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Administrivia

• See syllabus, especially about problem sets.
• Textbooks

– Mathematical point of view: [2, 7, 3]
– Physical point of view: [4, 6]

0.1. Course plan (subject to revision)

Physics Mathematics
1 Kinematics Coordinates, tangent vectors, implicit and inverse function theorems
2 Newtonian mechanics ODE, cotangent vectors
3 Lagrangian mechanics Calculus of variations, convexity, symmetry and conservation laws
4 Angular momentum The rotation group
5 Hamiltonian mechanics Manifolds, measures
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CHAPTER 1

Review of Newtonian mechanics

1.1. Newton’s laws

1.1.1. Mathematics: Elementary kinematics. Equip the vector space Rd with the standard inner

product and associated distance function |v− v′| =
√

∑
d
i=1
(
v′i − v′i

)2. Euclidean space Ed is the affine
space modeled on Rd , in other words a principal homogenous space for Rd . For any x ∈ Ed and v ∈ Rd

we have the translate x+ v ∈ Ed and conversely given x,x′ ∈ Ed there is a unique displacement vector
v ∈ Rd with x′ = x+ v in which case d(x,x′) = |v| is called the Euclidean distance from x to x′.

Let γ : I → Ed denote the path of a particle through Ed . Then γ(t + h)− γ(t) is a displacement
(vector in Rd) and if γ is differentiable we can talk about the velocity vector γ̇(t) ∈ Rd . In coordinates
if γ(t) = (x1(t), . . . ,xd(t)) with respect to some orthonormal coordinate system then γ̇ is the vector of
derivatives of the functions xi(t). We can similarly define the acceleration γ̈(t) = (ẍi(t))

d
i=1 . If we have

N particles moving in the space, their joint position is given by a point γ(t) ∈ EdN and we can similarly
talk about the velocity vectorγ̇(t) and acceleration vector γ̈(t), both in RdN .

See also [2, \S2D].

1.1.2. Physics: The second law.

AXIOM 1 (Newton’s second law). There is a function F : EdN ×RdN ×R→
(
RdN)8 called the force

so that the path γ = (x(t))t∈I is determined by the ODE

Mẍ = F(x, ẋ; t) .

REMARK 2 (Physics). The force F represents (1) interactions between the particles; (2) any external
forces on the system; and (3) any constraint forces.

REMARK 3 (Mathematics). Writing the differential equation in the form

d
dt

(
x
ẋ

)
=

(
ẋ

F(x, ẋ; t)

)
we see that is suffices to analyze equations of the form ẏ(t) = F(y; t) for y ∈ Rn.

EXAMPLE 4. Some standard systems include:
(1) The free particle mẍ = 0 (“Newton’s first law”)
(2) The Hookean spring, a.k.a. harmonic oscillator : mẍ =−kx.

6



1.1. NEWTON’S LAWS 7

(3) The physical pendulum mLθ̈ =−mgsinθ

(4) Pulley systems

REMARK 5. Newton’s first law is the statement “there is a way to match physical space with Ed so
that free particles

1.1.3. Mathematics: ODE1.

DEFINITION 6. An ordinary differential equation is a pair (Ω,F) where Ω ⊂ En × E1 is open,
F : Ω → Rn is continuous. A solution to the differential equation is pair (I,γ) where I ⊂ E1 is an in-
terval, and γ ∈C1 (I;En) is a curve such that for all t ∈ I we have (γ(t), t) ∈ Ω and -

γ̇(t) = F (γ(t); t) .

DEFINITION 7. We say that F is locally Lipschitz if for every (y0, t0)∈ Ω there is a number L > 0 and
a neighbourhood (y0, t0)∈U ⊂ Ω such that for all (y, t),(y′, t)∈U we have |F(y, t)−F(y′, t)| ≤ L |y− y′|.

EXERCISE 8. If F ∈C1 it is locally Lipschitz.

Fix an ODE (Ω,F). The following argument is called “Picard iteration”.

PROPOSITION 9 (Picard existence and uniqueness). Suppose that F locally Lipschi tz. Then for every
initial condition (y0, t0) ∈ Ω there is ε > 0 so that the equation has a unique solution on (t0 − ε, t0 + ε).

LEMMA 10. There are ε,R,L,M > 0 such that:
(1) B = B(y0,R)× [t0 − ε, t0 + ε]⊂ Ω.
(2) For all (y, t) ∈ B we have |F | ≤ M.
(3) For all (y, t),(y′, t) ∈ B we have |F(y, t)−F(y′, t)| ≤ L |y− y′|.
(4) We have ε ≤ R

M+1 and ε ≤ 1
L+1 .

PROOF. Let U be a neighbourhood of (y0, t0) on which we have a Lipschitz constant L. Since U is
open, we can choose R and ε̃ are small enough so that the closed box B̃ = B(y0,R)× [t0 − ε̃, t0 + ε] ⊂
U . Since F is continuous and B̃ is compact, there is M such that |F | ≤ M on B̃. Finally let ε =
min

{ R
M+1 ,

1
L+1 , ε̃

}
. Then B = B(y0,R)× [t0 − ε, t0 + ε] ⊂ B̃ giving (1), (2), and (3), and (4) holds by

the choice of ε . □

LEMMA 11 (A-priori estimate). Let I = [t0 − ε, t0 + ε] and let γ ∈C1(I;En) be a solution to the ODE
on I satisfying γ(t0) = y0. Then γ(t) ∈ B(y0,R) for all t ∈ I.

PROOF. Suppose there is t such that γ(t) /∈ B(y0,R). Wlog t > t0 (reverse time and replace F with −F
otherwise). Let t1 = inf{t > t0 : |γ(t)− y0| ≥ R} where, since γ is continuous, γ(t1)≥ R and in particular

1For a historical survey see [1] which is Chapter 11 of [5]. The Existence and Uniqueness Theorem is due to Cauchy
(~1821) in one dimension and where F is differentiable; the “Lipschitz condition” is due to Lipschiz, who treated d > 1 as
well. Their proofs relied on what is today called the Euler Scheme, which we discuss in the homework. The proof given here
is due to Picard; the older argument also gives the Peano Existence Theorem; see the Homework for that.



1.1. NEWTON’S LAWS 8

t1 > t0. By construction for all s ∈ (t0, t1) we have γ(s) ∈ B(y0,R), so (γ(s),s) ∈ B and |F(γ(s),s)| ≤ M.
By the FTC

|γ(t1)− y0|= |γ(t1)− γ(t0)|=
∣∣∣∣∫ t

t0
γ̇(s)ds

∣∣∣∣
=

∣∣∣∣∫ t1

t0
F (γ(s),s)ds

∣∣∣∣≤ M |t − t0|

≤ Mε ≤ M
M+1

R < R ,

contradicting the fact that |γ(t1)− y0|= R. □

PROOF OF PROPOSITION 9. Let ε,R,L,M,B, I be as in Lemma 10. Let C (I;En) be the space of
continuous functions [t0 − ε, t0 + ε] = I → En equipped with the metric

d(γ,γ ′) =
∥∥γ − γ

′∥∥
∞

def
= sup

t∈I

∣∣γ(t)− γ
′(t)
∣∣ .

Then (X ,d) is a complete metric space. Let X ⊂ C1(I;En) be the set of functions γ : I → En such that
γ(t)∈B(y0,R) for all t. Then X is a closed subset (if γn converge uniformly in C (I;En) then they converge
pointwise and B(y0,R) is closed), hence a complete metric space in its own right. Given γ ∈ X and t ∈ I
define

(G(γ))(t) = y0 +
∫ t

t0
F (γ(s),s)ds .

The integral is well-defined since γ and F are continuous and since by the Lemma for all s ∈ I we have
(γ(s),s) ∈ B ⊂ Ω. We observe that this also means that |F(γ(s),s)| ≤ M for all s. Now by the FTC the
function G(γ) : I → En is continuously differentiable. Moreover we have

|(G(γ))(t)− y0|=
∣∣∣∣∫ t

t0
F (γ(s),s)ds

∣∣∣∣
≤
∣∣∣∣∫ t

t0
|F (γ(s),s)|ds

∣∣∣∣
≤ |t − t0|M ≤ εM ≤ M

M+!
R < R .
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It follows that G(γ) is a continuous function on I valued in B(y0,R), hence also an element of X . Finally
let γ,γ ′ ∈ X . Then for each t we have∣∣(G(γ))(t)−

(
G(γ ′)

)
(t)
∣∣= ∣∣∣∣∫ t

t0
F (γ(s),s)ds−

∫ t

t0
F
(
γ
′(s),s

)
ds
∣∣∣∣

≤
∣∣∣∣∫ t

t0

∣∣F (γ(s),s)−F
(
γ
′(s),s

)∣∣ds
∣∣∣∣

≤
∣∣∣∣∫ t

t0
L
∣∣γ(s)− γ

′(s)
∣∣ds
∣∣∣∣

≤ Lε sup
s∈I

∣∣γ(s)− γ
′(s)
∣∣ .

Taking the supremum over t we get for ρ = L
L+1 < 1 that

d
(
G(γ),G(γ ′)

)
≤ ρd

(
γ,γ ′

)
.

By the Banach Fixed Point Theorem (contractive mapping principle) there is a unique γ ∈ X such that
G(γ) = γ , in other words such that for all t we have

γ(t) = y0 +
∫ t

t0
F (γ(s),s)ds .

Clearly γ(t0) = y0. In addition, by the Fundamental Theorem of Calculus γ is a differentiable function
and, for all t ∈ I,

γ̇(t) = F (γ(t), t)) .
Conversely, any solution defined on I belongs to X by Lemma 11 and is a fixed point for G, so the

solution is unique. □

THEOREM 12 (Picard Existence and Uniqueness Theorem). Given the Lipschitz ODE (Ω,F) and an
initial condition (y0, t0):

(1) (Existence) There exist a solution γ of the ODE on some interval I = (t0 − ε, t0 + ε).
(2) (Uniqueness) If (I,γ) and (I′,γ ′) are two solutions, then γ = γ ′ on I ∩ I′.
(3) (Blowup) There exists a a solution (Imax,γmax) defined on an open interval such such any other

solution is obtained by restricting γmax to a subinterval of Imax. Furthermore if Imax = (a,b) and
either a or b is finite then γ(t) “escapes” as t → a+ or t → b− in the sense that for any compact
set K ⊂ Ω there is δ > 0 such that if t < a+δ or t > b−δ we have (γ(t), t) /∈ K.

(4) (Autonomous equation) Suppose F0 : Ω0 → Rn for Ω0 ⊂ En and F(y, t) = F0(y) is independent
of t. Then in the blowup we get that eventually γ(t) /∈ K for compact subsets of Ω0.

PROOF. The first claim is Proposition 9. For the second claim suppose first that I, I′ are open and let
J = {t ∈ I ∩ I′ | γ(t) = γ ′(t)}. By assumption γ(t0) = γ ′(t0) = y0 so t0 ∈ J. This set is closed since γ,γ ′

are continuous. To see that it is open let t1 ∈ J. Applying Proposition 9 to the initial condition (γ(t1), t)
we see that γ = γ ′ on an interval containing t1. By connectedness J = I∩ I′. Finally if an endpoint of I or
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I′ is contained in both intervals then it is a limit point of the intersection, and the solutions agree there by
continuity.

Let S be the set of solutions γ defined on open intervals containing t0. By (2), γmax =
⋃
S is a

function and its domain I is a union of intervals containing t0 hence an open interval. For any t ∈ I there
is some solution γ ∈ S defined at t hence on a neighbourhood of t and since γmax agrees with γ on that
interval γmax is differentiable at t and is a solution. Given a compact set K ⊂ Ω for each (y, t) ∈ K obtain
ε,R,L,M,B, I are in Lemma 10. By compactness we can cover K with finitely many boxes

B′
k = B(yk,Rk/2)× [tk − εk/2, tk + εk/2]⊂ Bk = B(yk,Rk/2)× [tk − εk, tk + εk]⊂ Ω

such that F is bounded by Mk and has Lipschitz constant Lk on Bk. Let M = maxk Mk, L = maxk Lk,
R = 1

2 mink Rk and let ε = min
{ R

M+1 ,
1

L+1 ,
1
2εk
}

. Then for each (y, t) ∈ K the parameters ε,R,L,M work
on B(y,R)× [t − ε, t + ε]. It follows that any solution passing through (y, t) can be extended by at least
time ε , contradicting the minimality of a and the maximality of b if the return time is close enough to a
or b respectively.

When F is autonomous the bounds above are independent of t so the the time to live is uniform on
compacta of Ω0 and the same argument applies. □

1.2. Galilean group; spacetime

In principle the force can be anything (say as “external” forces). The interactions between particles,
however, are more restricted. To see this we need to introduce the symmetry.

1.2.1. Mathematics. We extend our affine space Ed to spacetime Ad,1 = Ed ×E1, equipped with the
projection t : Ad+1 → E1 on the last coordinate we call “time”. A point in spacetime is called an event.
Recall that we have already equipped Ed with the Euclidean metric. The subset Ed ×{t} is called a
timeslice; two events in it are said to be simultaneous.

EXERCISE 13. Isom(Ed) contains Rd acting by translations, which is a simply transitive subgroup.
The point stabilizer is O(d) and thus have Isom(Ed)≃ O(d)⋊Rd . In particular, Isom(Ed)⊂ Aff(Ed).

DEFINITION 14. A Galilean transformation is an invertible affine map between two spacetimes of
the same dimension, which (1) preserves simultaneity; (2) restricts to an isometry on each timeslice. The
Galilean group is the group of Galilean automorphisms of a single spacetime (“Galilean symmetries”).

