Lior Silberman's Math 412: Problem Set 9

Practice: Norms

P1. Call two norms $\|\cdot\|_1$, $\|\cdot\|_2$ on V equivalent if there are constants c, C > 0 such that for all $\underline{v} \in V$,

$$c \|\underline{v}\|_1 \le \|\underline{v}\|_2 \le C \|\underline{v}\|_1.$$

- (a) Show that this is an equivalence relation.
- (b) Suppose the two norms are equivalent and that $\lim_{n\to\infty} \|\underline{v}_n\|_1 = 0$ (that is, that $\underline{v}_n \xrightarrow[n\to\infty]{} \underline{0}$). Show that $\lim_{n\to\infty} \|\underline{v}_n\|_2 = 0$ (that is, that $\underline{v}_n \xrightarrow[n\to\infty]{} \underline{0}$).
- (*c) Show the converse of (b) also holds. In other words, two norms are equivalent iff they determine the same notion of convergence.
- P2. Let $T \in \text{Hom}_F(U, V)$. Show that

$$\inf\{M \ge 0 \mid M \text{ is a bound on } T\} = \sup\left\{\frac{\|T\underline{u}\|_V}{\|\underline{u}\|_U} : \underline{u} \ne 0\right\} = \sup\{\|T\underline{u}\|_V : \|\underline{u}\|_U = 1\}.$$

(recall that this number is called the *operator norm* of *T*).

Norms

- 1. Let $f(x) = x^2$ on [-1, 1].
 - (a) For $1 \le p < \infty$. Calculate $||f||_{L^p} = \left(\int_{-1}^1 |f(x)|^p \, \mathrm{d}x\right)^{1/p}$. (b) Calculate $||f||_{L^\infty} = \sup\{|f(x)|: -1 \le x \le 1\}$. Check that $\lim_{p \to \infty} ||f||_{L^p} = ||f||_{\infty}$.

 - (c) Calculate $||f||_{H^2} = (||f||_{L^2}^2 + ||f'||_{L^2}^2 + ||f''||_{L^2}^2)^{1/2}$.

SUPP Show that the H^2 norm is equivalent to the norm $\left(\|f\|_{L^2}^2 + \|f''\|_{L^2}^2\right)^{1/2}$.

- 2. Let $A \in M_n(\mathbb{R})$. Write $||A||_p$ for its $\ell^p \to \ell^p$ operator norm.
 - (a) Show that $||A||_1 = \max_j \sum_{i=1}^n |a_{ij}|$.
 - (b) Show that $||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$.

RMK See below on duality.

- 3. The *spectral radius* of $A \in M_n(\mathbb{C})$ is the magnitude of its largest eigenvalue: $\rho(A) = \max\{|\lambda| \lambda \in \operatorname{Spec}(A)\}$.
 - (a) Show that for any norm $\|\cdot\|$ on \mathbb{C}^n and any $A \in M_n(\mathbb{C})$, $\rho(A) \leq \|A\|$.
 - (b) Suppose that A is diagonable. Show that there is a norm on \mathbb{C}^n such that $||A|| = \rho(A)$.
 - (*c) Show that if *A* is Hermitian then $||A||_2 = \rho(A)$.
 - (d) Show that if A, B are similar, and $\|\cdot\|$ is any norm in \mathbb{C}^n , then $\lim_{m\to\infty} \|A^m\|^{1/m} = \lim_{m\to\infty} \|B^m\|^{1/m}$ (in the sense that, if one limit exists, then so does the other, and they are equal).
 - (**e) Show that for any norm on \mathbb{C}^n and any $A \in M_n(\mathbb{C})$, we have $\lim_{m \to \infty} ||A^m||^{1/m} = \rho(A)$.

4. The *Hilbert–Schmidt* norm on $M_n(\mathbb{C})$ is $||A||_{HS} = \left(\sum_{i,j=1}^n |a_{ij}|^2\right)^{1/2}$.

PRAC Verify that $||A||_{HS} = (\operatorname{Tr}(A^{\dagger}A))^{1/2}$. (a) Show that $||\cdot||_{HS}$ is, indeed, a norm.

- (b) Show that $||A||_2 \le ||A||_{HS}$.
- **5. Let U,V be normed vector spaces and let $T \in \text{Hom}(U,V)$ be continuous. Show that T is bounded.

