Lior Silberman’s Math 412: Problem Set 9

Practice: Norms

P1. Call two norms |||, |||, on V equivalent if there are constants ¢,C > 0 such that forallv € V,
cllvlly <llully <Clll, -

(a) Show that this is an equivalence relation.

11113

(b) Suppose the two norms are equivalent and that lim,, .. ||v,||; = O (that is, that v, —— 0).
n—yoo

Show that lim,,_se ||v,, ||, = O (that is, that v, % 0).
n—oo

(*c) Show the converse of (b) also holds. In other words, two norms are equivalent iff they
determine the same notion of convergence.

P2. Let T € Homp(U,V). Show that

| Tull
Viu#0p =sup{||Tully : [|ull, =1} .
||EHU

(recall that this number is called the operator norm of T).

inf{M > 0| M is abound on T'} :sup{

Norms
1. Let f(x) =x%>on[—1,1].

1
(a) For 1 < p <eo. Calculate || f||,, = (fll |f(x)]pdx>
(b) Calculate || f|| ;- = sup{|f(x)| : =1 <x < 1}. Check that limp_e || f]| 1 = || f]] -

_ 2 /112 17112 1/2
(c) Calculate || fl|g2 = (Il + 1 12+ 11 M2) -

1/2
SUPP Show that the H? norm is equivalent to the norm (H fl+If NHiz) :

/p

2. LetA € My(R). Write [|Al|, for its £7 — (7 operator norm.
(a) Show that [|A[|; = max; Y| |a;j|.
(b) Show that [|A[,, = max; ¥_, |a;j|.
RMK See below on duality.

3. The spectral radius of A € M,,(C) is the magnitude of its largest eigenvalue: p(A) =max {|A|A € Spec(A)}.

(a) Show that for any norm ||-|| on C" and any A € M,,(C), p(A) < ||A]|.

(b) Suppose that A is diagonable. Show that there is a norm on C” such that [|[A|| = p(A).

(*c) Show that if A is Hermitian then ||A||, = p(A).

(d) Show thatif A, B are similar, and ||-|| is any norm in C", then lim,—e [|A™|| /" = lim;, e || B"||
(in the sense that, if one limit exists, then so does the other, and they are equal).

(**e) Show that for any norm on C" and any A € M,,(C), we have lim,_, ||A™|| 1/m p(A).

1/m 1/m
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1/2
4. The Hilbert-Schmidt norm on My(C) is ||A|lyg = ( " jf) .

PRAC Verify that |||, = (Tr(A7A))".

(a) Show that |||y is, indeed, a norm.
(b) Show that |||, < [|A]ls.

**5. Let U,V be normed vector spaces and let 7 € Hom(U,V) be continuous. Show that T is
bounded.

Extra credit: Norms and constructions

6. (Direct sum) Let {(V;,]|-]|;)}"_, be normed spaces, and let 1 < p < oo. Forv = (v;) € BiL, V;

define
n 1/p
[v]| = (Z ||zi||f> :
i=1

Show that this defines a norm on @_; V;. You may use the fact that ¥ norm on R” is a norm
(problem A below).
DEF This operation is called the L”-sum of the normed spaces.

7. (Quotient) Let (V,||-]|) be a normed space, and let W C V be a subspace. Forv+W €V /W set
[v+Willy y =inf{[[v+w[ :we W}
(a) Show that [[-[| y is 1-homogenous and satisfies the triangle inequality (a “seminorm”).
(b) Show that [[v+ W/l = 0 iff v is in the closure of W, so that |[-[|;,  is a norm iff W is

closedin V.

For duality in norms see supplementary problems A, B. Norming tensor product spaces is compli-
cated.

Supplementary problems: duality
A. (£P norms) Let 1 < p < co and recall that we set ||v[|, = (X7, \v,-]p)l/p if v € R". Define the
dual exponent g by 1—17 + Cl] = 1. We will prove that [-[| , is, indeed, a norm.
(a) Show that [awvl|, = |e[|[v][ -
(b) Prove that if a,b > 0 then ab < 7” + %‘1
(c) Using (a), obtain Holder’s inequality: for all u,v € R" we have |[(u,v)| < [[ul|, [|v]|, (std
inner product).