EXAMPLE 15. Fix v ∈ Rd . Then mapping (x, t) 7→ (x+ vt, t) (“uniform motion”) is a Galilean sym-
metry. Similarly the mapping (“time translation”) (x, t) 7→ (x, t + s).

EXERCISE 16. The Galilean group is a group; it is an appropriate semidirect product.

1.2.2. Physics.

AXIOM 17 (Galilean symmetry). The laws of physics are invariant under the action of the Galilean
group. In other words, when the force F only represents internal forces between the particles, it must be
equivariant for the Galilean group.
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AXIOM 18. The force on each particle is the vector sum of an external force on the particle, and
interaction forces between pairs of particles.

LEMMA 19. Suppose Fi j only depends on xi,x j. Then Fi j is parallel to the displacement x j −xi ∈Rd .

AXIOM 20 (Newton’s third law). Fi j =−Fji.

COROLLARY 21 (Conservation of total momentum). Suppose there are no external forces. Then
∑ j m jv j is constant.

EXAMPLE 22. Two masses connected by a spring freely moving in 1d.

1.3. Energy and work

The inner product on Rd represented by a function g : Rd →
(
Rd)∗ extends to an inner product

⊕N
j=1g j on RdN .

DEFINITION 23. Associating to each particle a mass m j > 0 we let M =
⊕d

j=1 m jg be the mass
matrix. If the jth particle has velocity v j ∈ Rd we we call

T =
1
2
⟨Mv,v⟩= 1

2 ∑
j

m j
〈
v j,v j

〉
=

1
2 ∑

j
m j
∣∣v j
∣∣2

the kinetic energy of the system.

What is the time derivative of this quantity?
dT
dt

= ∑
j

〈
m ja j,v j

〉
= ⟨Ma,v⟩
= ⟨F,v⟩ .

DEFINITION 24. The work done by the force when the system moves along the path is the integral∫
⟨F,dγ⟩=

∫ t1

t0
⟨F,v⟩dt .

Note that ⟨F,v⟩ is the sum of terms
〈
Fj,v j

〉
corresponding to the individual particles.

COROLLARY 25. The change in kinetic energy is the total work done by the force.

We now divide the forces into categories.

DEFINITION 26. A force on a single particule is conservative if locally F =−dU for some function
U of position called the potential.

EXERCISE 27. This is equivalent to
∮

Fdx = 0 for small loops (all loops if true globally).
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• For a force between two particles get Fi j =−Fji. This iscalled “Newton’s Third law”.

LEMMA 28. For a conservative force we have dU
dt =−Fv.

OBSERVATION 29. Constraint forces do no work.

PROOF. A constraint force acts dually to the level sets, whereas v is in the tangent space. □

We have shown

PROPOSITION 30 (Conservation of mechanical energy). Suppose that all inter-particle forces are
conservative, with total potential U, and let Fj be the external force on the jth particle. Let E = T +U.
Then

dE
dt

= ∑
j

〈
Fj,v j

〉
.

Adding to U the potential due to any conservative external forces gives the same result with Fj repre-
senting any non-conservative forces.



CHAPTER 2

Kinematics

We begin by developing the language to describe motion, material which will lead directly to pre-
dicting motion in Chapter 1.

Physics keywords: configuration space,
Mathematics keyword: inverse and implicit function theorems,

2.1. Configurations and configuration space

2.1.1. Physics.

DEFINITION 31 (Informal). A mechanical system consists of several point particles moving in some
ambient space subject to interactions and constraints.

The ambient space will be Euclidean d-space, denoted Ed . For the distinction between Ed and Rd

see the problems on “Affine Algebra” in Problem Set 1, and also [2, \S2A].

DEFINITION 32. A configuration of the system is then a point x ∈
(
Ed)N satisfying the constraints.

The configuration space of the system is the set X of all configurations.

• We will think of a particle moving on the round 2-sphere as moving on the surface x2+y2+z2 =
1 in En, but it is also possible to think of it as moving on the sphere directly.

• We will almost always have d ∈ {1,2,3} but this is a contingent fact about our everyday expe-
rience, not a mathematical requirement.

EXAMPLE 33. Single free particle; single particle at the end of a Hookean spring; physical pendulum
with massless rod (2d ; 3d); rope-and-pulley system;

• From the mathematical point of view one can dispense with this definition and just talk about
the configuration manifold from the start, but that’s not how physicists think,. More importantly
we need to be able to construct the configuration space of a physical system.

• We will pretend that continuum systems (e.g. a solid rod) actually consist of a finite but large
number of particles. As long as the rod is rigid this will not cause a problem since the configu-
ration space will be finite-dimensional.

• Truly infinite-dimensional systems (e.g. fluid flow, or deformation of a plastic material) are the
subject of continuum mechanics and outside the scope of this course.

13
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2.1.2. Mathematics. Often the constraints are holonomic in that, locally at least, they can be written
in the form1 F(x) = 0 ? in other words they concern the configuration of the system only ? e.g. the
particle constrained to move on the sphere (say of radius r(t)), or (“rigid motion”) where the distance
between a pair of particles is fixed. Other examples of constraints include

• Hard boundaries, e.g. a bouncing ball restricted to the upper half-plane y ≥ 0. Mathemati-
cally we can either work on a manifold with boundary or handle the situation at the boundary
separately.

• Constraints on the motion (e.g. rolling without slipping), which we will develop later. we

Formally we fix an open set Ω⊂EdN , a time interval I, and assume the constraints take the form F = 0 for
some continuously differentiable function F : Ω → Rm. We will generally assume F is non-degenerate
in that rankdF = m, at least locally on X (i.e. possibly we express the constraints by different functions
in different places).

EXAMPLE 34. In E2 suppose we have a massless slider moving along a horizontal wire. A point
of mass m is attached a massless rigid rod of length L freely swinging from the slider. We want to say
something like:

“Let the slider be at (xs,ys) and the mass be at (x,y), with constraints
xs ∈ [a,b]
ys = 0
(x− xs)

2 +(y− ys)
2 = L2 .

”

Of course a better parametrization would be through the angle θ the rod makes with the vertical axis
(say). We also want to say:

“Instead use as coordinates the location xs of the slider and the angle θ of the mass. The
slider is then at (xs,0) and the mass is at (xs +Lsinθ ,−Lcosθ)”.

Finally, we would like to say

“The potential energy of the system will then be U =−mgLcosθ . The kinetic energy will
be

1
2

m
[
ẋ2 + ẏ2]= 1

2
m
[
ẋ2

s +2Lcosθ ẋsθ̇ +L2
θ̇

2] .
Our goal is to make sense of all these statements. For this we need to understand what we mean by

the coordinates xs,ys,x,y,θ , what we mean by U(θ) where U ought to be a function on X , what we mean
by derivatives on configuration space and of coordinates, and so on. For technical reasons we will begin
with the derivatives, and the discuss coordinates, coordinate systems, and parametrization.

1In general one should permit the constraints to depend on time, in which case the configuration space would be X = X(t),
and the analysis below should be extended. This may be developed in a later version of the notes or in a problem set.
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REMARK 35. Observe that the angle θ is not really a function on configuration space ? if we go
around a full circle we acquire a phase of 2π . We can define branches locally, but not globally. The same
will apply to constraints written in terms of θ .

2.1.3. tangent vectors and derivatives.

REMARK 36. Recall that F : En → Em is differentiable at x ∈ En if there is a linear map dFx : Rn →
Rm so that for v ∈ Rn, F(x+ v) = F(x)+dFx(v)+R(x,v) where |R(x,v)|

|v| → 0 as |v| → 0. Note that there
is no dot product or metric here; just the notion of displacement on affine space.

EXAMPLE 37. When m = 1 note that dFx is not a vector ? it is a linear map from Rn → R, in other
words a linear functional; in physics language a dual vector or a covector.

REMARK 38. If we wish to speak of the gradient vector ∇⃗F(x) we need a way to associate a vector to
each linear functional. This is provided by an inner product (look up “Riesz Representation Theorem”),
but note that the choice of inner product matters, and different inner products will produce different
gradients for the same function.

Let x,x′ ∈ X be close to each other. We can write x′ = x+ εv where v is some unit vector and ε is
small. Then

0 = F(x′) = F(x+ εv)

= F(x)+ εdFx(v)+o(ε)

= εdFx(v)+o(ε) .

so
dFx(v) = o(1) .

By compactness as x′ → x we will have the v converge to a point on the sphere satisfying dFx(v) = 0,
that is to v ∈ KerdFx.

DEFINITION 39. For x ∈ X(t) the tangent space is TxX(t) = KerdFx.

NOTATION 40. We use Newton’s dot to denote derivatives with respect to time. By γ̇(t) we mean the
vector of partial derivatives in RdN , which is also the image of the standard basis vector of TtR by the
linear map dγt .

LEMMA 41. Let I be an interval, and let γ : I →EdN be a differentiable curve. Suppose that γ(t0)∈ X
for some t0. Then the image of γ lies in X iff γ̇(t) ∈ KerdFγ(t) for all t ∈ I.

PROOF. PS1. □

2.2. Coordinates

2.2.1. Mathematics.
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THEOREM 42 (Implicit function theorem). Let x ∈ Ω and suppose that rankdFx = m. Then we can
choose some m coordinates of EdN so that locally these coordinates are uniquely determined by the
others. Furthermore this function has the expected derivative. If F is k times differentiable so is the
function defined implicitly.

COROLLARY 43 (Inverse function theorem). When m = dN we have an inverse with the inverse
derivative.

By the implicit function theorem we can, at least locally, parametrize configuration space as follows:
we choose some set ¬C ∈

([dN]
m

)
. Then any configuration x = (xi)i∈[dN] is uniquely determined by (xi)i∈C.

EXAMPLE 44. Particle on incline parametrized by x or y coordinate. Same for particle on circle, note
different coordinates at different points.

• No constraints in such a a parametrization.
It is often more convenient, however, to parametrize by something other than the Euclidean coordinate
axes. The key observation is that the xi are not functions “valued in X” but rather functions on X!

DEFINITION 45. A coordinate (in the physics literature “generalized coordinate”) is a pair (U,qα)
where U ⊂ X is an open set and qα : U → R is any function. A system of coordinates or coordinate
patch is a tuple q =

(
U,{qα}dimX

i=1

)
of coordinates defined on the same neighbourhood such that q is

continuously differentiable and dqx is invertible on TxX for x ∈U .

What do we mean by dq? Note that by the implicit function theorem, if x,x′ ∈ X are close enough we
have x′ = x+ v+ e where v ∈ TxX and |e|= o(|x− x′|) as x → x′. We can thus differentiate functions on
X (without extending them to the ambient EdN) by asking whether f (x′)− f (x) is approximately linear
in v.

DEFINITION 46. Let f : U → Er where U ⊂ X is open . We shall say f is differentiable at x if there
is a linear map d fx : TxX → Rr such that f (x′) = f (x)+d fx(v)+o(|x− x′|).

LEMMA 47 (Differentiation on X). (1) Let V ⊂ EdN be an open set, and let f : V → Er be a
function differentiable at some x ∈U =V ∩X. Then f ↾U : U → Er is differentiable in the sense
above and d ( f ↾U)x = (d fx) ↾TxX .

(2) d fx is linear in f and satisfies the chain rule in both directions (i.e. for composition with g : Es →
X and with h : Er → Et). It therefore also satisfies the Leibnitz rule.

PROOF. Exercise. □

EXAMPLE 48. The angle θ for a circle, e..g the pendulum. Let S1 ⊂E2 be the unit circle
{

x2 + y2 = 1
}

.
On the open right semicircle we define θ = arctan(y/x). We then conversely have the parametrization
(inverse map) θ 7→ (cosθ ,sinθ). It’s also possible to define θ on any arc not covering the whole circle.

REMARK 49. Since θ is only locally defined, we sometimes prefer to have the coordinates NOT be
valued in R ? e.g. have θ valued in S1. This requires some care, but has some advantages.
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EXERCISE 50. Given a mechanical system, find a coordinate system, and then a parametrization of
configuration space by the coordinates.

NOTATION 51. A (locally defined) function f : RdimX →R induces a function on configuration space
by composing with the coordinates: when we write f (q) we really mean f ◦(qα)α

(example: the potential
energy U(θ) =−mgLcosθ from Example 34). Conversely if f is a function on X we can identify it with
a function defined on the coordinates by composing with the inverse of q. Similarly a curve γ : I → X
induces a coordinate curve via q ◦ γ , and a coordinate curve induces a curve in configuration space by
composition with q−1.

EXAMPLE 52. Potential energy due to external gravity, or due to interaction between pairs (or groups)
of particles.

REMARK 53. It is in fact useful to have the coordinates depend on time ? to have qα : U × I → R
where I is some time interval. This is significant and will play a role in the sequel.

2.2.2. Physics: computation in coordinates. We first clarify something.
Warning: Let f : X → R be some function (say potential energy). Then f ◦ q−1 is a function on
coordinate space (i.e. if you plug in values for the coordinates you get the value of f at the corresponding
point of X). Following the physics convention we will use the same letter for both functions, and leave
it to the reader to figure out which we mean. In particular when we write xi = xi(q; t) we might mean
the standard coordinate functions on X coming by restriction from EdN , or the Euclidean coordinates as
functions of the generalized coordinates.

• Suppose the system moves according to a curve γ ⊂ X . Then the coordinates change according
to qα(γ(t); t). We usually write qα(t) for these functions; the vector (qα(t))α

∈ RdimX is the
coordinate curve. We often compute these functions directly, and then see the implications in
physics space by applying q−1(·; t) to get points in X .