Extra credit: Norms and constructions

6. (Direct sum) Let $\{(V_i, \|\cdot\|_i)\}_{i=1}^n$ be normed spaces, and let $1 \le p \le \infty$. For $\underline{v} = (\underline{v}_i) \in \bigoplus_{i=1}^n V_i$ define

$$\|\underline{\mathbf{v}}\| = \left(\sum_{i=1}^n \|\underline{\mathbf{v}}_i\|_i^p\right)^{1/p}.$$

Show that this defines a norm on $\bigoplus_{i=1}^n V_i$. You may use the fact that ℓ^p norm on \mathbb{R}^n is a norm (problem A below).

DEF This operation is called the L^p -sum of the normed spaces.

- 7. (Quotient) Let $(V, \|\cdot\|)$ be a normed space, and let $W \subset V$ be a subspace. For $v + W \in V/W$ set $\|\underline{v} + W\|_{V/W} = \inf\{\|\underline{v} + \underline{w}\| : \underline{w} \in W\}.$
 - (a) Show that $\|\cdot\|_{V/W}$ is 1-homogenous and satisfies the triangle inequality (a "seminorm").
 - (b) Show that $\|\underline{v} + W\|_{V/W} = 0$ iff v is in the closure of W, so that $\|\cdot\|_{V/W}$ is a norm iff W is closed in V.

For duality in norms see supplementary problems A, B. Norming tensor product spaces is complicated.

Supplementary problems: duality

- A. $(\ell^p \text{ norms})$ Let $1 and recall that we set <math>\|\underline{v}\|_p = (\sum_{i=1}^n |v_i|^p)^{1/p}$ if $\underline{v} \in \mathbb{R}^n$. Define the dual exponent q by $\frac{1}{p} + \frac{1}{q} = 1$. We will prove that $\|\cdot\|_p$ is, indeed, a norm.
 - (a) Show that $\|\alpha \underline{v}\|_p = |\alpha| \|\underline{v}\|_p$.
 - (b) Prove that if $a, b \ge 0$ then $ab \le \frac{a^p}{p} + \frac{b^q}{q}$.
 - (c) Using (a), obtain *Hölder's inequality*: for all $\underline{u},\underline{v} \in \mathbb{R}^n$ we have $|\langle \underline{u},\underline{v}\rangle| \leq ||\underline{u}||_p ||\underline{v}||_q$ (std inner product).

Hint: use (a) to rescaple u, v to have norm 1,

(d) Show that

$$\|\underline{u}\|_p = \sup \left\{ \langle \underline{u}, \underline{v} \rangle \mid \|\underline{v}\|_q = 1 \right\}.$$

(e) Obtain *Minkowsky's inequality*

$$\left\|\underline{u} + \underline{u}'\right\|_p \le \left\|\underline{u}\right\|_p + \left\|\underline{u}'\right\|_p$$

and conclude that $\|\cdot\|_p$ is a norm.

(f) Extend the results to \mathbb{C}^n and to the space of sequences $\ell^p(\mathbb{N})$.

- B. Let *V* be a normed space. The *continuous dual* is $V^* = \text{Hom}_b(V, F)$, equipped with the operator norm.
 - (a) Let $V = \mathbb{R}^n$ and identify V^* with \mathbb{R}^n via the usual pairing. Show that the norm on V^* dual to the ℓ^1 -norm is the ℓ^∞ norm and vice versa. Show that the ℓ^2 -norm is self-dual.
 - (b) Use problem A to show that the ℓ^q norm is the dual of the ℓ^p norm when q is the dual exponent.
 - (c) Let U be another normed space and let $T \in \operatorname{Hom}_{\mathsf{b}}(U,V)$. Consider the algebraic dual map $T' \colon V' \to U'$ as defined earlier in this course. Show that for every $\underline{v}^* \in V^* \subset V'$, $T'\underline{v}^* \in U^*$ (that is, $T'\underline{v}^*$ is bounded). We write $T^* \colon V^* \to U^*$ for the dual map restricted to continuous functionals.
 - (d) Show that T^* is itself bounded, in that $||T^*||_{V^* \to U^*} \le ||T||_{U \to V}$.
 - RMK In fact $||T^*|| = ||T||$ be showing this requires showing there exist enough linear functionals on V, which is the Hahn–Banach Theorem.
- C. A *seminorm* on a vector space V is a map $V \to \mathbb{R}_{\geq 0}$ that satisfies all the conditions of a norm except that it can be zero for non-zero vectors.
 - (a) Show that for any $f \in V'$, $\varphi(\underline{v}) = |f(\underline{v})|$ is a seminorm.
 - (b) Construct a seminorm on \mathbb{R}^2 not of this form.
 - (c) Let Φ be a family of seminorms on V which is pointwise bounded. Show that $\bar{\varphi}(\underline{v}) = \sup \{ \varphi(\underline{v}) \mid \varphi \in \Phi \}$ is again a seminorm.
 - (d) Let $\|\cdot\|: V \to \mathbb{R}_{\geq 0}$ be a seminorm. Show that $W = \{\underline{v} \in V \mid \|\underline{v}\| = 0\}$ is a subspace, that the seminorm is constant on cosets in V/W, and that the induced map on V/W is a norm.