Hint: use (a) to rescaple u,v to have norm 1,
(d) Show that

Jul, = sup { u,v) | vl =1}

(e) Obtain Minkowsky’s inequality
e+, < Nl +[Ja],

and conclude that [[-|| , is a norm.
(f) Extend the results to C" and to the space of sequences ¢”(N).
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B. LetV be anormed space. The continuous dual is V* = Homy, (V, F), equipped with the operator

norm.

(a) LetV =R" and identify V* with R" via the usual pairing. Show that the norm on V* dual
to the ¢'-norm is the ¢~ norm and vice versa. Show that the /2-norm is self-dual.

(b) Use problem A to show that the ¢4 norm is the dual of the /7 norm when ¢ is the dual
exponent.

(c) Let U be another normed space and let 7 € Homy, (U, V). Consider the algebraic dual map
T': V' — U’ as defined earlier in this course. Show that for every v € V* Cc V/, T'v* € U*
(that is, T'v* is bounded). We write T*: V* — U* for the dual map restricted to continuous

functionals.
(d) Show that T* is itself bounded, in that || 7%||,«_,« < [|T|ly_v-
RMK In fact ||T*|| = ||T|| be showing this requires showing there exist enough linear func-

tionals on V, which is the Hahn—Banach Theorem.

C. A seminorm on a vector space V is a map V — R> that satisfies all the conditions of a norm

except that it can be zero for non-zero vectors.

(a) Show that for any f € V', @(v) = |f(v)| is a seminorm.

(b) Construct a seminorm on R? not of this form.

(c) Let ® be a family of seminorms on V which is pointwise bounded. Show that ¢(v) =
sup{@(v) | ¢ € P} is again a seminorm.

(d) Let||:||: V — R>p be a seminorm. Show that W = {v € V | ||v|| = 0} is a subspace, that
the seminorm is constant on cosets in V /W, and that the induced map on V /W is a norm.

Supplementary problems: Completeness

D. Let{v,} _, beaCauchy sequence in a normed space. Show that {||v,||},"_; C R is a Cauchy
sequence.

E. (The completion) Let (X,d) be a metric space.

(a) Let {x,},{yn} C X be two Cauchy sequences. Show that {d(x,,y,)},_; C R is a Cauchy
sequence.

DEF Let (X , d—) denote the set of Cauchy sequences in X with the distance d ()_c, X) =lim, e d (X5, Y)-

(b) Show that d satisfies all the axioms of a metric except that it can be non-zero for distinct
sequences.

(c) Show that the relation x ~ y <= d ()_c, X) = 0 is an equivalence relation.

(d) Let X = X/ ~ be the set of equivalence classes. Show that d: X x X — R~ descends to
a well-defined function d: X x X — Rx( which is a metric.

(e) Show that (X , dh) is a complete metric space.

DEF For x € X let 1(x) € X be the equivalence class of the constant sequence x.

(f) Show that 1: X — X is an isometric embedding with dense image.

(2) (Universal property) Show that for any complete metric space (Y,dy) and any uniformly
continuous f: X — Y there is a unique extension f: X — ¥ such that fo1 = f.

(h) Show that triples ()? .d, l) satisfying the property of (g) are unique up to a unique isomor-
phism.
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F. (Complete fields) An absolute value on a field F is a map |-| : F — R>¢ such that (a) |xy| =
x| [yl (0) x| = 0> x=0(c) |x+y[ < |x|+yl.
DEF Fix a prime number p. For x € Q™ write x = } pF for some non-zero a,b € Z prime to p
and k € Z and set |x[, = p~* (also, 0], = 0).
(a) Show that |-[, is an absolute value on Q satisfying the ultrametric inequality |x+y|, <

max {Jx],., 1y, }.

(b) Let |-| be an absolute value on F. Show that d(x,y) = |x —y| is a metric on F.

(c) Show that (with respect to the metric of (b)) the absolute value is uniformly continuous
F — R, addition is a uniformly continuous map F' X F' — F, and that for any r > 0
multiplication is a uniformly continuous map B(0,) x B(0,r) — B(0,r?).

(d) Let F be the completion of F wrt |-|. Show that the absolute value and the operations of
addition and multiplication extend to maps |-| : £ — Rxq, +,-: F x F — F giving it the
structure of a ring with an absolute value |-|.

(e) Show that every non-zero element of F' has an inverse, that is that F is a field.

DEF Write Q, for the completion of Qwrt |-|.

FACT Closed bounded sets in QQ,, are compact, as in R.
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