• In particular we will usually write the equations of motion as ODEs for qα(t) and solve those.
• We often try to choose the coordinates qα to make the expression for relevant functions or for

the equations of motion simpler.
Let γ : I → X be a differentiable curve through configuration space. As we saw in Lemma 41, at every
time t we have γ̇(t) ∈ Tγ(t)X .

DEFINITION 54. We call γ̇ the velocity of the path. This is a vector of the N velocities of the individual
particles.

DEFINITION 55. Let ⟨·, ·⟩ denote the inner product on Rd = TxEd with associated norm |·|; think of
γ̇(t) as a collection of N vectors v j ∈ Rd , and suppose the jth particle has mass m j. Then the kinetic
energy of the particles is

K =
1
2 ∑

j
m j
∣∣v̇ j
∣∣2 .
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Observe that is exactly the restriction of a positive-definite quadratic form from Tγ(t)EdN to Tγ(t)X , hence
again a positive-definite quadratic form.

Via the parametrization xi = xi(q; t) we obtain a linear relation

ẋi = ∑
α

∂xi

∂qα

q̇α

which allows us to change variables in K, writing K as a quadratic form in the q̇α instead. Against it is
positive definite.

EXAMPLE 56 (Rotating frame). Suppose we have a particle moving in the plane, where we name

points by their
(

x
y

)
coordinates. Let R(t) =

(
cos(ωt) −sin(ωt)
sin(ωt) cos(ωt)

)
(warning: this is the matrix of

rotation by −ωt), and consider the time-dependent coordinate system(
X
Y

)
= R(t)

(
x
y

)
(so X = X(x,y; t) and Y = Y (x,y; t) as indicated. Conversely we have(

x
y

)
= R(−t)

(
X
Y

)
so (

ẍ
ÿ

)
= R(−t)

(
Ẍ
Ÿ

)
−2Ṙ(−t)

(
Ẋ
Ẏ

)
+ R̈(−t)

(
X
Y

)
and

m
(

Ẍ
Ÿ

)
= R(t)m

(
ẍ
ÿ

)
+2R(t)Ṙ(−t)m

(
Ẋ
Ẏ

)
−R(t)R̈(−t)m

(
X
Y

)
.

Now Newton’s 2nd law reads m
(

ẍ
ÿ

)
= F(x,y; t) where we

SCHOLIUM 57. This definition clarifies that velocity is a pointwise notion: we need more structure
to compare velocities at different points. For example, a particle moving around the circle has velocities
tangent to the circle. To study v(t +h)− v(t) we need a connection.

REMARK 58. In fact we could have started with any positive-definite quadratic form. If the ambient
space is a Riemannian manifold (M,g) then on

(
MN ,

⊕N
j=1 g

)
the kinetic energy is the quadratic form

on the tangent space which, relative to
⊕N

j=1 g, is block-diagonal with eigenvalues m j.

REMARK 59. As we shall see later, the most important fact is the convexity of K as a function on
TxX .



CHAPTER 3

Lagrangian mechanics

3.1. Introduction

3.1.1. Historical overview.
• Euler: the equations of motions of Newtonian mechanics can be written in a form that works for

any coordinate system.
• Lagrange: even if there are constraints.
• Hamilton: these equations follow from a variational principle.

3.1.2. Plan.
(1) (Mathematics) Calculus of variations I
(2) (Physics) Hamilton’s principle and the Euler?Lagrange equations; examples
(3) (Physics) conservation laws
(4) (Mathematics) Lagrange multipliers for variational problems
(5) (Physics) Constraint forces

REMARK 60. We will not derive the Euler?Lagrange equations (i.e. show that they are equivalent to
Newtonian mechanics), which is essentially a tedious calculation.

3.2. Calculus of Variations

3.2.1. The problem; formal calculation. Fix a bounded domain Ω ⊂Rr , and consider the problem
of minimizing the expression

S =
∫

Ω

L(u(t),dut ; t)dt

over the space of sufficiently nice functions u : Ω̄ → Rn, subject to a boundary condition u ↾∂Ω= g for
some fixed g. Here L : Rn ×Mn×r ×Ω → R is some sufficiently nice functions.

EXAMPLE 61 (Brachistochrone; Johann Bernouli 1696 after Galileo). Given two points A,B in a
vertical plane with A higher, find the curve y = u(x) such that a mass sliding along the graph of u subject
to gravity alone will reach B from A in the shortest time.

Align the y-axis vertically down, and suppose A = (0,0) and B = (xB,yB). When the mass is at
(x,u(x)) it has velocity 1

2mv2 = mgu(x) by conservation of energy, so v(x) =
√

2gu(x). The length of the

19
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part of the curve from x to x+dx is
√

1+u′(x)2dx so the time it takes to cover that segment is
√

1+u′2
u dx.

We therefore need to minimize ∫ xB

0

√
1+u′2

u
dx

subject to u(0) = 0; u(xB) = yB.

• Problem famously solved by Newton overnight after finding a challenge letter from Bernoulli
returning from his work at the mint; he sent the solution anonymously to the Royal Academy
by first post and Bernoulli famously remarked “I recognize the lion from his claw mark” (The
Bernoullis took two weeks to solve the problem).

EXAMPLE 62 (Catenary). A chain of length L made from a material of constant density hangs from
two points A,B in the vertical plane. It is known (“principle of virtual work”) that the chain will hang so
as to minimize total potential energy. What shape will it take?

EXAMPLE 63 (Minimal surface). Let Ω ⊂ Rd be a plane, u any curve. Then
∫

Ω

√
1+ |Du(x)|2dx is

the area of the hypersurface y = u(x) given by the graph of u in Rd+1.

• Idea: Differentiate wrt u, set derivative to zero.

3.2.2. Differentiation in function spaces. Let V be a (real) vector space (example: the space of
paths γ : I → Rn in coordinate space satisfying some differentiability conditions. A function f : V → R
is called a functional. Let x ∈ A.

DEFINITION 64. We say that f is

(1) differentiable at x if V is a Banach space and there is a linear functional λ =d fx ∈V ∗ such that
f (x+ v) = f (x)+ ⟨λ ,v⟩+o(∥v∥).

(2) Gateaux differentiable at x if V is topological and there is a linear functional λ = d fx ∈V ∗ such
that d fx(v) = limh→0

f (x+hv)− f (x)
h holds for each v ∈V .

EXAMPLE 65. If V = Rn the first notion is the usual derivative, and the second is the directional
derivative (when linear).

REMARK 66. Can directly define the differentiability of functionals on manifolds of paths γ : I → X
but we’ll elide this point.

Since we will only be interested in critical points of f , we will consider a much weaker condition,
where we only differentiate at a single direction, and only consider a subset of the possible directions. We
will also concentrate on the case r = 1 where the situation is considerably simpler (for functional-analytic
reasons),
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3.2.3. Formal calculation in coordinates. Let I = [t0, t1] be a closed interval. Let Ω ⊂ Rn be open
*”coordinate patch”. Fix a function (“Lagrangian”) L : T Ω× I → R as nice as needed (write this as
L = L(q,v; t), and let γ : I → Ω be as nice as needed. The associated action is

S(γ) =
∫ t1

t0
L(γ, γ̇; t)dt .

suppose γ minimizes S among reasonable curves with γ(t0) = a, γ(t1) = b.
To investigate this let η(t) ∈C∞

c (I
◦) be a “bump function”. Then

S(γ + εη) =
∫ t1

t0
L(γ + εη , γ̇ + εη̇ ; t)dt .

Taylor expansion gives (suppressing the dependence of L on time)

L(γ(t)+ εη(t), γ̇(t)+ εη̇(t); t)−L(γ(t), γ̇(t); t)= ε

〈
∂L
∂q (γ(t),γ̇(t))

,η(t)

〉
+ε

〈
∂L
∂v (γ(t),γ̇(t))

, η̇(t)
〉
+O(ε2) .

Integrating this dt we get

S(γ + εη)−S(γ) = ε

∫ t1

t0

[〈
∂L
∂q (γ(t),γ̇(t))

,η(t)

〉
+

〈
∂L
∂v (γ(t),γ̇(t))

, η̇(t)
〉]

dt +O(ε2) .

Thus if γ is extremal (or even critical) for S we must have∫ t1

t0

[〈
∂L
∂q (γ(t),γ̇(t))

,η(t)

〉
+

〈
∂L
∂v (γ(t),γ̇(t))

, η̇(t)
〉]

dt = 0 .

REMARK 67. If γ needs to be valued in some open domain we can always choose ε small enough to
ensure that γ + εη remains in the domain.

We now integrate the second term by parts. Since η has compact support we have η(t0) = η(t1) = 0
so there are no boundary terms and we get∫ t1

t0

[〈
∂L
∂q (γ(t),γ̇(t))

,η(t)

〉
−
〈

d
dt

∂L
∂v (γ(t),γ̇(t))

,η(t)
〉]

dt = 0 ,

that is ∫ t1

t0

〈
∂L
∂q (γ(t),γ̇(t))

− d
dt

∂L
∂v (γ(t),γ̇(t))

,η(t)

〉
dt = 0 .

Now if γ is extremal this must hold for all η . However if γ ∈C1 and L∈C2 then the function ∂L
∂x (γ(t),γ̇(t))−

d
dt

∂L
∂v (γ(t),γ̇(t)) is continuous; if it were nonzero somewhere we could choose η to make the integral

nonzero. It follows (“Euler?Lagrange equation”) that along the path we have
d
dt

∂L
∂v

(γ(t), γ̇(t); t) =
∂L
∂q

(γ(t), γ̇(t); t) .
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By the chain rule we can also write this as(
∂ 2L
∂v2 (γ(t), γ̇(t); t)

)
γ̈(t)+

(
∂ 2L

∂v∂x
(γ(t), γ̇(t); t)

)
γ̇(t)+

(
∂ 2L
∂v∂ t

(γ(t), γ̇(t); t)
)
− ∂L

∂q
(γ(t), γ̇(t); t) = 0 ,

which is visibly a second order ODE we can hope to solve.
• Classical approach: “indirect method”, that is first solve this equation, then show that the solu-

tion is extremal.
• “Direct method”: show a-priori that the action has minimizers and that they must satisfy the

equation.

3.2.4. From informal to formal.

LEMMA 68. Let f ∈C(a,b). Suppose that for all non-negative η ∈C∞
c (a,b) we have

∫ b
a f (t)η(t)dt ≥

0. Then f ≥ 0.

PROOF. Suppose f (t0) < 0. Then there is a small interval J about t0 we have f ↾J≤ −δ . Let η be
any nonzero nonegative function supported on J. Then

∫ b
a □

LEMMA 69. Let f ∈L1 (a,b). Suppose that for all non-negative η ∈C∞
c (a,b) we have

∫ b
a f (t)η(t)dt ≥

0. Then f ≥ 0 almost everywhere.

PROOF. Let dµ = f dt be the measure on [a,b] with density f wrt Lebesgue. Then µ(η)=
∫ b

a f (t)η(t)dt
and from the Riesz Representation Theorem we get that µ is a positive measure, so its Radon?Nykodim
derivative f with respect to dt must be non-negative (if f we negative on a set of positive measure, the
measure of that set would be negative). □

COROLLARY 70. In either case, if the integrals always vanish so does the function.

We have proved:

PROPOSITION 71. Let L ∈ C2 (T Ω× I → R) and suppose γ ∈ C2 (I;Ω) is critical for S =
∫ t1

t0 Ldt
given its endpoints. Then

d
dt

∂L
∂v

(γ(t), γ̇(t); t) =
∂L
∂q

(γ(t), γ̇(t); t) .

Furthermore, suppose (“Ellipticity”) that ∂ 2L
∂v2 is positive definite. We can then write the ODE in the

form

γ̈ =

(
∂ 2L
∂v2

)−1[
∂L
∂q

(γ(t), γ̇(t); t)−
(

∂ 2L
∂v∂x

(γ(t), γ̇(t); t)
)

γ̇(t)−
(

∂ 2L
∂v∂ t

(γ(t), γ̇(t); t)
)]

,

which will have a unique solution for each initial condition (γ(t0), γ̇(t0)).

• The ellipticity condition is exactly the positive definiteness of the mass matrix.
We would like to do two related things:
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(1) Show that there actually exists a minimizer. We will concentrate on a particular class of La-
grangians

(2) Extend the class of acceptable paths γ .

DEFINITION 72. Say the Lagrangian is standard if it has the form

L(q, q̇; t) =
1
2
⟨M(t)q̇, q̇⟩−U(q, t)

where M = M(t) is symmetric and satisfies M ≥ µ for some constant µ > 0, and U is continuous.

3.2.5. Existence of minimizers.

DEFINITION 73 (Sobolev space). For a sufficiently differentiable function γ : I → Rn define

∥γ∥2
Hk =

k

∑
i=0

∥∥∥γ
(k)
∥∥∥

L2(I)

and let Hk(I;Rn) be the completion of the space of smooth functions wrt this norm.

FACT 74. This is the space of γ such that the kth distributional derivative is represented by an L2-
function.

THEOREM 75 (Sobolev embedding). The inclusion map
(
Ck(I),∥·∥Hk

)
→
(
Ck−1(I),∥·∥Ck−1

)
is com-

pact.

COROLLARY 76. Let L be a standard Lagrangian. Then γ 7→ S(γ) is continuous with ∥·∥H1 and thus
extends to a continuous function on Hk(I).