Supplementary problems: Completeness

- D. Let $\{\underline{v}_n\}_{n=1}^{\infty}$ be a Cauchy sequence in a normed space. Show that $\{\|\underline{v}_n\|\}_{n=1}^{\infty} \subset \mathbb{R}_{\geq 0}$ is a Cauchy sequence.
- E. (The completion) Let (X,d) be a metric space.
 - (a) Let $\{x_n\}, \{y_n\} \subset X$ be two Cauchy sequences. Show that $\{d(x_n, y_n)\}_{n=1}^{\infty} \subset \mathbb{R}$ is a Cauchy sequence.
 - DEF Let (\tilde{X}, \tilde{d}) denote the set of Cauchy sequences in X with the distance $\tilde{d}(\underline{x}, \underline{y}) = \lim_{n \to \infty} d(x_n, y_n)$.
 - (b) Show that \tilde{d} satisfies all the axioms of a metric except that it can be non-zero for distinct sequences.
 - (c) Show that the relation $\underline{x} \sim \underline{y} \iff \tilde{d}(\underline{x}, \underline{y}) = 0$ is an equivalence relation.
 - (d) Let $\hat{X} = \tilde{X} / \sim$ be the set of equivalence classes. Show that $\tilde{d} \colon \tilde{X} \times \tilde{X} \to \mathbb{R}_{\geq 0}$ descends to a well-defined function $\hat{d} \colon \hat{X} \times \hat{X} \to \mathbb{R}_{\geq 0}$ which is a metric.
 - (e) Show that (\hat{X}, \hat{d}) is a complete metric space.
 - DEF For $x \in X$ let $\iota(x) \in \hat{X}$ be the equivalence class of the constant sequence x.
 - (f) Show that $\iota: X \to \hat{X}$ is an isometric embedding with dense image.
 - (g) (Universal property) Show that for any complete metric space (Y, d_Y) and any uniformly continuous $f: X \to Y$ there is a unique extension $\hat{f}: \hat{X} \to Y$ such that $\hat{f} \circ \iota = f$.
 - (h) Show that triples $(\hat{X}, \hat{d}, \iota)$ satisfying the property of (g) are unique up to a unique isomorphism.

- F. (Complete fields) An absolute value on a field F is a map $|\cdot|: F \to \mathbb{R}_{\geq 0}$ such that (a) |xy| = |x||y| (b) $|x| = 0 \leftrightarrow x = 0$ (c) $|x+y| \leq |x| + |y|$.
 - DEF Fix a prime number p. For x ∈ Q[×] write x = a/b p^k for some non-zero a, b ∈ Z prime to p and k ∈ Z and set |x|_p = p^{-k} (also, |0|_p = 0).
 (a) Show that |·|_p is an absolute value on Q satisfying the ultrametric inequality |x+y|_p ≤
 - (a) Show that $|\cdot|_p$ is an absolute value on $\mathbb Q$ satisfying the *ultrametric inequality* $|x+y|_p \le \max \{|x|_p, |y|_p\}$.
 - (b) Let $|\cdot|$ be an absolute value on F. Show that d(x,y) = |x-y| is a metric on F.
 - (c) Show that (with respect to the metric of (b)) the absolute value is uniformly continuous $F \to \mathbb{R}_{\geq 0}$, addition is a uniformly continuous map $F \times F \to F$, and that for any r > 0 multiplication is a uniformly continuous map $B(0,r) \times B(0,r) \to B(0,r^2)$.
 - (d) Let \hat{F} be the completion of F wrt $|\cdot|$. Show that the absolute value and the operations of addition and multiplication extend to maps $|\cdot|: \hat{F} \to \mathbb{R}_{\geq 0}, +, \cdot : \hat{F} \times \hat{F} \to \hat{F}$ giving it the structure of a ring with an absolute value $|\cdot|$.
 - (e) Show that every non-zero element of \hat{F} has an inverse, that is that \hat{F} is a field.

DEF Write \mathbb{Q}_p for the completion of \mathbb{Q} wrt $|\cdot|$.

FACT Closed bounded sets in \mathbb{Q}_p are compact, as in \mathbb{R} .