Math 100A - WORKSHEET 10 TAYLOR EXPANSION

1. Taylor expansion

- (1) (Review) Use linear approximations to estimate:
 - (a) $\log \frac{4}{3}$ and $\log \frac{2}{3}$. Combine the two for an estimate of $\log 2$.
 - (b) $\sin 0.1 \text{ and } \cos 0.1.$
- (2) Let $f(x) = e^x$
 - (a) Find $f(0), f'(0), f^{(2)}(0), \cdots$
 - (b) Find a polynomial $T_0(x)$ such that $T_0(0) = f(0)$.

 - (c) Find a polynomial $T_0(x)$ such that $T_0(0) = f(0)$. (d) Find a polynomial $T_2(x)$ such that $T_2(0) = f(0)$ and $T'_1(0) = f'(0)$. (e) Find a polynomial $T_2(x)$ such that $T_2(0) = f(0)$, $T'_2(0) = f'(0)$ and $T_2^{(2)}(0) = f^{(2)}(0)$.

(3) Do the same with $f(x) = \log x$ about x = 1.

Let $c_k = \frac{f^{(k)}(a)}{k!}$. The *n*th order Taylor expansion of f(x) about x = a is the polynomial

$$T_n(x) = c_0 + c_1(x-a) + \dots + c_n(x-a)^n$$

(4) \star Find the 4th order MacLaurin expansion of $\frac{1}{1-x}$ (=Taylor expansion about x=0)

(5) Find the nth order MacLaurin expansion of $\cos x$, and approximate $\cos 0.1$ using the 3rd order expansion

(6) (Final, 2015) Let $T_3(x) = 24 + 6(x-3) + 12(x-3)^2 + 4(x-3)^3$ be the third-degree Taylor polynomial of some function f, expanded about a = 3. What is f''(3)?

(7) In special relativity we have the formula $E = \frac{mc^2}{\sqrt{1-v^2/c^2}}$ for the kinetic energy of a moving particle. Here m is the "rest mass" of the particle and c is the speed of light. Examine the behaviour of this formula for small velocities by expanding it to second order in the *small parameter* $x = v^2/c^2$. What is the 4th order expansion of the energy? Do you recognize any of the terms?

Near u=0: $\frac{1}{1-u}=1+u+u^2+u^3+u^4\cdots \\ \log(1+u)=u-\frac{u^2}{2}+\frac{u^3}{3}-\frac{u^4}{4}+\frac{u^5}{5}-\cdots \\ \sin u=u-\frac{1}{3!}u^3+\frac{1}{5!}u^5-\frac{1}{7!}u^7+\cdots \\ \cos u=1-\frac{1}{2!}u^2+\frac{1}{3!}u^3+\frac{1}{4!}u^4+\cdots \\ \cos u=1-\frac{1}{2!}u^2+\frac{1}{3!}u^3+\frac{1}{4!}u^4+\cdots \\ \cos u=1-\frac{1}{2!}u^2+\frac{1}{3!}u^3+\frac{1}{4!}u^4+\cdots \\ \cos u=1-\frac{1}{2!}u^2+\frac{1}{2!}u^2+\frac{1}{2!}u^4+\frac{1}{2!}u^4+\cdots \\ \cos u=1-\frac{1}{2!}u^2+\frac{1}{2!}u^4+\frac{1}{2!}u^4+\cdots \\ \cos u=1-\frac{1}{2!}u^2+\frac{1}{2!}u^2+\frac{1}{2!}u^4+\cdots \\ \cos u=1-\frac{1}{2!}u^2+\frac{1}{2!}u^2+\frac{1}{2!}u^4+\cdots \\ \cos u=1-\frac{1}{2!}u^2+\frac{1}{2!}u^2+\frac{1}{2!}u^4+\cdots \\ \cos u=1-\frac{1}{2!}u^2+\frac{1}{2!}u^2+\frac{1}{2!}u^2+\frac{1}{2!}u^4+\cdots \\ \cos u=1-\frac{1}{2!}u^2+\frac{1}{2$

(8) (Final, 2016) Use a 3rd order Taylor approximation to estimate sin 0.01. Then find the 3rd order Taylor expansion of $(x+1)\sin x$ about x=0.

(9) Find the 3rd order Taylor expansion of $\sqrt{x} - \frac{1}{4}x$ about x = 4.

(10) Find the 8th order expansion of $f(x) = e^{x^2} - \frac{1}{1+x^3}$. What is $f^{(6)}(0)$?

(11) Find the quartic expansion of $\frac{1}{\cos 3x}$ about x = 0.

- (12) (Change of variable/rebasing polynomials)
 - (a) Find the Taylor expansion of the polynomial $x^3 x$ about a = 1 using the identity x = 1 + (x 1).

(b) Expand e^{x^3-x} to third order about a=1.

(13) Expand $\exp(\cos 2x)$ to sixth order about x = 0.

(14) Show that $\log \frac{1+x}{1-x} \approx 2(x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots)$. Use this to get a good approximation to $\log 3$ via a careful choice of x.

(15) (2023 Piazza @389) Find the asymptotics as $x \to \infty$ (a) $\sqrt{x^4 + 3x^3} - x^2$

(b)
$$\sqrt[3]{x^6 - x^4} - \sqrt{x^4 - \frac{2}{3}x^2}$$

(16) Evaluate $\lim_{x\to 0} \frac{e^{-x^2/2}-\cos x}{x^4}$.