LEMMA 77. Let u : I → Rn be a differentiable function with u(t0) = u(t1) = 0. Then∫ t1

t0
|u|2 dt ≤

(
t1 − t0

2

)2 ∫ t1

t0
|u̇|2 dt .

PROOF. Wlog the interval is [−∆,∆]. Integrating by parts we have∫
∆

∆

|u|2 dt =
[
t |u|2

]∆

−∆

−
∫

∆

−∆

tuu̇dt

≤ ∆

(∫
∆

∆

|u|2 dt
)1/2(∫ ∆

∆

|u̇|2 dt
)1/2

.

□

REMARK 78. This is not the optimal constant ? which is the smallest eigenvalue of the Dirichlet
Laplacian.

LEMMA 79 (Coercivity). Suppose U(q)≤ A+C |q|2. For ε > 0 we can find δ > 0 such that∫ t1+δ

t0
U(q, t)≤ B+ ε

∫ t1+δ

t0
|q̇|2 dt .
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PROOF. Let q̃ be a linear function of time interpolating a = q(t0),b = q(t0 + δ ) and let u = q− q̃.

Then u̇ = q̇− b−a
δ

so |u̇|2 ≤ 2 |q̇|2 +2 |b−a|2
δ 2

U(q)≤ A+C |q̃+u|2 ≤ A+2C |q̃|2 +2C |u|2 .
Now integrate on [t0, t0 +δ ]. Get∫ t0+δ

t0
U(q)dt ≤ Aδ +2Cδ

(
|a|2 + |b|2

)
+

1
2

Cδ
2
∫ t0+δ

t0
|u̇|2 dt

≤ Aδ +2Cδ

(
|a|2 + |b|2

)
+

1
2

Cδ |b−a|2 +Cδ
2
∫ t0+δ

t0
|q̇|2 dt .

Now take δ small enough so that Cδ 2 < ε . □

COROLLARY 80 (Lower bound). Suppose U grows at most quadratically and that the time interval
is short enough (depending on the constants including the initial conditions) to get ε < µ . Then

(1) S(γ) are bounded below. In particular infγ S(γ) exists.
(2) Sublevel sets are bounded in H1.

Now let {γn}∞

n=1 ⊂ C1(I) have S(γn) → infγ S(γ). By the Sobolev embedding theorem we can pass
to a subsequence so that γn converge uniformly to a continuous function γ∞. By Banach?Alaoglu we can
also assume that γn converge weakly, so that

3.3. The Euler–Lagrange equations

Let us now calculate with this formalism.

DEFINITION 81. We call ∂L
∂v the (generalized) momentum. In a particular coordinate system call pα =

∂L
∂ q̇α

the momentum associated to the coordinate qα (though of course this depends on the entire coordinate

system). We call ∂L
∂q the (generalized) force. In particular coordinate system we get a generalized force

Fα = ∂L
∂qα

associated to each coordinate, with equation of motion

d
dt

pα = Fα .

EXAMPLE 82. For a standard Lagrangian L(x,v) = 1
2 ⟨M(x, t)v,v⟩−U(x, t) we have p = M(x, t)ẋ and

F =−dU .

3.3.1. Cyclic coordinates and conserved quantities. Fix a coordinate system q = (qα)
n
α=1 : X →

Ω ⊂ Rn. The Euler?Lagrange equation take the form{
d
dt

(
∂L

∂ q̇α

)
= ∂L

∂qα
1 ≤ α ≤ n .

Here we think of L as a function on L via composition with q−1.
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DEFINITION 83. Call a coordinate qβ cyclic if ∂L
∂qβ

= 0, in other words if L does not depend on qβ

explicitly (of course in the given coordinate system, that is when the other coordinates are the other qα ).

OBSERVATION 84. If qα is cyclic then d
dt

(
∂L

∂ q̇α

)
= 0. In other words, the associated generalized

momentum pα = ∂L
∂ q̇α

: T X ×R→ R is constant along the physical path.

DEFINITION 85. We say that a quantity f : T X ×R→ R is a conserved quantity in that situation, in
other words if d

dt f (γ(t), γ̇(t); t) = 0 along the physical path γ(t).

EXAMPLE 86. Consider a particle moving in the plane with downward-pointing gravity, that is the
Lagrangian

L =
1
2

m
(
ẋ2 + ẏ2)+mgy .

Clearly the x-coordinate is cyclic. Now retain the x-coordinate but switch to the coordinate system (x,z)
where z = x+ y. Then y = z− x so we also have

L =
1
2

m
(
2ẋ2 + ż2 −2żẋ

)
+mgz−mgx .

Now the x-coordinate is not cyclic ? showing that the notion of cyclicity depends on the coordinate
system and not just on a single coordinate.

L itself is a function which we can differentiate along the physical path. We have
d
dt

(L(γ, γ̇; t)) =
∂L
∂x

γ̇ +
∂L
∂v

γ̈ +
∂L
∂ t

chain rule

=
d
dt

(
∂L
∂v

)
γ̇ +

∂L
∂v

d
dt

(γ̇)+
∂L
∂ t

equations of motion

=
d
dt

(
∂L
∂v

γ̇

)
+

∂L
∂ t

Leibnitz rule .

Rearranging we obtain the Beltrami identity
d
dt

(
∂L
∂v

v−L
)
=−∂L

∂ t
.

Here we interpret ∂L
∂v v−L as a function on T X ×R, which is to be evaluated at (γ(t), γ̇(t); t) and then

differentiated wrt t.

DEFINITION 87. The energy of the system is E = ∂L
∂v v−L.

COROLLARY 88 (Conservation of energy). Suppose ∂L
∂ t = 0, that is that L does not depend on time

explicitly. Then E is a conserved quantity.

• Observe that E =C is a first-order ODE. With one degree of freedom that is the first integral of
the equations of motion.
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EXERCISE 89. Use this to solve the catenary and brachistochrone problems.

REMARK 90. We will discuss conserved quantities further in Section 3.4

3.3.2. Constraints. Paying debt.

3.3.3. Examples.

3.4. More on conserved quantities: symmetries and Noether’s Theorem

3.4.1. Symmetries of configuration space.

DEFINITION 91. A one-parameter group is a smooth function g : I ×X → X (which we write gr(x)
instead of g(r,x)) satisfying g0(x) = x and gr+s = gr ◦gs.

OBSERVATION 92. g−r = g−1
r .

REMARK 93. This is a Lie group action of the Lie group (R,+) on configuration space. Everything
will make sense for an action of any (connected) Lie group, but the full theory of Lie groups is not
necessary here, but just taking the one-parameter subgroups defined by generators of the Lie algebra.

EXAMPLE 94. In Ed fix a vector v ∈ Rd and let gr(x) = x+ vt. In R2 (i.e. fixing an origin) let

gθ

(
x
y

)
=

(
cosθ sinθ

−sinθ cosθ

)(
x
y

)
be the rotation by θ .

We can differentiate g with respect to each variable separately. In particular gr induces a map T X →
T X (which we denote with the same symbol) via

gr(x,v) = (gr(x),(dxgr)(v)) .

DEFINITION 95. We say that the one-parameter group {gr}r is a symmetry of L or that L is invariant
by the group if L◦gr = L for all r.

EXAMPLE 96. Translation by a cyclic coordinate.

3.4.2. Noether’s Theorem. For a fixed x, r 7→ gr(x) is a differentiable curve. Write g′(x) ∈ TxX for
its derivative at x = 0. This is a vector field on X .

LEMMA 97. gr(x) are the integral curves of this vector field.

PROOF. We have gr+ε(x) = gε (gr(x)). It follows that d
dr gr(x) = g′ (gr(x)) so we have the (unique)

solution to dy
dr = g′(y). □

LEMMA 98. d
dr (dxgr(γ̇)) =

∂

∂ r
∂

∂ t gr(γ(t)) = ∂

∂ t
∂

∂ r gr (γ(t))) = d
dt g′ (gr(x)).

THEOREM 99 (Noether; weak version). Suppose that gr is a symmetry. Then the quantity
〈

∂L
∂v ,g

′(x)
〉

is conserved.
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PROOF. By assumption we have S(gr ◦ γ) = S(γ) for all r. We now differentiate this identity with
respect to r, and use the Lemma:

0 =
d
dr

S(gr ◦ γ)

=
d
dr

∫ t1

t0
L(gr(γ(t), γ̇(t)); t)dt

=
∫ t1

t0

〈∂L
∂x

∣∣∣∣∣
(gr(γ(t),γ̇(t));t)

,g′(gr(γ(t)))

〉
+

〈
∂L
∂v

∣∣∣∣∣
(gr(γ(t),γ̇(t));t)

,
d
dr

(
d
dt

gr(γ(t))
)〉dt

=
∫ t1

t0

〈∂L
∂x

∣∣∣∣∣
(gr(γ(t),γ̇(t));t)

,g′(gr(γ(t)))

〉
+

〈
∂L
∂v

∣∣∣∣∣
(gr(γ(t),γ̇(t));t)

,
d
dt

g′(gr(γ(t))

〉dt .

Finally setting r = 0 and integrating by parts gives the claim from

0 =
∫ t1

t0

〈
∂L
∂x

− d
dt

∂L
∂v

,g′(γ(t)
〉

dt +
[〈

∂L
∂v

,g′(γ(t))
〉]t=t1

t=t0
.

□

3.4.3. Total derivatives. Let f : X ×R→ R be any function, and define formally the “total deriva-
tive” d f

dt : T X ×R→ R by
d f
dt

(x,v, t) =
〈

∂ f
∂x

,v
〉
+

∂ f
∂ t

.

LEMMA 100. Let γ be any path. Then d
dt f (γ(t); t) = d f

dt (γ(t), γ̇(t); t). In particular∫ t1

t0

d f
dt

(γ(t), γ̇(t); t)dt = f (γ(t1); t1)− f (γ(t0); t0) .

COROLLARY 101. Let L̃ = L+ d f
dt . Then for any path γ with endpoints a,b we have S̃(γ) = S(γ)+

f (b; t1)− f (a; t0) and in particular S, S̃ have the same critical points and the same Euler?Lagrange
equations.

EXAMPLE 102. Let L = T −U be time independent, with conserved energy E = T +U . Then
L̃ = T −U + 1

2t2 has the same conserved quantity despite not being time independent.

We now generalize the previous discussion.

DEFINITION 103. A one-parameter group is a smooth family of smooth maps gr : X ×E1 → X ×E1

so that g0(x, t) = (x, t) and so that gr+s = gr ◦gs.
We say that the one-parameter group is a symmetry of the Lagrangian L if L◦gr−L is a total derivative

for each r.
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• Now write d
dr

∣∣∣
r=0

gr(x, t) = (g′(x, t),T ′(x, t)).

The following is a common generalization of the law of conservation of energy and the weak version of
the theorem.

THEOREM 104 (Noether). Suppose that {gr}r is a symmetry. Then the quantity
〈

∂L
∂v ,g

′(x, t)
〉
−

T ′(x, t)
(

∂L
∂v v−L

)
is conserved.

PROOF. Exercise. □

3.5. Rotations and angular momentum

3.5.1. Linear algebra. Equip Rd with its standard inner product and Euclidean metric, and let O(d)
be the group of rigid motions fixing the origin.

LEMMA 105. Each g∈O(d) is linear and satisfies g∗g= Id. Conversely O(d)= {g ∈ Md(R) | g∗g = Id}.

LEMMA 106. The (upper triangular part of the) constraints g∗g= Id are non-degenerate. The tangent
space at the identity is so(d) = {X ∈ Md(R) : X∗+X = 0}.

PROOF. Let F(g) = g∗g. Given a deformation Y ∈ Md(R) we have

F(g+Y ) = (g∗+Y ∗)(g+Y )

= g∗g+g∗Y +Y ∗g+O(Y 2) ,

so dFg(Y ) is the symmetrization of g∗Y . Where g is invertible the image of this map is the space of
symmetric matrices, which has the same dimension as the target space of F . □

COROLLARY 107. so(d) = T1O(d) = {X ∈ Md(R) | X∗+X = 0}; TgO(d) =
{

g−1X | X ∈ so(d)
}

.

DEFINITION 108. We call elements X ∈ so(d) infinitesimal rotations.

DEFINITION 109. The matrix exponential is given by expX = ∑
∞
k=0

1
k!X

k. The matrix logarithm is
logg = ∑

∞
k=1(−1)k−1 1

k (g− Id)k.

LEMMA 110. log converges in a small neighbourhood of the identity, exp converges for all X; for
small enough g,X they are inverse to each other. If X ,Y commute we have exp(X +Y ) = expX expY ; if
g,h commute we have log(gh) = logg+ logh.

LEMMA 111. On the neighbourhood V ⊂ O(d) of absolute convergence log : V → so(d) is a coordi-
nate system with parametrization exp.

PROOF. For g ∈ O(d) close enough to the identity we have (logg)+ (logg)∗ = (logg)+ (logg∗) =
(logg∗)(logg) = log(g∗g) = 0 since g,g∗ commute (they are inverse to each other). Conversely if X∗ =
−X then X ,X∗commute and exp(X)∗ exp(X) = Id.
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We also remark that near the identity we have

log
(
I +X +O(X2)

)
= X +O(X2) ,

giving a different confirmation that log has full rank (and in fact its derivative is the identity). □

COROLLARY 112. Each X ∈ so(d) defines a one-parameter subgroup gr = exp(rX).

FACT 113. Write Rd ≃
(
R2)d/2 or

(
R2)(d−1)/2 ⊕R (orthogonal sum) depending on whether d is

even or odd. For each 1 ≤ i ≤ d/2 let Xi =

(
1

−1

)
∈ so(2) in the relevant coordinates. Then

{exp(riXi)}i≤d/2 is a maximal family of one-parameter subgroups; {exp(∑r
i=1 riXi)} is a maximal com-

mutative subgroup (“maximal torus”).

