
Lior Silberman’s Math 412: Problem Set 9

Practice: Norms

P1. Call two norms ∥·∥1 ,∥·∥2 on V equivalent if there are constants c,C > 0 such that for all v∈V ,

c∥v∥1 ≤ ∥v∥2 ≤C∥v∥1 .

(a) Show that this is an equivalence relation.

(b) Suppose the two norms are equivalent and that limn→∞ ∥vn∥1 = 0 (that is, that vn
∥·∥1−−−→
n→∞

0).

Show that limn→∞ ∥vn∥2 = 0 (that is, that vn
∥·∥2−−−→
n→∞

0).
(*c) Show the converse of (b) also holds. In other words, two norms are equivalent iff they

determine the same notion of convergence.

P2. Let T ∈ HomF(U,V ). Show that

inf{M ≥ 0 |M is a bound on T}= sup
{
∥T u∥V
∥u∥U

: u ̸= 0
}
= sup{∥T u∥V : ∥u∥U = 1} .

(recall that this number is called the operator norm of T ).
Norms

1. Let f (x) = x2 on [−1,1].

(a) For 1≤ p < ∞. Calculate ∥ f∥Lp =
(∫ 1
−1 | f (x)|

p dx
)1/p

.
(b) Calculate ∥ f∥L∞ = sup{| f (x)| :−1≤ x≤ 1}. Check that limp→∞ ∥ f∥Lp = ∥ f∥

∞
.

(c) Calculate ∥ f∥H2 =
(
∥ f∥2

L2 +∥ f ′∥2
L2 +∥ f ′′∥2

L2

)1/2
.

SUPP Show that the H2 norm is equivalent to the norm
(
∥ f∥2

L2 +∥ f ′′∥2
L2

)1/2
.

2. Let A ∈Mn(R). Write ∥A∥p for its ℓp→ ℓp operator norm.
(a) Show that ∥A∥1 = max j ∑

n
i=1

∣∣ai j
∣∣.

(b) Show that ∥A∥
∞
= maxi ∑

n
j=1

∣∣ai j
∣∣.

RMK See below on duality.

3. The spectral radius of A∈Mn(C) is the magnitude of its largest eigenvalue: ρ(A)=max{|λ |λ ∈ Spec(A)}.

(a) Show that for any norm ∥·∥ on Cn and any A ∈Mn(C), ρ(A)≤ ∥A∥.
(b) Suppose that A is diagonable. Show that there is a norm on Cn such that ∥A∥= ρ(A).
(*c) Show that if A is Hermitian then ∥A∥2 = ρ(A).
(d) Show that if A,B are similar, and ∥·∥ is any norm in Cn, then limm→∞ ∥Am∥1/m = limm→∞ ∥Bm∥1/m

(in the sense that, if one limit exists, then so does the other, and they are equal).
(**e) Show that for any norm on Cn and any A ∈Mn(C), we have limm→∞ ∥Am∥1/m = ρ(A).
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4. The Hilbert–Schmidt norm on Mn(C) is ∥A∥HS =
(

∑
n
i, j=1

∣∣ai j
∣∣2)1/2

.

PRAC Verify that ∥A∥HS =
(
Tr(A†A)

)1/2.
(a) Show that ∥·∥HS is, indeed, a norm.
(b) Show that ∥A∥2 ≤ ∥A∥HS.

**5. Let U,V be normed vector spaces and let T ∈ Hom(U,V ) be continuous. Show that T is
bounded.

Extra credit: Norms and constructions

6. (Direct sum) Let {(Vi,∥·∥i)}
n
i=1 be normed spaces, and let 1 ≤ p ≤ ∞. For v = (vi) ∈

⊕n
i=1Vi

define

∥v∥=

(
n

∑
i=1
∥vi∥

p
i

)1/p

.

Show that this defines a norm on
⊕n

i=1Vi. You may use the fact that ℓp norm on Rn is a norm
(problem A below).
DEF This operation is called the Lp-sum of the normed spaces.

7. (Quotient) Let (V,∥·∥) be a normed space, and let W ⊂V be a subspace. For v+W ∈V/W set
∥v+W∥V/W = inf{∥v+w∥ : w ∈W}.
(a) Show that ∥·∥V/W is 1-homogenous and satisfies the triangle inequality (a “seminorm”).
(b) Show that ∥v+W∥V/W = 0 iff v is in the closure of W , so that ∥·∥V/W is a norm iff W is

closed in V .

For duality in norms see supplementary problems A, B. Norming tensor product spaces is compli-
cated.

Supplementary problems: duality
A. (ℓp norms) Let 1 < p < ∞ and recall that we set ∥v∥p = (∑n

i=1 |vi|p)1/p if v ∈ Rn. Define the
dual exponent q by 1

p +
1
q = 1. We will prove that ∥·∥p is, indeed, a norm.

(a) Show that ∥αv∥p = |α|∥v∥p.
(b) Prove that if a,b≥ 0 then ab≤ ap

p + bq

q .
(c) Using (a), obtain Hölder’s inequality: for all u,v ∈ Rn we have |⟨u,v⟩| ≤ ∥u∥p ∥v∥q (std

inner product).
Hint: use (a) to rescaple u,v to have norm 1,

(d) Show that
∥u∥p = sup

{
⟨u,v⟩ | ∥v∥q = 1

}
.

