we the famous rest energy mc^2 and that for small velocities the main contribution is the Newtonian kinetic energy $\frac{1}{2}mv^2$. The *first relativistic correction* is negative, and indeed is fairly small until $\frac{v}{c}$ gets close to 1.

Takeaway: Taylor expansion is a major workhorse of science.

2. New expansions from old

(8) (Final, 2016) Use a 3rd order Taylor approximation to estimate sin 0.01. Then find the 3rd order Taylor expansion of $(x + 1) \sin x$ about $x = 0$.

Solution: To third order we have $\sin x \approx x - \frac{1}{6}x^3$. In particular $\sin 0.1 \approx 0.1 - \frac{1}{6000}$. We then also have, correct to third order, that

$$
(x+1)\sin x \approx (x+1)\left(x-\frac{1}{6}x^3\right) = x+x^2-\frac{1}{6}x^3-\frac{1}{6}x^4 \approx x+x^2-\frac{1}{6}x^3.
$$

Takeaway: Rather than differentiate $(x + 1) \sin x$ (which is doable but harder) we differentiated $\sin x$ by itself and then combined the resulting approximations. That x^4 is asymptotically negligible when we work to 3rd order was discussed in Lecture 1.

When we work to state order was discussed in Lecture 1.

(9) Find the 3rd order Taylor expansion of $\sqrt{x} - \frac{1}{4}x$ about $x = 4$.

Solution: Let $f(x) = \sqrt{x}$. Then $f'(x) = \frac{1}{2\sqrt{x}}$, $f^{(2)}(x) = -\frac{1}{4x^{3/2}}$ and $f^{(3)}(x) = \frac{3}{8}x^{-5/2}$. Thus $f(4) = 2, f'(4) = \frac{1}{4}, f^{(2)}(4) = -\frac{1}{32}, f^{(3)}(4) = \frac{3}{256}$ and the third-order expansions are

$$
\sqrt{x} \approx 2 + \frac{1}{4}(x - 4) - \frac{1}{32 \cdot 2!} (x - 4)^2 + \frac{3}{256 \cdot 3!} (x - 4)^3
$$

$$
\frac{1}{4}x \approx 1 + \frac{1}{4}(x - 4)
$$

so that

$$
\sqrt{x} - \frac{1}{4}x \approx 1 - \frac{1}{64}(x-4)^2 + \frac{1}{512}(x-4)^3
$$
.

Takeaway: Here we added two expansions. We also *rebased* the polynomial $\frac{1}{4}x$ to be centered at $x=4.$

(10) Find the 8th order expansion of $f(x) = e^{x^2} - \frac{1}{1+x^3}$. What is $f^{(6)}(0)$?

Solution: To fourth order we have $e^u \approx 1 + u + \frac{u^2}{2} + \frac{u^3}{6} + \frac{u^4}{24} + \frac{u^5}{120}$ so $e^{x^2} \approx 1 + x^2 + \frac{x^4}{2} + \frac{x^6}{6} + \frac{x^8}{24}$ **EXECUTE:** To fourth order we have $e^x \approx 1 + a + a^2 + a^3$ so $\frac{1}{1+x^3} \approx 1 - x^3 + x^6$ correct to 8th order. We conclude that

$$
e^{x^{2}} - \frac{1}{1+x^{3}} \approx \left(1+x^{2} + \frac{x^{4}}{2} + \frac{x^{6}}{6} + \frac{x^{8}}{24}\right) - \left(1-x^{3} + x^{6}\right)
$$

$$
\approx x^{2} - x^{3} + \frac{1}{2}x^{4} - \frac{5}{6}x^{6} + \frac{1}{24}x^{8}.
$$

In particular, $\frac{f^{(6)}(0)}{6!} = -\frac{5}{6}$ so $f^{(6)}(0) = -720 \cdot \frac{5}{6} = -600$. (11) Find the quartic expansion of $\frac{1}{\cos 3x}$ about $x = 0$.

Solution: To 4th order we have $\cos 3x \approx 1 - \frac{9}{2}x^2 + \frac{27}{8}x^4 = 1 - u$ where $u = \frac{9}{2}x^2 - \frac{27}{8}x^4$. Since $u³$ is already a 6th order term we can truncate at the quadratic term of the geometric series:

$$
\frac{1}{\cos 3x} \approx \frac{1}{1-u} \n\approx 1 + u + u^2 \n\approx 1 + \left(\frac{9}{2}x^2 - \frac{27}{8}x^4\right) + \left(\frac{9}{2}x^2 - \frac{27}{8}x^4\right)^2 \n\approx 1 + \frac{9}{2}x^2 - \frac{27}{8}x^4 + \frac{81}{4}x^4 \n= 1 + \frac{9}{2}x^2 + \frac{135}{8}x^4.
$$

correct to 4th order.

(12) (Change of variable/rebasing polynomials)

(a) Find the Taylor expansion of the polynomial $x^3 - x$ about $a = 1$ using the identity $x = 1 + (x-1)$. Solution: We have

$$
x3 - x = (1 + (x - 1))3 - (1 + (x - 1))
$$

= 1 + 3(x - 1) + 3(x - 1)² + (x - 1)³ - 1 - (x - 1)
= 2(x - 1) + 3(x - 1)² + (x - 1)³.

(b) Expand e^{x^3-x} to third order about $a=1$.

Solution: By the previous problem we have

$$
\exp(x^3 - x) = \exp\left(2(x - 1) + 3(x - 1)^2 + (x - 1)^3\right)
$$

\n
$$
\approx 1 + \left(2(x - 1) + 3(x - 1)^2 + (x - 1)^3\right)
$$

\n
$$
+ \frac{1}{2}\left(2(x - 1) + 3(x - 1)^2 + (x - 1)^3\right)^2
$$

\n
$$
+ \frac{1}{6}\left(2(x - 1) + 3(x - 1)^2 + (x - 1)^3\right)^3
$$

(no need to consider higher order terms because $u = 2(x-1) + 3(x-1)^2 + (x-1)^3$ is a multiple of $(x - 1)$ so any part of the kth power of u has at least kth order in $(x - 1)$. Expanding the powers and retaining only terms up to third order we get

$$
\exp(x^3 - x) \approx 1 + (2(x - 1) + 3(x - 1)^2 + (x - 1)^3)
$$

$$
+ \frac{1}{2} (4(x - 1)^2 + 12(x - 1)^3) + \frac{1}{6} (8(x - 1)^3)
$$

$$
= 1 + 2(x - 1) + 5(x - 1)^2 + 8\frac{1}{3}(x - 1)^3
$$

correct to third order.

(13) Expand $\exp(\cos 2x)$ to sixth order about $x = 0$. **Solution:** We already know that $\cos \theta \approx 1 - \frac{\theta^2}{2} + \frac{\theta^4}{24} - \frac{\theta^6}{720}$ correct to sixth order. Setting $\theta = 2x$ we get

$$
\exp(\cos 2x) \approx \exp\left(1 - 2\theta^2 + \frac{2}{3}\theta^4 - \frac{4}{45}\theta^6\right)
$$

= $e \cdot \exp\left(-2\theta^2 + \frac{2}{3}\theta^4 - \frac{4}{45}\theta^6\right)$

$$
\approx e \left[1 + \left(-2\theta^2 + \frac{2}{3}\theta^4 - \frac{4}{45}\theta^6\right) + \frac{1}{2}\left(-2\theta^2 + \frac{2}{3}\theta^4 - \frac{4}{45}\theta^6\right)^2 + \frac{1}{6}\left(-2\theta^2 + \frac{2}{3}\theta^4 - \frac{4}{45}\theta^6\right)^3\right]
$$

= $e \left[1 - 2\theta^2 + \frac{2}{3}\theta^4 - \frac{4}{45}\theta^6 + \frac{1}{2}\left(4\theta^4 - \frac{8}{3}\theta^6\right) - \frac{8}{6}\theta^6\right]$
= $e \left[1 - 2\theta^2 + 2\frac{2}{3}\theta^4 - \frac{124}{45}\theta^6\right]$
= $e - 2e \cdot \theta^2 + \frac{8e}{3}\theta^4 - \frac{124e}{45}\theta^6$,

correct to sixth order.

(14) Show that $\log \frac{1+x}{1-x} \approx 2(x+\frac{x^3}{3}+\frac{x^5}{5}+\cdots)$. Use this to get a good approximation to $\log 3$ via a careful choice of x.

Solution: Let $f(x) = \log(1+x)$. Then $f'(x) = \frac{1}{1+x}$, $f^{(2)}(x) = -\frac{1}{(1+x)^2}$, $f^{(3)}(x) = \frac{1\cdot 2}{(1+x)^3}$, $f^{(4)}(x) = -\frac{1 \cdot 2 \cdot 3}{(1+x)^4}$ and so on, so $f^{(k)}(x) = (-1)^{k-1} \cdot \frac{(k-1)!}{(1+x)^k}$ $\frac{(k-1)!}{(1+x)^k}$. We thus have that $f(0) = 0$ and for $k \ge 1$ that $f^{(k)}(0) = (-1)^{k-1}(k-1)!$ and $\frac{f^{(k)}(0)}{k!} = \frac{(-1)^{k-1}}{k}$ $\frac{1}{k}$. We conclude that

$$
\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots
$$

Plugging $-x$ we get:

$$
\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} \cdots
$$

so

$$
\log\frac{1+x}{1-x} = \log(1+x) - \log(1-x) = 2x + 2\frac{x^3}{3} + 2\frac{x^5}{5} + \cdots
$$

In particular

$$
\log 3 = \log \frac{1 + \frac{1}{2}}{1 - \frac{1}{2}} = 2\left(\frac{1}{2} + \frac{1}{24} + \frac{1}{160} + \dots\right) = 1 + \frac{1}{12} + \frac{1}{80} + \dots \approx 1.096
$$

(15) (2023 Piazza @389) Find the asymptotics as $x \to \infty$

 $($ a) $\sqrt{x^4 + 3x^3} - x^2$

 $\sqrt{x^2 + 3x^2 - x}$
Solution: Clearly as $x \to \infty \sqrt{x^4 + 3x^3} \sim$ √ $\overline{x^4} \sim x^2$ so this is about the cancellation and we need a more precise answer. Extracting the factor of x^2 from the square root we see

$$
\sqrt{x^4 + 3x^3} - x^2 = x^2 \sqrt{1 + \frac{3}{x}} - x^2 = x^2 \left(\sqrt{1 + \frac{3}{x}} - 1 \right).
$$

To understand the behaviour of $\sqrt{1 + \frac{3}{x}} - 1$ we notice that $\frac{3}{x}$ is a *small parameter*, and that $\sqrt{1 + u} \approx 1 + \frac{1}{2}u - \frac{1}{8}u^2$ correct to second order. We thus have

$$
\sqrt{x^4 + 3x^3} - x^2 \approx x^2 \left(1 + \frac{1}{2} \frac{3}{x} - \frac{1}{8} \frac{9}{x^2} - 1 \right)
$$

$$
\approx \frac{3}{2} x - \frac{9}{8}
$$

with further corrections being lower order. We conclude that this linear approximation would have been sufficient and that

$$
\sqrt{x^4 + 3x^3} - x^2 \sim \frac{3}{2}x
$$

as $x \to \infty$.
(b) $\sqrt[3]{x^6 - x^4} - \sqrt{x^4 - \frac{2}{3}x^2}$ **Solution:** Both roots are asymptotically x^2 . Using the linear approximation we find

$$
\sqrt[3]{x^6 - x^4} = x^2 \sqrt[3]{1 - \frac{1}{x^2}} \approx x^2 \left(1 - \frac{1}{3} \frac{1}{x^2}\right)
$$

and

$$
\sqrt{x^4 - \frac{2}{3}x^2} \approx x^2 \left(1 - \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{x^2}\right)
$$

which cancel exactly, so we need to go one order further. Since $(1+u)^{\alpha} \approx 1+\alpha u + \frac{\alpha(\alpha-1)}{2}$ $\frac{x-1)}{2}u^2 + \cdots$ as we can check by differentiation we see that as $x \to \infty$

$$
\sqrt{1+u} \approx 1 + \frac{1}{2}u - \frac{1}{8}u^2
$$

$$
\sqrt[3]{1+u} \approx 1 + \frac{1}{3}u - \frac{1}{9}u^2
$$

to second order, so

$$
\sqrt[3]{x^6 - x^4} - \sqrt{x^4 - \frac{2}{3}x^2} \approx x^2 \left[\left(1 - \frac{1}{3x^2} - \frac{1}{9x^4} \right) - \left(1 - \frac{1}{2} \frac{2}{3x^2} - \frac{4}{8 \cdot 9x^4} \right) \right]
$$

$$
\approx -\frac{1}{18x^2}
$$

with further lower-order terms, so

$$
\sqrt[3]{x^6-x^4}-\sqrt{x^4-\frac{2}{3}x^2}\sim -\frac{1}{18x^2}
$$

as $x \to \infty$ and in particular there is decay.

(16) Evaluate $\lim_{x\to 0} \frac{e^{-x^2/2} - \cos x}{x^4}$.

Solution: We know that $\cos x = 1 - \frac{x^2}{2} + \cdots$. Using the linear expansion $e^u \approx 1 + u$ we'd get $e^{-x^2/2} \approx 1-x^2/2$ which means the difference cancels to third order, so let's expand to fourth order. We get

$$
e^{-x^2/2} \approx 1 - \frac{x^2}{2} + \frac{1}{2} \left(\frac{x^2}{2}\right)^2 = 1 - \frac{x^2}{2} + \frac{x^4}{8}
$$

$$
\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{24}.
$$

Subtracting and dividing by x^4 we get

$$
\frac{e^{-x^2/2} - \cos x}{x^4} = \frac{1}{12}
$$

correct to 0th order, so this is the limit (expanding both functions to the next order would give the next correction).