3.5.2. Angular momentum. Begin with our standard Lagrangian

1
2

N

∑
j=1

m jv2
j +U(x) .

Each g ∈ O(d) acts by matrix multiplication on the coordinate of each particle. We have d
dt

(
gx j
)
=

gv j so
∣∣gv j

∣∣2 =
∣∣v j
∣∣2. Accordingly if U(gx) = U(x) (g acting diagonally) we have a rotationally in-

variant Lagrangian. Now for each X ∈ so(d) we obtain a one-parameter subgroup gr = exp(rX) with
d
dr

∣∣∣
r=0

exp(rX)x j = Xx j. It follows that the quantity

N

∑
j=1

m j

d

∑
i=1

v jXx j

is conserved.

DEFINITION 114. Fix x0 ∈ Ed . The angular momentum of a particle of mass m at position x moving
at velocity v ∈ Rd is the linear functional L ∈ so(d)′ given by

L(X) = (x− x0)
T Xv .

EXERCISE 115. Using the basis X1 =

 1
−1

, X1 =

 −1

1

, X3 =

 1
−1 0

0

 see that

in 3d we recover the usual angular momentum.

COROLLARY 116. If the potential is invariant under rotation, total angular momentum is conserved.
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3.5.3. More linear algebra. Better to think of X as a map Rn → Rn∗ with X∗ the dual map Rn =
Rn∗∗ → Rn∗ required to equal −X . Note that this still forces ⟨Xu,u⟩= ⟨X∗u,u⟩=−⟨Xu,u⟩.

LEMMA 117. Let u,v ∈ Rd be vectors. Then the functional X 7→ uXv depends only on the plane
spanned by u,v (modulu rescaling) and (if nonzero) conversely.

PROOF. By antisymmetry (au+bv)X(cu+dv) = (ad−bc)uXv. Conversely let w be independent of
u,v and let u∗,v∗,w∗ be corresponding elements of a dual basis, X = uw∗−wu∗. Then uXv = 0 since
both w∗,u∗ vanish at v, On the other hand uXw = u ̸= 0. □

PROPOSITION 118. Given L we can find 2k ≤ d orthonormal vectors {ui,vi}k
i=1 such that L is a linear

combination of the functionals uT
i Xvi.

PROOF. Think of L as an antisymmetric matrix; find orthonormal eigenbasis invariant under complex
conjugation, let u,v be the real and imaginary parts of an eigenvector. Alternatively apply Darboux’s
Theorem. □

• Multiparticle motion is more complicated.

3.5.4. Central potential. Suppose a single mass in Rd is moving in a central potential U(x) =U(r)
where r = |x|. At some particular time t either v,x are proportional to each other, and then we have a 1d
problem, or they are not. By Lemma 117 and conservation of angular momentum the motion is restricted
to the plane spanned by x,v. We therefore have the Lagrangian

1
2

m
(
ṙ2 + r2

θ̇
2)−U(r) .

We have two conserved quantities:

E =
1
2

m
(
ṙ2 + r2

θ̇
2)+U(r)

L = mr2
θ̇ .

COROLLARY 119 (Kepler equal area law). The angle is monotone; the area swept by the orbit be-
tween times t0, t1 is

∫ t1
t0 r2dθ = L

m(t1 − t2).

Combining the two equations we get

E =
1
2

mṙ2 +Ũ(r)

where Ũ(r) =U(r)+ L2

2mr2 is the “effective potential”. This is a separable ODE, which (in theory) can be
integrated to give r = r(t). We can then determine the angle from θ̇ = L

mr2 and thus obtain the orbit.

EXAMPLE 120. If U blows up at zero slower than 1
r2 then we can’t have r → 0.
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• Clearly the orbit is either unbounded (coming from infinity, to a a least radius and returning
to infinity) or bounded (oscillating between rmin, rmax. These extrema determined by ṙ = 0,
E = Ũ(r).

• Orbit periodic only if while going between extreme radii gives multiple of 2π . Note that

2
∫ rmax

rmin

θ̇dt = 2
∫ rmax

rmin

θ̇

ṙ
dr =

2L√
2m

∫ rmax

rmin

dr

r2
√

(E −Ũ(r))



CHAPTER 4

Specific systems

4.1. Small oscillations

Let L = 1
2 ⟨M(x)v,v⟩−U(x) with equation of motion

d
dt

(M(x)v) =−dU .

In particular if dU(x0) = 0 then γ(t)≡ x0 solves the equations of motion. Letting q denote the displace-
ment x− x0 we have to first order in q,

M(x0)q̈ ≈−H(x0)q

where H(x0) is the Hessian of U at x0, since
( d

dt M(q)
)

q̇ = dM · q̇2 is of second order. We are thus
interested in solving the equation

Mq̈ =−Hq

where q ∈ Rn and M,H are symmetric positive-definite matrices (i.e. we are working near a potential
minimum). Letting y =

√
Mq this takes the form

ÿ =−H̃y

where H̃ = M−1/2HM1/2. Suppose H is diagonable with eigenvectors (“normal modes”)
{

q j
}n

j=1, eigen-

values
{

ω2
j

}n

j=1
. Then H̃ has same eigenvalues, but eigenvectors M−1/2q j. It follows that

y(t) = ℜ

(
n

∑
j=1

A jeiω jt +
n

∑
j=1

B je−iω jt

)
M−1/2q j

and hence

q(t) = ℜ

(
n

∑
j=1

A jeiω jt +
n

∑
j=1

B je−iω jt

)
M−1q j .

32
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EXAMPLE 121. N equal masses connected by identical springs, say with x0 pinned, q j the displace-
ment from equillibrium of the jth mass. Then U = 1

2k ∑
N
j=1
(
q j −q j−1

)2 so

H =


1 −1
−1 2 −1

−1 . . . . . .
. . . 2 −1

−1 1


4.2. Rigid body motion

4.2.1. Kinematics; the inertia tensor.

DEFINITION 122. A rigid body is a system of masses subjected to the (holonomic!) constrain that all
pairwise distances remain fixed. We assume, moreover, that the masses are in general position.

LEMMA 123. Let A,B ⊂ Ed be subsets, and let f : A → B be a distance preserving bijection (for all
a,a′ ∈ A we have | f (a)− f (a′)|= |a−a′|. Then there exist an isometry f̃ ∈ Isom(Ed) such that f = f̃ ↾A.
The map f̃ is unique iff A is in general position in that its affine hull is all of Ed .

COROLLARY 124. The configuration of a rigid body relative to a reference embedding is determined
by an element of the Euclidean group. In particular, a rigid body has d + d(d−1)

2 degrees of freedom
regardless of its number of particles (6 if d = 3).

Concretely, fix point O on the body; in a particular configuration we can identify the points P of the
body with their displacements a = P−O relative to O. Suppose we now rotate the body by g ∈ SO(d)
and then translate it by x. The point P is then located at (“parametrization”)

X = x+ga .

If the motion is along the path x = x(t), g = g(t) we have

V =
dX
dt

= ẋ+ ġ ·a = v+ ġa

where v = ẋis the velocity of O, and ġ ∈ TgSO(d).

DEFINITION 125. The angular velocity of the body is Ω = ġg−1 ∈ T1SO(d) = so(d). Equivalently
ġ = Ωg.

In those terms
V = v+Ωga = v+Ωx

LEMMA 126. The angular velocity is independent of the choice of origin and initial orientation.
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PROOF. If we rotate the reference frame by h about O, the position of P is given by a′ = ha, so

X = x+g′h−1a .

We thus have g′ = gh and hence Ω′ = ġ′(gh)−1 = ġhh−1g−1 = Ω.
If we replace O with O′ then the absolute position of O′ is x′ = x+gb where b = O′−O. The position

of P is given by a′ = a−b

X = x+ga′+gb = x′+g′a′

where g′ = g. □

Let us now compute the kinetic energy of the entire rigid body. Writing M = ∑ j m j for the total mass
we have

T =
1
2 ∑

j
m jV 2

j =
1
2 ∑

j
m j
〈
v+Ωga j,v+Ωga j

〉
=

1
2

Mv2 +

〈
v,Ωg∑

j
m ja j

〉
+

1
2 ∑

j
m j
〈
Ωga j,Ωga j

〉
.

In the second term, ∑ j m ja j = Mā where ā = ∑ j
m j
M a j is the location of the centre of mass in body

coordinates. We thus have 〈
v,Ωg∑

j
m ja j

〉
= M ⟨v,Ωgā⟩= M ⟨v,Ω(X̄ − x)⟩

where X̄ is the location of the centre of mass. For the second term let r j = ga j be the vector from x to the
position of the jth particle. Then that term s

1
2 ∑

j
m j
〈
Ωr j,Ωr j

〉
=

1
2 ∑

j
m jrT

j Ω
T

Ωr j

=
1
2 ∑

j
m j Tr

(
r jrT

j Ω
T

Ω
)

=
1
2

Tr
(
IΩ

T
Ω
)

where I = ∑ j m jr jrT
j is the tensor of inertia.

REMARK 127. Note that if we define I0 = ∑ j m ja jaT
j then I = gI0gT = gI0g−1, encoding the fact that

the tensor of inertia rotates with the body. Alternatively we have
1
2

Tr
(
IΩ

T
Ω
)
=

1
2

Tr
(
I0gT

Ω
T

Ωg
)

=
1
2

Tr
(
I0ġT ġ

)
.
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Naturally we choose O to be the centre of mass, in which case we have the kinetic term

T =
1
2

Mv2 +
1
2

Tr
(
IΩ

T
Ω
)

Assuming the forces depend only on the configuration, we then have a corresponding angular mo-
mentum

J = Tr
(
I0vT ġ+ I0ġT v

)
=

1
2
(
ġT I0 + I0ġT) ,

thought of as a functional on TgSO(d). Equivalently this reads (ġT = gT ΩT )

J =
1
2
(ΩI + IΩ) = IΩ

as a functional on so(d) (since so(d) consists of antisymmetric matrices, both define the same functional).

EXAMPLE 128. Free body. The equation of motion is then conservation of angular momentum:

0 =
dJ
dt

= IΩ̇+ΩJ

In coordinates:
I1ω̇1 +(I3 − I2)ω2ω3 = 0

plus cyclic. Now give the body rotating around the third axis a small “displacement”. We can ignore
ω1ω2 so initially ω3 remains constant and the result is a linear equation for (ω1,ω2).

4.2.2. Rotating reference frames.



CHAPTER 5

Hamiltonian mechanics

Another formulation of mechanics, with a different (but equivalent) state space and equations of
motion. Key point: convexity of the quadratic kinetic term in the velocity.

5.1. The Legendre transformation

5.1.1. Convexity. Fix a real vector space V .

DEFINITION 129. A subset C ⊂ V is convex if C contains the interval connecting any two points
in it. If C is convex a function f : C → R is convex if for all x,y ∈ C and t ∈ [0,1], f ((1− t)u+ v) ≤
(1− t) f (u)+ t f (v). Say that f is strictly convex if the inequality is strict whenever u ̸= v and t ̸= 0,1.

EXERCISE 130. f is convex iff its epigraph {(v,a) : f (v)≤ a} ⊂V ×R is convex.

We will allow our functions to take the value ∞, as long as they are not identically infinite. The
effective domain of an extended convex function is the set {v | f (v)< ∞}. The convex function is closed
if {v | f (v)≤ a} is closed for every a (this is equivalent to lower semicontinuity).

EXERCISE 131. For I ⊂ R let f : I → R be convex.
(1) Then f has a (possibly infinite) right and left derivative at every interior point; if u ≤ v then

f ′L(u)≤ f ′R(u)≤ f ′L(v)≤ f ′R(v).
(2) There are at most countably many points where f ′ is not differentiable.
(3) If f is strictly convex then f ′R(u)< f ′L(v) whenever u < v.

COROLLARY 132. We can parametrize (almost all of) the points on the graph by the slopes of the
tangent lines instead. This is a mapping I → R∗ given by x 7→ f ′(x).

DEFINITION 133. The Fenchel or convex conjugate (or the Legendre Transform) of the function f on
Rn is the function f ∗ on (Rn)∗ given by

f ∗(p) = sup
x∈Rn

⟨p,v⟩− f (v) .

EXAMPLE 134. The convex conjugate of

(1) f (x) = ⟨m,x⟩+b is f ∗(p) =

{
b p = m
∞ p ̸= m

(2) For 1 < r < ∞ f (x) = 1
r |x|

r is 1
r∗ |p|

r∗ where r∗ is the dual exponent 1
r +

1
r∗ = 1.

36
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(3) Let g : V →V ∗ be a symmetric and positive -definite, and let f (x) = 1
2 ⟨gx,x⟩+ ⟨m,x⟩+b. Then

f ∗(p) = 1
2

〈
p−m,g−1(p−m)

〉
+b. Indeed given x ∈V let h = g−1(p−m). Then

⟨p,x⟩− f (x) = ⟨p−m,x⟩− 1
2
⟨gx,x⟩−b

=−1
2
⟨g(x−h),(x−h)⟩+ 1

2
⟨gh,h⟩−b

which is maximized at x = h.

LEMMA 135. Let f be any function
(1) f ∗ is l.s.c. and convex.
(2) If f ≤ g then g∗ ≤ f ∗.
(3) {(v,a)a ≥ f ∗∗(v)} is the closed convex hull of {(v,a)a ≥ f (v)}.

PROOF. Given p,ε let v be such that ⟨p,v⟩− f (v)≥ f ∗(p)− ε . Then for all p′ we have

f ∗(p′)≥
〈

p′,v
〉
− f (v) = ⟨p,v⟩− f (v)+

〈
p′− p,v

〉
≥ f ∗(p)− ε +

〈
p′− p,v

〉
.

It follows that for all p′ which are enough to p we have f ∗(p′)≥ f ∗(p)−ε , equivalently f ∗(p)≤ f ∗(p′)+
ε . It follows that if pi → p and f (pi)≤ a then f (p)≤ a as well.

For any point v ∈V we have

⟨p,v⟩− f (v)≤ f ∗(p)

⟨q,v⟩− f (v)≤ f ∗(q) .

It then follows that
⟨(1− t)p+ tq,v⟩− f (v)≤ (1− t) f ∗(p)+ f ∗(q) .

Taking the supremum over v gives

f ∗ ((1− t)p+ tq)≤ (1− t) f ∗(p)+ f ∗(q) .

□

THEOREM 136 (Fenschel–Moreau). Let f be proper convex and lsc (equivalently closed convex).
Then f ∗∗ = f .

PROOF. A closed convex set (here the epigraph of f ) is the intersection of the halfspaces containing
it. □

Suppose now that f is strictly convex and differentiable. Then the function u 7→ ⟨d fv,u⟩ − f (u)
has a critical point at v. By strict convexity this is the unique maximum of the function, and we get
f ∗ (d fv) = ⟨d fv,v⟩− f (v).
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5.1.2. From the Lagrangian to the Hamiltonian.

DEFINITION 137. Phase space also known as the cotangent bundle is T ∗X = {(x, p) | x ∈ X , p ∈ (TxX)∗}.

We now fix a Lagrangian L : T X ×E1 → R. We assume that v 7→ L(x,v; t) is strictly convex for fixed
x, t.

DEFINITION 138. The Hamiltonian of the system is the function H : T ∗X ×E1 →R so that for fixed
x, t we have p 7→ H(x, p; t) is the convex conjugate of v 7→ L(x,v; t).

To any state of motion (x,v; t) we associate a phase point (x, p; t) by p = ∂L
∂v

∣∣
(x,v;t). By the observation

above we have
H(x, p; t) = ⟨p,v⟩−L(x,v, t)

whenever p = p(x,v; t).

OBSERVATION 139. When L is time-independent this is exactly the conserved energy from Beltrami’s
identity, but now thought of as a function of x, p rather than x,v.

EXAMPLE 140. If L(x,v) = 1
2 ⟨M(x)v,v⟩−U(x) then p = M(x)v so v = M(x)−1 p and

H(x, p) = ⟨p,v⟩−L

= ⟨M(x)v,v⟩− 1
2
⟨M(x)v,v⟩+U(x)

=
1
2
〈

p,M(x)−1 p
〉
+U(x) .

From L∗∗ = L we also obtain that ∂H
∂ p = v.

5.2. The Hamiltonian flow

5.2.1. Hamilton’s equations. From ∂H
∂ p = v we see that along the physical path we have ẋ = v = ∂H

∂ p .
What about ṗ? The Euler–Lagrange equation reads

ṗ =
∂L
∂x

and we would like to understand what this means in terms of H. For this think of p and H, for the
moment, as functions on T X ×E1. We then have

dH = ⟨d p,v⟩+ ⟨p,dv⟩−
〈

∂L
∂v

,dv
〉
−
〈

∂L
∂x

,dx
〉
− ∂L

∂ t
dt

= ⟨d p,v⟩−
〈

∂L
∂x

,dx
〉
− ∂L

∂ t
dt .
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Now push everything forward to T ∗X ×E1 by the identification. We see that

(5.2.1)


∂H
∂x =−∂L

∂x
∂H
∂ p = v
∂H
∂ t =−∂L

∂ t .

It follows that, along the physical path {
ẋ = ∂H

∂ p

ṗ =−∂H
∂x .

DEFINITION 141. These are Hamilton’s equations. The solution curves, that is the function Fs,t : T ∗X →
T ∗X mapping the initial condition (z,s) ∈ T ∗X ×E1 to the location of the solution at time t, is called the
Hamiltonian flow (associated to the Hamiltonian H ∈C∞(T ∗X).

• Clearly Ft,r ◦Fs,t = Fs,r.
• If H does not depend on time then Fs,t only depends on t − s and we simply write the flow as a

one-parameter group Fs−t .

REMARK 142. WARNING. Equation (5.2.1) must be interpreted very carefully. On the LHS we take
partial derivatives where x, p are fixed. On the right where x,v are fixed. Those are not the same!

One conclusion is that, along the physical path, we have

Ḣ =
∂H
∂x

ẋ+
∂H
∂ p

ṗ+
∂H
∂ t

=
∂H
∂ t

.

When the Lagrangian (and the Hamiltonian) does not depend explicitly on time we again obtain the
Beltrami identity Ḣ = 0.

EXAMPLE 143. Consider the harmonic oscillator L = 1
2mv2 − 1

2kx2. With Euler–Lagrange equation
mẍ =−kx. Here p = ∂L

∂v = mv, so H = pv−L = 1
2mv2 + 1

2kx2 = 1
2m p2 + 1

2kx2, and we get

=

(
p/m

−k

)(
x
p

){
ẋ = p

m
ṗ =−kx

⇐⇒ d
dt

(
x
p

)
=

(
1/m

−k

)(
x
p

)
.

We therefore have (
x
p

)
= exp

((
1/m

−k

)
t
)(

x0
p0

)
.
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EXAMPLE 144. In the central potential L = 1
2m
(
ṙ2 + r2θ̇ 2)−U(r) we have pr = mṙ and pθ = J =

mr2θ (the angular momentum!) so

H = pr ṙ+ pθ θ̇ −L

=
1
2

mṙ2 +
1
2

mr2
θ̇

2 +U(r)

=
1

2m
p2

r +
1

2mr2 p2
θ +U(r) .

The equations of motion as therefore 
ṙ = 1

m pr

ṗr =−dU
dr − J2

mr3

θ̇ = 1
mr2 J

J̇ = 0

We therefore see that J is a conserved quantity (nice to have it as a coordinate!), that θ = θ0 +
J
m
∫ t

0
dτ

r2

and that it remains to determine r(t) from the first two equations.

5.2.2. The symplectic structure.

DEFINITION 145. An observable is a smooth function A ∈C∞(T ∗X ×E1).

Let A be an observable. Then along the physical path we have

Ȧ =
∂A
∂x

ẋ+
∂A
∂ p

ṗ+
∂A
∂ t

=
∂A
∂x

∂H
∂ p

− ∂A
∂ p

∂H
∂x

+
∂A
∂ t

= ω (dA,dH)+
∂A
∂ t

where ω(x,p) is the bilinear form on T ∗
(x,p)T

∗X with the matrix J =

(
In

−In

)
. Note that ω is non-

degenerate and antisymmetric. Since it is constant in those coordinates we also have dω = 0, that is ω is
closed.

DEFINITION 146. A symplectic manifold is a pair (M,ω) where M is a manifold and ω is a non-
degenerate closed 2-form on M.

EXAMPLE 147. Let X be any manifold, and let M = T ∗X be the cotangent bundle. Let π : T ∗X → X
be the natural projection, dπ : T(x,p)M → TxX its derivative. Observe that p ∈ (Txx)∗ so dπ∗

(x,p)(p) ∈
T ∗
(x,p)M. Setting θ(x,p) = dπ∗

(x,p)(p) gives a section of the cotangent bundle of M called the tautological
1-form. This is canonical: if f : X →Y is a diffeomorphism then f ∗θY = θ X .Now let ω =−dθ (exterior
derivative). By duality we can think of ω also as a map T M → T ∗M and also as a bilinear form on
T ∗T ∗M as above.
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DEFINITION 148. A coordinate system {qi, pi}n
i=1 on M with respect ti which ω has the constant

matrix J (i.e. ω = ∑
n
i=1 dqi ∧d pi) is called a canonical coordinate system.

EXAMPLE 149. If M = T ∗X then (qi)
n
i=1 can be any coordinate system on X , and (pi) can be the

associated momenta with respect to any Lagrangian.

THEOREM 150 (Darboux). A symplectic manifold always has local canonical coordinate systems.

DEFINITION 151. The Poisson bracket of the observables A,B is the observable {A,B}= ω(dB,dA).
The Hamiltonian vector field corresponding to A is the vector field XA =ω−1(dA), equivalently ⟨V,dA⟩=
ω (XA,V ) for every vector field V .

In this language Hamilton’s equations read ż = XH(z) and for time-independent observables we have
Ȧ = {H,A}.

DEFINITION 152. A map F : T ∗X → T ∗X that preserves the symplectic form is called a symplecto-
morphism or a canonical transformation.

LEMMA 153. The Hamiltonian flow is a symplectomorphism.

PROOF. Direct calculation.
d
dt

(F∗
t ω) = F∗

t (LXH ω) group property

= F∗
t (iXH dω +d (iXH ω)) Cartan’s formula

= F∗
t (0+d(dH)) dω = 0

= 0 .

□

COROLLARY 154 (Liouville’s Theorem). The flow preserves volume.

• We will discuss this further in Section 5.3.

5.3. Interlude: dynamics and ergodic theory

5.4. Integrable systems and the KAM theorem

Suppose that dimX = n, so M = T ∗X is 2n-dimensional, and fix a Hamiltonian H ∈C∞(M).

DEFINITION 155. We call the Hamiltonian integrable if there are further constants of the motion
{Ji}n

i=2 so that, together with J1 =H we have
{

Ji,J j
}
= 0 and that, on a level set Ma = J−1(a) the{dJi}n

i=1
are linearly independent.

• Since Ji are constants of the motion, Ma is invariant by the Hamiltonian flow (in fact invariant
by the n-dimensional group of flows generated by all the Ji!).

• By the implicit function theorem, Ma ⊂ M is a smooth n-dimensional submanifold.
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• Since
〈
dJi,ω

−1(dJ j)
〉

is the derivative of Ji along the Hamiltonian flow associated to dJ j we see
that ω∗(dJi,dJ j) = 0 (or equivalently ω(Xi,X j) = 0 for the corresponding vector fields, which
are tangent to Ma). We say Ma ⊂ M is a Lagrangian submanifold.

ASSUMPTION 156. Suppose Ma is compcat (e.g. because energy surfaces are compact).

PROPOSITION 157. Each connected component of Ma is a torus.

PROOF. Let Φ
(i)
ti be the 1-parameter group generated by Ji. Since these commute we can for t ∈ Rn

and z ∈C set
Φt(z) = Φ

(1)
t1 · · ·Φ(n)

tn (z)
and get an Rn-action. Each orbit

{
Φt(z)

}
t∈Rn is open (by the inverse function theorem, since the vector

fields are independent and C is n-dimensional), and the orbits are disjoint, so each orbit is closed, hence
a connected component. In addition each orbit is compact, hence has the form Rn/Λ where Λ is a lattice
in Rd , that is is a torus. □

Now let {γi}n
i=1 ⊂ Λ be a basis; on the torus Ma these are cycles which generate the homology. Let

Ii =
∮

γi
pdq. If γ ′i is another cycle on Ma homologous to γi then the integral remains the same, because if

γ ′i − γi = dA for a 2-cycle A ⊂ M then by Stokes∮
γ ′−γ

pdq =−
∫

A
d p∧dq =−

∫
A

ω = 0

since ω ≡ 0 on Ma. Now the H-flow on Ma maps the cycles to homologous cycles, and it follows that the
Ii are constants of the motion.

ASSUMPTION 158. Call the torus Ma non-degenerate if the {Ii}n
i=1 are independent.

We can now replace the Ji with the Ii. Let {θi} be the conjugate positions. Then Hamilton’s equations
give dI

dt =−∂H
∂θ

, so H is independent of the θi and is only a function of the action variables Ii. It follows
that dθi

dt = ∂H
∂ Ii

= ωi(a), so θi are essentially angles.

THEOREM 159 (Kolmogorov–Arnol’d–Moser). Suppose that the frequency vector ω(a) is sufficiently
irrational. Then under small perturbations of H the torus Ma deforms smoothly.

5.5. Hamilton–Jacobi Theory

Fix an initial condition x0 ∈ X and set S(x; t) as the action for the physical path that reaches x ∈ X at
time t starting from x0. Suppose we vary the final endpoint x; then the physical path γ will change by δγ

and to first order we have

δS =
∫ t

t0

[
∂L
∂x

δγ +
∂L
∂v

δ γ̇

]
dt

=
∫ t

t0

[
∂L
∂x

− d
dt

∂L
∂v

]
δγdt +

[
∂L
∂v

δγ

]t1

t0
.
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Now δγ(t0) = 0 (we fixed the initial condition) and δγ(t) = ∆x, the change in the endpoint. Between the
two the the physical path satisfies the Euler–Lagrange equations, and we get:

∂S
∂x

=
∂L
∂v

= p .

Now let us work along the physical path. By definition we have

dS
dt

= L .

By the chain rule we also have
dS
dt

=
∂S
∂ t

+
∂S
∂x

dx
dt

.

It follows that
∂S
∂ t

= L− pv =−H .

Equivalently, we have
∂S
∂ t

+H(x, p; t) = 0 .

But p = ∂S
∂x , and we obtain a nonlinear first-order PDE

∂S
∂ t

+H
(

x,
∂S
∂x

; t
)
= 0 .

This is the Hamilton–Jacobi equation. Solving this equation amounts to solving the equations of motion:
suppose we can find a solution S = S(x; t;a) where α are constants of integration (functions of the initial
condition x0). There are nominally n+ 1 of them but one will be an overall additive constant since the
equations only involve derivatives of S,and we ignore it.

Define βi =
∂S
∂αi

and let (α,β ) be coordinates at the point (x, p) where p = ∂S
∂x . This is a symplecto-

morphism (check!). Conversely solving for x, p as functions of (α,β ) gives the solution of the system.

EXAMPLE 160. The harmonic oscillator. Here H = p2

2m + 1
2kx2 . We then need to solve the PDE

∂S
∂ t

+
1

2m

(
∂S
∂x

)2

+
1
2

kx2 = 0 ,

Since the Hamiltonian does not depend explicitly on time we try an Ansatz S = W (x)−αt. We then
obtain the equation

1
2m

(W ′)2 +
1
2

kx2 = a

and we can see that α is the total energy E. We then have

W ′ =
√

2mα −mkx2 .
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We therefore have
W =

∫ √
2mα −mkx2dx

and
S =

∫ √
2mα −mkx2dx−αt .

We can compute the integral directly, but we really want the change of coordinates. We will have

β =
∂S
∂α

=

√
m
2α

∫ dx√
1− kx2

2α

− t =
1
ω

arcsin

(√
k

2α
x

)
− t

where ω =
√

k/m. We thus obtain

x =

√
2α

k
sin(ωt +(ωβ )) =

√
2α

k
sin(ωt +φ) .

We can also compute p = ∂S
∂x =

dW
dx =

√
2mα −mkx2 =

√
2mα cos(ωt +φ). Finally since 1

2m p2+ 1
2kx2 =

α we see that α is indeed the energy (which can be computed from the initial conditions), and

tanφ =
√

km
x0

p0
.



CHAPTER 6

Connections to Quantum Mechanics

6.1. Introduction: The dictionary

Classical particles occupy points in phase space. Quantum mechanical particles are smeared. We will
discuss the underlying mathematics. Let us start with a dictionary

Classical Quantum
State space M = T ∗X L2(X)

Observables a ∈C∞(M) Selfadjoint linear operators Â : L2(X)⟲
Observable algebra {a,b} 1

ih̄

[
Â, B̂

]
= 1

ih̄

(
ÂB̂− B̂Â

)
Time evolution dz

dt =−ω−1(dH) ih̄ d
dt Ψ = ĤΨ

Flow group z(t) = Φt(z) Ψ(t) =U(t)Ψ(0), d
dtU(t) = ih̄U(t)Ĥ

Evolution of observables da
dt = {H,a} dA

dt =−ih̄ [H,A] (***)
Ensemble measure µ on M Positive trace class Hermitian operator on L2(X) of trace 1.

Let’s remember what time evolution of observables means:

• Classical: we use the initial condition z as the coordinate for all times, so we the observable
at = a◦Φt becomes time-dependent.

• Quantum: we use the initial state Ψ as the state for all times. Then the observables must evolve
so that Â(t)Ψ is the state so that at time t it would be ÂΨ(t). In other words U(t)Â(t)Ψ =
ÂU(t)Ψ and hence

Â(t) =U(−t)ÂU(t) .

Then

dÂ(t)
dt

=−ih̄U(−t)ĤÂU(t)+ ih̄U(−t)ÂĤU(t)

=−ih̄
[
Ĥ, Â(t)

]
Treating the Schrödinger equation as an ODE in the Hilbert space L2(X), we see that it is a constant-
coefficient linear equation, so can be solved by separating variables via the spectral decomposition of Ĥ.
For example if {φn}∞

n=0 ⊂ L2(X) is an o.n.b. of eigenfunctions of Ĥ with Ĥφn = Enφn then

Ψ(t) =
∞

∑
n=0

ane
En
ih̄ t

φn

45
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is a solution to the Schrödinger equation. It thus suffices to solve the eigenvalue equation, the so-called
time-independent Schrödinger equation

Ĥφn = Enφn .

• The term “quantum”, that is “unit” of somethingm comes exactly from the discreteness of the
spectrum of Ĥ.

6.2. Canonical (“algebraic”) quantization

6.2.1. Formalities. Fix X =Rd , so that T ∗X =
{
(x, p) | x ∈ Rd, p ∈ (Rd)∗

}
. To each observable we

want to associate an operator.

• Classical:
{

xi, p j
}
= δi j.

• Quantum: we want operators x̂i, p̂ j so that
[
x̂i, p̂ j

]
= ih̄.

– Let x̂ j be multiplication by x
– Let p̂ j be −ih̄ ∂

∂x j
.

– Then (
x̂i p̂ j − p̂ jx̂i

)
Ψ(x) =−ih̄

(
xi

∂Ψ

∂x j
− ∂ (xiΨ)

∂x j

)
= ih̄

∂xi

∂x j
Ψ

=
(
ih̄δi j

)
Ψ .

Dirac suggested that quantization should work by a map Oph so that Oph ({a,b}) = 1
ih̄ [Oph(a),Oph(b)].

LEMMA 161. {ab,c}= a{b,c}+{a,c}b.
[
ÂB̂,C

]
= Â

[
B̂,Ĉ

]
+
[
Â,Ĉ

]
B̂.

COROLLARY 162. Knowing {x, p} and [x̂, p̂] determines the algebraic structure of the Poisson /
commutator brackets for all commutative / noncommutative polynomials.

THEOREM 163 (Groenewold 1946). There is no map Oph mapping polynomials in x, p to noncom-
mutative polynomials in x̂, p̂ which is: (1) unital; (2) linear; (3) respects brackets as above.

• Concretely the problem is: should we have x̂p = x̂ p̂,x̂p = p̂x̂, x̂p = x̂ p̂+p̂x̂
2 , or something else?

6.2.2. The Heisenberg group and algebra. Let H =


1 a c

1 b
1

⊂ GL3(R). This closed sub-

group is called the “Heisenberg group” for reasons that are about to become apparent.
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The tangent space at the origin consists of the matrices


0 x z

0 y
0

 and we can check that

exp

0 x z
0 y

0

=

1
1

1

+

0 x z
0 y

0

+
1
2

0 x z
0 y

0

2

=

1 x z+ 1
2xy

1 y
1

 .

Consider the infinitesimal generators X =

0 1 0
0 0

0

, Y =

0 0 0
0 1

0

. We have [X ,Y ] =

0 1 0
0 0

0

0 0 0
0 1

0

−0 0 0
0 1

0

0 1 0
0 0

0

= Z =

0 0 1
0 0

0

 where Z is central.

Now consider L2(R) and let the 1-parameter group


1 0 0

1 b
1

 act by

1 0 0
1 b

1

 f

(x) =

f (x+b). Thus Y acts by Y f (x) = d f
dx (x).

Let

1 a 0
1 0

1

 act as follows: given f ∈ L2(R) let f̂ be its Fourier transform,

f̂ (k) =
∫
R

f (x)e(−kx)dx .

Define
̂1 a 0

1 0
1

 f (k) = f̂ (k+ h̄a) .

In other words
̂1 a 0

1 0
1

 f (k) = ̂f (x)e(ah̄x)

so 1 a 0
1 0

1

 f (x) = e(ah̄x) f (x) ..

Differentiating with respect to a at a = 0 we see that

X f (x) = 2πih̄x f (x) = ihx f (x) .
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From the calculation above we get

[X ,Y ] = ih
[

x,
d
dx

]
=−ih .

thus as long as we define Z f =−ih f , that is

1 0 z
1 0

1

 f (x) = e−ihz f (x) we get an action of H.

THEOREM 164 (Stone–von Neumann). For each λ = e−ih ∈ S1 there is a unique (up to isomorphism)
irreducible action of H on a Hilbert space such that Z acts by the scalar −ih.

DEFINITION 165. The associative algebra generated by X ,Y subject to [X ,Y ] = Z and [Z,X ] =
[Z,Y ] = 0 is called the Heisenberg algebra.

6.2.3. Example: the harmonic oscillator. Consider H = 1
2m p2 + 1

2kx2. Define a =

√√
km

2h̄ x +

i√
2h̄

√
km

p. Then a† =

√√
km

2h̄ x− i√
2h̄

√
km

p so with ω =
√

k/m we have

N = a†a

=

√√
km

2h̄
x− i√

2h̄
√

km
p

√√
km

2h̄
x+

i√
2h̄
√

km
p


=

√
km

2h̄
x2 +

1
2h̄

√
km

p2 +
i

2h̄
(xp− px)

=
1

h̄ω
H − 1

2
,

that is

H = h̄ω

(
N +

1
2

)
.

For the same reason aa† = 1
h̄ω

H + 1
2 so

[
a,a†]= 1. It follows that [N,a] =

[
a†a,a

]
=
[
a†,a

]
a =−a

and, taking adjoints,
[
N,a†]= a†.

Now suppose Nφ = λφ . Then

N (aφ) = (Na−aN)φ +a(Nφ)

=−aφ +aλφ

= (λ −1)aφ .

It follows that if aφ ̸= 0 then aφ is an eigenvector with eigenvalue λ − 1. If aφ = 0 then Nφ = 0 so it
follows that if λ ̸= 0 then λ − 1 is also an eigenvalue. But ⟨φ ,Nφ⟩ =

〈
φ ,a†aφ

〉
= ⟨aφ ,aφ⟩ ≥ 0 so the

eigenvalues of N are non-negative.
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It follows that the eigenvalues are the non-negative integers.
For the same reason N

(
a†φ
)
= (λ + 1)a†φ , and this is never zero since

〈
a†φ ,a†φ

〉
=
〈
φ ,aa†φ

〉
=

⟨φ ,(N +1)φ⟩ ≥ ⟨φ ,φ⟩ .
Let φ0 be a vector such that aφ0 = 0 (equivalently, Nφ0 = 0) and set φn =

(
a†)n

φ0. Then

Nφn = nφn .

Also, the subspace SpanC {φn}∞

n=0 is an irreducible representation of the Heisenberg algebra: by induc-
tion

[
a,
(
a†)n]

= n(a†)n−1 so aφn = nφn−1.
From this we also get ⟨φn,φn⟩=

〈
φ0,an(a†)nφ0

〉
= n!⟨φ0,φ0⟩ so 1√

n!
φn are L2-normalized.

Finally we see Hφn = h̄ω(n+1)φn.

EXERCISE 166. In the representation on L2(R) we have

φn(x) = 2−n/2
(mω

π h̄

)1/4
exp
(
−mωx2

2h̄

)
Hn

(√
mω

h̄
x
)
.

6.2.4. Connection to classical mechanics. Instead of looking at the “deep quantum” eigenstates,
consider a Gaussian wave packet

Ψ(x,0) =
1

(πσ2)
1/4 exp

(
i
h̄

p0x− (x−q0)
2

2σ2

)
.

Let us try the Ansatz

Ψ(x, t) =
1

(πσ2(t))1/4 exp
(

iθ(t)+
i
h̄

p(t)x− (x−q(t))2

2σ2(t)

)
.

Then

∂xΨ =
1

(πσ2)
1/4 exp

(
iθ(t)+

i
h̄

px− (x−q)2

2σ2

)
·
(

i
h̄

p− x−q
σ2

)
so

∂
2
x Ψ =

[(
i
h̄

p− x−q
σ2

)2

− 1
σ2

]
Ψ .

It follows that

− h̄2

2m
∂

2
x Ψ+

1
2

kx2
Ψ =

[
− h̄2

2m

(
i
h̄

p− x−q
σ2

)2

+
h̄2

2mσ2 +
1
2

kx2

]
Ψ .

On the other hand

ih̄
d
dt

Ψ = ih̄
[
−1

2
σ̇

σ
+ iθ̇ +

i
h̄

ṗx+
(x−q)q̇

σ2 +
(x−q)2

σ3 σ̇

]
Ψ .
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We therefore have a solution if

− h̄2

2m

(
i
h̄

p− x−q
σ2

)2

+
h̄2

2mσ2 +
1
2

kx2 =− ih̄
2

σ̇

σ
− h̄θ̇ − ṗx+ ih̄

(x−q)q̇
σ2 + ih̄

(x−q)2

σ3 σ̇ .

Matching real and imaginary parts we get

p2

2m
− h̄2(x−q)2

2mσ4 +
h̄2

2mσ2 +
1
2

kx2 =−ṗx− h̄θ̇

and
p(x−q)

mσ2 =− σ̇

2σ
+

(x−q)q̇
σ2 +

(x−q)2

σ3 σ̇ .

Looking at the coefficient of x2 we see σ̇ = 0, and, dividing by x−q, that

q̇ =
p
m

.

Now in real part equation, the coefficient of x2 is

1
2

(
k− h̄2

mσ4

)
so

σ =

(
h̄2

mk

)1/4

.

The coefficient of x gives
h̄2q
mσ4 =−ṗ

that is
ṗ =−kq .

The constant term reads
p2

2m
− h̄2q2

2mσ4 +
h̄2

2mσ2 =−h̄θ̇ ,

so we can solve for the phase θ(t) which is largely irrelevant.

CONCLUSION 167. If we have σ =
(

h̄2

mk

)1/4
exactly then the Gaussian wave packet

Ψ(x, t) =
1

(πσ2)
1/4 exp

(
iθ(t)+

i
h̄

p(t)x− (x−q(t))2

2σ2

)
keeps it shapes, with p,q evolving by Hamilton’s equations.

QUESTION 168. What happens for general Hamiltonians?
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6.3. The Fourier transform and pseudodifferential operators

We construct a quantization map.

6.3.1. The fourier transform. L2(Rn), S(Rn), Hk(Rn)
Classical Fourier transform: f̂ (k) =

∫
Rn f (x)e(−kx)dx.

(1) f ∈ S(Rn) then
(a) ∂̂ j f (k) =

∫
Rn ∂ j f (x)e(−kx)dx =

(
2πik j

)∫
Rn f (x)e(−kx)dx = (2πik j) f̂ (k). Thus D̂α f (k) =

(2πi)|α|kα f̂ (k).
(b) ∂ j f̂ (k) = ̂(−2πix) f (k).

• Thus f̂ ∈ S(Rn∗).
(c) f (x) =

∫
Rn∗ f̂ (k)e(kx)dk

(2) Smoothing gives Fourier inversion more generally.
(3) Let Φ(x) = ∑Λ f (x+δλ ). Then for k ∈ δ−1Λ∗ have

Φ̂(k) = f̂ (k)

and

∑
k∈δ−1Λ∗

∣∣Φ̂(k)
∣∣2 = 1

δ n vol(R/Λ)

∫
R/δΛ

|Φ(x)|2 dx

=
1

δ n vol(R/Λ) ∑
λ ,λ ′∈Λ

∫
R/δΛ

Φ(x+δλ ) ·Φ(x+δλ
′)dx .

Absolute convergence by Cauchy–Schwartz. Now take δ →∞. Then vol(Rn∗/δ−1Λ∗)∑k∈δ−1Λ∗
∣∣Φ̂(k)

∣∣2 →∫
Rn∗
∣∣Φ̂(k)

∣∣2 dk, while on LHS only the summand with λ = λ ′ = 0 survives. We conclude that∫ ∣∣Φ̂(k)
∣∣2 dk =

∫
|Φ(x)|2 dx .

(4) Extend FT by continuity to a unitary map F : L2(Rn)→ L2(Rn∗). By Fourier inversion this is
an isometry.

(5) f ∈ Hr if ⟨k⟩r f̂ ∈ L2.

Semiclassical Fourier transform: f̃ (p) = f̂
( p

h

)
=
∫
Rn f (x)e(− p

h x)dx =
∫
Rn f (x)exp

(
ipx
h̄

)
dx. Then

f (x) =
∫

f̂ (k)e(kx)dk

= h−n
∫

f̃ (p)e
( px

h

)
d p .

Pancherel now reads
∥ f∥2

L2 = h−n
∫ ∣∣ f̃ (p)

∣∣2 d p .
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6.3.2. Quantization for Schwartz-class symbols. The position operator acts by Mx. Since the
Fourier transform of ∂̂ j f (k) is

(
2πik j

)
f̂ (k) we see that −ih̄∂ j is maps f̃ to p f̃ (p).

We can thus quantize a(x, p) = a1(x)a2(p) by(
Op f

)
(x) = h−na1(x)

∫
a2(p) f̃ (p)e

( px
h

)
d p

= h−n
∫

a(x, p) f̃ (p)e
( px

h

)
d p

= h−n
∫∫

a(x, p) f (y)e
(

p(x− y)
h

)
dyd p .

More generally we can set(
Opt

h f
)
(x) = h−n

∫∫
a((1− t)x+ ty, p) f (y)e

(
p(x− y)

h

)
dyd p .

• t = 0 is the standard (Kohn–Nirenberg) quantization above
• t = 1 applies a1(x) and then a2(p) (“adjoint Kohn–Nirenberg quantization”).
• t = 1

2 is Weyl symmetrization:〈
OpW(a) f ,g

〉
= h−n

∫∫∫
a
(

x+ y
2

, p
)

g(x) f (y)e
(

p(y− x)
h

)
dxdyd p

=
〈

f ,OpW(ā)g

〉
Standard quantization is easier to work with (take Fourier transform, multiply by a, take inverse Fourier
transform), but as we see here Weyl symmetrization is better: if a is real, then OpW

h (a) is symmetric (and
often selfadjoint).

EXERCISE 169.
(
Opt

h a
)†

= Op1−t
h (ā).

EXAMPLE 170. If a = a(p) then Opt
h(a) is the Fourier multiplier. In particular if a(p) = pα then

Opt
h(a) = (ih̄)|α|Dα .

THEOREM 171. Suppose a ∈ S(M). Then Opt
h(a) makes sense on very general f , for example it

gives a continuous map S ′ →S .

PROOF. The operator has kernel

K(x,y) = h−n
∫
Rn∗

a((1− t)x+ ty, p)e
(

p(x− y)
h

)
d p .

opThis is a Schwartz function on (Rn)2 (exercise!), and the claim follows. □

PROPOSITION 172. If a = a(x) then Opt
h(a) is just multiplication by a.
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PROOF. We checked this explicitly for t = 0. Next,

d
dt

(
Opt

h(a) f
)
= h−n

∫∫
⟨∂xa((1− t)x+ ty, p) ,y− x⟩ f (y)e

(
p(x− y)

h

)
dyd p

=− h
2πihn

∫∫ 〈
∂xa((1− t)x+ ty, p) ,∂pe

(
p(x− y)

h

)〉
f (y)dyd p

=− h
2πihn

∫∫
Divp ∂xa((1− t)x+ ty) f (y)e

(
p(x− y)

h

)
dyd p

=− h
2πihn

∫
Divp

[
e
( px

h

)
·
(

˜∂xa((1− t)x+ ty) f (y)
)
(p)
]

d p = 0 .

□

LEMMA 173. We can recover the symbol from the operator: Op( a)
(
e
( p

h ·
))

= a(x, p)e
( px

h

)
.

PROOF. By Fourier inversion we have

e
(
− px

h

)
Op( a)

(
e
( p

h
·
))

(x) = h−n
∫∫

a
(
x, p′

)
e
(

p(y− x)
h

)
e
(

p′(x− y)
h

)
dyd p′.

= h−n
∫∫

a
(
x, p′

)
e
(
(p′− p)x

h

)(
−(p′− p)y

h

)
dyd p

=
∫

a
(
x, p′

)
e
(
(p′− p)x

h

)
δ
(

p′− p
)

d p

= a(x, p) .

□

6.3.3. Composition. A key fact is that OpW(a)OpW(b)
is an operator of the same type: there is a

classical observable a♯b such that OpW(a)OpW(b)=OpW(a#b)

(this is also true for the other quantizations).

THEOREM 174 (Zworski Theorem 4.12). Let a,b ∈ S . Then a♯b = ∑
N
k=0

ihhk

k! A(D)ka(x, p)b(x′, p′)+
O(hN+1). Here

A(D) = ω

((
∂x
∂p

)
,

(
∂x′

∂p′

))
.

COROLLARY 175. We have

(1) a#b = ab+ h
2i {a,b}+O(h2), and hence

[
OpW(a),OpW(b)

]
= ihOpW({a,b})+O(h3).

• The error term O(h3) is special to Weyl quantization. For the standard quantization we’d
get O(h2).

(2) If a,b have disjoint supports then a#b = O(h∞).
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6.3.4. More general observables: pseudodifferential operators. To go beyond S need some prepa-
ration.

Our definition of OpW(a) would also work for a of moderate growth ∂ α

∂xα

∂ β

∂ pβ
a(x, p)≪a,α,β ⟨x⟩Oa,α (1)+r|β | ⟨p⟩Oa,α,β (1)

(check the integration by parts arguments). We won’t go that far.
On the other hand we will now let the symbols (=observables) depend explicitly on h.

DEFINITION 176. Say a ∈ Sm if ∂ α

∂xα

∂ β

∂ξ β
a(x, p) ≪a,α,β ⟨p⟩m−|β |, a ∈ Sm

δ
if ∂ α

∂xα

∂ β

∂ξ β
a(x, p) ≪a,α,β

h−δ |α+β | ⟨p⟩m−|β |. The implied constants should be uniform for 0 < h ≤ h0 = h0(a).

EXAMPLE 177. ∑|α|≤m cα(x)pα with every derivative of cα bounded.

Sometimes a ∼ ∑
∞
j=0 a jh j with a j ∈ Sm

δ
in the sense that a = ∑

N
j=0 a jh j +OSm(hN+1). In that case we

call a0 the principal symbol of a.

EXERCISE 178. (Borel Theorem) for any choice of a j there is ah.

PROPOSITION 179. If a ∈ Sm
δ

then OpW(a) : S→S is continuous, and similarly S ′ →S ′.

LEMMA 180. We can recover the symbol from the operator.

PROOF. For a ∈ S(M) this is 173; in general use the density of Sin Sm
δ

. □

LEMMA 181 (Pseudolocality). Up to negligible terms, Op(a) f (x) only depends on f near x.

PROOF. In the integral(
Opt

h f
)
(x) = h−n

∫∫
a((1− t)x+ ty, p) f (y)e

(
p(x− y)

h

)
dyd p .

Observe that
〈
x− y,−ih̄∂p

〉
e
(

p(x−y)
h

)
= |x− y|2 e

(
p(x−y)

h

)
so

Le
(

p(x− y)
h

)
= e
(

p(x− y)
h

)
for L =

⟨x−y,−ih̄∇p⟩
|x−y|2

. We can apply this N times and integrate by parts N times to get

(
Opt

h f
)
(x) ∝ h−nhN

∫∫ 〈x− y,∇p
〉N

|x− y|N
a((1− t)x+ ty, p) f (y)e

(
p(x− y)

h

)
dyd p .

Now the contribution of the region |x− y| ≥ ε to the integral can be made O(hN) by noting that the more
we differentiate, the more decay wrt p we get. □

PROPOSITION 182. If a ∈ Sm
δ

and b ∈ Sm′

δ
then a♯b ∈ Sm1+m2

δ
.

THEOREM 183. Let a ∈ S0. Then OpW(a) is bounded on Lp for each p ∈ (1,∞), uniformly in h. If
a ∈ S0

δ
the bound is mildly h-dependent..
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PROOF. Littlewood–Paley decomposition. □

COROLLARY 184. If a,b ∈ S0
δ

then OpW(ab)=OpW(a)OpW(b)+O
L2→L2(h1−2δ)

; if ab have disjoint supports

(so ab = 0 classically) then OpW(a)OpW(b)=O
L2→L2 (h

∞)
.

• Now OpW(a)OpW(b)=OpW(ab)

COROLLARY 185 (“Ehrenfest’s Theorem”). Let ψ ∈ L2(X) be a quantum state, ψ(t) =U(t)ψ where
ih̄ d

dtU(t) = Ĥ(t)U(t). Let A = OpW(a). Then

d
dt

〈
ψ(t)

∣∣∣OpW(a)

∣∣∣ψ(t)
〉
=

1
ih

〈
ψ(t)

∣∣[Ĥ,A
]∣∣ψ(t)

〉
=
〈

ψ(t)
∣∣∣OpW{H,a}

∣∣∣ψ(t)
〉
+O(h) .

• Physics interpretation: the expectation values morally satisfy Hamilton’s equations.

6.4. Egorov’s Theorem

6.4.1. Time-dependent version: fixed time. Let H ∈ C∞(M ×E1) be a (possibly time-dependent)
observable, which we suppose vanishes at all times outside some fixed bounded set (in particular H(t) ∈
C∞

c (M) ⊂ S(M) and let Φt be the corresponding Hamiltonian flow. Let Ĥ(t) = OpW(H(t)). One can
prove that the time-dependent Schrödinger equation ih̄ d

dtU(t) =U(t)Ĥ(t) has a unique solution in unitary
operators U(t).

THEOREM 186 (Egorov I). Let a ∈ Sm. Then on any fixed interval [0,T ] we have

B(t)
def
= U(t)−1 OpW(a)U(t)=OpW(bt )

where bt = a◦Φt +OS(h).

PROOF. (Taken from Zworski) a◦Φt ∈ S(m) since the vector fields XH are smooth of uniform com-
pact support. Thus we can defineB0(t) = OpW(a◦Φt). Differentiating under the integral sign,

ih̄
d
dt

B0(t) = ih̄OpW( d
dt a◦Φt)

= ih̄OpW({H(t),a◦Φt})

=
[
Ĥ(t),B0(t)

]
+E(t)

where E(t) = OpW(e(t)) for e(t) ∈ h2S. Indeed, by Theorem 174, a♯b is obtained by differentiating prod-
ucts of a,b and here H(t) has compact support so a♯b also has compact support and is hence Schwartz.
It follows that E(t) is O(h2) in operator norm.
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It follows that

ih̄
d
dt

(
U(t)B0(t)U(t)−1)=U(t)Ĥ(t)B0(t)U(t)−1 +U(t)

[
Ĥ(t),B0(t)

]
U(t)−1 +U(t)E(t)U(t)−1 −U(t)Ĥ(t)B0(t)Ĥ(t)U(t)−1

=U(t)E(t)U(t)−1 = O(h2) .

Integrating on [0, t] for t ∈ [0,T ] we get

U(t)B0(t)U−1(t)−OpW(a)=OL2→L@(h) .

More precisely we have

B(t)−B0(t) =
i
h̄

U(t)−1
∫ t

0
U(s)E(s)U(s)−1dsU(t) ,

Further technical work now shows that the RHS is pseudodifferential with symbol of size OS(h). □

REMARK 187. If a ∼ ∑ j a jh j with a j ∈ Sm then the proof gives bt ∼ a0 ◦Φt +∑
∞
j=1 b jh j but it’s

harder to give explicit formulas for the b j.

REMARK 188. The proof also applies if H(t),a ∈ S.

6.4.2. Time-independent version: the Ehrenfest time. Suppose now that H ