
Lior Silberman’s Math 412: Problem Set 2 (due 23/1/2025)

Practice
M1 Let {Vi}i∈I be a family of vector spaces, and let Ai ∈ End(Vi) = Hom(Vi,Vi).

(a) Show that there is a unique element
⊕

i∈I Ai ∈ End(
⊕

i∈I Vi) whose restriction to the image
of Vi in the sum is Ai.

(b) Carefully show that the matrix of
⊕

i∈I Ai in an appropriate basis is block-diagonal.
Direct sums

1. (Counterexamples)
(a) Construct a vector space W and three subspaces U,V1,V2 ⊂W such that W = U ⊕V1 =

U⊕V2 (internal direct sums) but V1 ̸=V2.
(b) Give an example of V1,V2,V3 ⊂W where Vi∩Vj = {0} for every i ̸= j yet the sum V1 +

V2 +V3 is not direct.

2. (Diagonability)
DEF A square matrix A ∈ Mn(F) is diagonable (over F) if there exists an invertible matrix

S ∈ GLn(F) such that SAS−1 is diagonal.
(a) Show that A ∈ Mn(F) is diagonable iff there exist n one-dimensional subspaces Vi ⊂ Fn

such Fn =
⊕n

i=1Vi and A(Vi)⊂Vi for all i.
(b) Let T ∈ EndF(V ). For each λ ∈ F let Vλ = Ker(T −λ ) be the corresponding eigenspace.

Let SpecF(T ) = {λ ∈ F |Vλ ̸= {0}} be the set of eigenvalues of T . Show that the sum
∑λ∈SpecF (T )Vλ is direct.

(c) Call T ∈ EndF(V ) diagonable if its matrix with respect to some basis is diagonable. Show
that T is diagonable iff ∑λ∈SpecF (T )Vλ =V .

Direct products

CONSTRUCTION. Let {Vi}i∈I be a (possibly infinite) family of vector spaces.
(1) The external direct product ∏i∈I Vi is the vector space whose underlying space is
{ f : I→

⋃
i∈I Vi | ∀i : f (i) ∈Vi} with the operations of pointwise addition and scalar mul-

tiplication.
(2) The external direct sum

⊕
i∈iVi is the subspace of finitely supported functions{

f ∈∏i∈I Vi | #
{

i | f (i) ̸= 0Vi

}
< ∞

}
.

3. (Tedium)
(a) Show that the direct product is a vector space
(b) Show that the direct sum is a subspace.
(c) Let πi : ∏ j∈I Vj→Vi be the projection on the ith coordinate (πi( f ) = f (i)).

Show that πi are surjective linear maps.
(d) Let σi : Vi→∏i∈I Vi be the map such that σi(v)( j) =

{
v j = i
0 j ̸= i

.

Show that σi are injective linear maps.

SUPP (Direct sums) Show that
⊕

i∈I Vi is the internal direct sum of the images σi(Vi) and conclude
that direct sums of vector spaces exist.
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4. (Meat)
(a) Let Z be another vector space, and suppose we have for each i a linear map gi ∈Hom(Z,Vi).

Show that there is a unique g ∈ Hom(Z,∏iVi) such that πi ◦g = gi for all i.
DEF A vector space P equipped with maps π ′i : P→Vi with the property of part (a) is called a

direct product of the Vi.
RMK In this language part (a) shows that direct products exist.
(b) Show that any two direct products are uniquely isomorphic compatibly with the projection

maps.
(c) Show that if P is a direct product then the maps π ′i are surjective.

Quotients

5. Write Mn(F) for the space of n×n matrices with entries in F . Let sln(F)= {A ∈Mn(F) | TrA = 0}
and let pgln(F) = Mn(F)/F · In (matrices modulu scalar matrices). Suppose that n is invertible
in F (equivalently, that the characteristic of F does not divide n). Show that the quotient map
Mn(F)→ pgln(F) restricts to an isomorphism sln(F)→ pgln(F).

6. For f : Rn→ R the Lipschitz constant of f is the (possibly infinite) number

∥ f∥Lip
def
= sup

{
| f (x)− f (y)|
|x− y|

| x,y ∈ Rn,x ̸= y
}
.

Let Lip(Rn) =
{

f : Rn→ R | ∥ f∥Lip < ∞

}
be the space of Lipschitz functions.

PRA Show that f ∈ Lip(Rn) iff there is C such that | f (x)− f (y)| ≤C |x− y| for all x,y ∈ Rn.
(a) Show that Lip(Rn) is a subspace of the space of functions on Rn.
(b) Let 1 be the constant function 1. Show that ∥ f∥Lip descends to a function on Lip(Rn)/R1.
(c) For f̄ ∈ Lip(Rn)/R1 show that

∥∥ f̄
∥∥

Lip = 0 iff f̄ = 0.

Supplement: Quotients and complements
A. (Quotients and complements) Let W be a vector space and let U ⊂W be a subspace.

(a) Show that there exists another subspace V ⊂W such that W =U⊕V .
DEF We say V is a complement for U (in W ).
(b) Let V be a complement for U and let π : W →W/U be the quotient map. Show that the

restriction of π to V is an isomorphism.
(c) Conclude that if V1,V2 are both complements then V1 ≃V2 (c.f. problem P2)
REM A subspace will have many complements, while the quotient is “canonical”.

B. (Structure of quotients) Let V ⊂W with quotient map π : W →W/V .
(a) Show that mapping U 7→ π(U) gives a bijection between (1) the set of subspaces of W

containing V and (2) the set of subspaces of W/V .
(b) (The universal property) Let Z be another vector space. Show that f 7→ f ◦π gives a linear

bijection Hom(W/V,Z)→{g ∈ Hom(W,Z) |V ⊂ Kerg}.
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Supplement: more universal properties

C. A free abelian group is a pair (F,S) where F is an abelian group, S ⊂ F , and (“universal
property”) for any abelian group A and any (set) map f : S→ A there is a unique group homo-
morphism f̄ : G→ A such that f̄ (s) = f (s) for any s ∈ S. The size #S is called the rank of the
free abelian group.
(a) Show that (Z,{1}) is a free abelian group.
(b) Show that

(
Zd,{ek}

d
k=1

)
is a free abelian group.

(c) Let (F,S) ,(F ′,S′) be free abelian groups and let f : S→ S′ be a bijection. Show that f
extends to a unique isomorphism f̄ : F → F ′.

(d) Let (F,S) be a free abelian group. Show that S generates F .
(e) Show that every element of a free abelian group has infinite order.

D. Let {Gi}i∈I be groups. Show that the Cartesian product ∏i Gi with coordinate-wise operations
and with the natural projections π j : ΠiGi→ G j is a direct product, in the sense that it has the
universal property of problem 4 (with “vector spaces” replaced by “groups” and “linear maps”
by “group homomorphisms”.

RMK The “direct sum” object for groups is much more complicated. It is called the “free product”.

Supplement: Lipschitz functions

DEFINITION. Let (X ,dX) ,(Y,dY ) be metric spaces, and let f : X → Y be a function. We say f
is a Lipschitz function (or is “Lipschitz continuous”) if for some C and for all x,x′ ∈ X we have

dY
(

f (x), f (x′)
)
≤CdX

(
x,x′
)
.

E. Write Lip(X ,Y ) for the space of Lipschitz continuous functions; for f ∈ Lip(X ,Y ) write
∥ f∥Lip = sup

{
dY ( f (x), f (x′))

dX (x,x′)
| x ̸= x′ ∈ X

}
for its Lipschitz constant.

(a) Show that Lipschitz functions are, indeed, continuous (in fact uniformly continuous).
(b) Suppose Z is another metric space and that g : Y → Z is also Lipschitz. Show that g◦ f is

Lipschitz and that ∥g◦ f∥Lip ≤ ∥g∥Lip∥ f∥Lip.
(c) Let f ∈C1(Rn;R). Show that ∥ f∥Lip = sup{|∇ f (x)| : x ∈ Rn}.
(d) Generalize problem 6 to the case of Lip(X ,R) where X is any metric space.
(e) Show that Lip(X ,R)/R1 is a complete normed space for all metric spaces X .
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https://en.wikipedia.org/wiki/Free_product