(e) Obtain Minkowsky’s inequality∥∥u+u′
∥∥

p ≤ ∥u∥p +
∥∥u′
∥∥

p

and conclude that ∥·∥p is a norm.
(f) Extend the results to Cn and to the space of sequences ℓp(N).
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B. Let V be a normed space. The continuous dual is V ∗=Homb(V,F), equipped with the operator
norm.
(a) Let V = Rn and identify V ∗ with Rn via the usual pairing. Show that the norm on V ∗ dual

to the ℓ1-norm is the ℓ∞ norm and vice versa. Show that the ℓ2-norm is self-dual.
(b) Use problem A to show that the ℓq norm is the dual of the ℓp norm when q is the dual

exponent.
(c) Let U be another normed space and let T ∈Homb(U,V ). Consider the algebraic dual map

T ′ : V ′→U ′ as defined earlier in this course. Show that for every v∗ ∈V ∗ ⊂V ′, T ′v∗ ∈U∗

(that is, T ′v∗ is bounded). We write T ∗ : V ∗→U∗ for the dual map restricted to continuous
functionals.

(d) Show that T ∗ is itself bounded, in that ∥T ∗∥V ∗→U∗ ≤ ∥T∥U→V .
RMK In fact ∥T ∗∥ = ∥T∥ be showing this requires showing there exist enough linear func-

tionals on V , which is the Hahn–Banach Theorem.

C. A seminorm on a vector space V is a map V → R≥0 that satisfies all the conditions of a norm
except that it can be zero for non-zero vectors.
(a) Show that for any f ∈V ′, ϕ(v) = | f (v)| is a seminorm.
(b) Construct a seminorm on R2 not of this form.
(c) Let Φ be a family of seminorms on V which is pointwise bounded. Show that ϕ̄(v) =

sup{ϕ(v) | ϕ ∈Φ} is again a seminorm.
(d) Let ∥·∥ : V → R≥0 be a seminorm. Show that W = {v ∈V | ∥v∥= 0} is a subspace, that

the seminorm is constant on cosets in V/W , and that the induced map on V/W is a norm.

Supplementary problems: Completeness
D. Let {vn}

∞

n=1 be a Cauchy sequence in a normed space. Show that {∥vn∥}
∞

n=1⊂R≥0 is a Cauchy
sequence.

E. (The completion) Let (X ,d) be a metric space.
(a) Let {xn} ,{yn} ⊂ X be two Cauchy sequences. Show that {d(xn,yn)}∞

n=1 ⊂ R is a Cauchy
sequence.

DEF Let
(
X̃ , d̃

)
denote the set of Cauchy sequences in X with the distance d̃

(
x,y
)
= limn→∞ d (xn,yn).

(b) Show that d̃ satisfies all the axioms of a metric except that it can be non-zero for distinct
sequences.

(c) Show that the relation x∼ y ⇐⇒ d̃
(
x,y
)
= 0 is an equivalence relation.

(d) Let X̂ = X̃/ ∼ be the set of equivalence classes. Show that d̃ : X̃ × X̃ → R≥0 descends to
a well-defined function d̂ : X̂× X̂ → R≥0 which is a metric.

(e) Show that
(
X̂ , d̂

)
is a complete metric space.

DEF For x ∈ X let ι(x) ∈ X̂ be the equivalence class of the constant sequence x.
(f) Show that ι : X → X̂ is an isometric embedding with dense image.
(g) (Universal property) Show that for any complete metric space (Y,dY ) and any uniformly

continuous f : X → Y there is a unique extension f̂ : X̂ → Y such that f̂ ◦ ι = f .
(h) Show that triples

(
X̂ , d̂, ι

)
satisfying the property of (g) are unique up to a unique isomor-

phism.
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F. (Complete fields) An absolute value on a field F is a map |·| : F → R≥0 such that (a) |xy| =
|x| |y| (b) |x|= 0↔ x = 0 (c) |x+ y| ≤ |x|+ |y|.
DEF Fix a prime number p. For x ∈Q× write x = a

b pk for some non-zero a,b ∈ Z prime to p
and k ∈ Z and set |x|p = p−k (also, |0|p = 0).

(a) Show that |·|p is an absolute value on Q satisfying the ultrametric inequality |x+ y|p ≤
max

{
|x|p , |y|p

}
.

(b) Let |·| be an absolute value on F . Show that d(x,y) = |x− y| is a metric on F .
(c) Show that (with respect to the metric of (b)) the absolute value is uniformly continuous

F → R≥0, addition is a uniformly continuous map F ×F → F , and that for any r > 0
multiplication is a uniformly continuous map B(0,r)×B(0,r)→ B(0,r2).

(d) Let F̂ be the completion of F wrt |·|. Show that the absolute value and the operations of
addition and multiplication extend to maps |·| : F̂ → R≥0, +, · : F̂ × F̂ → F̂ giving it the
structure of a ring with an absolute value |·|.

(e) Show that every non-zero element of F̂ has an inverse, that is that F̂ is a field.
DEF Write Qp for the completion of Qwrt |·|.
FACT Closed bounded sets in Qp are compact, as in R.
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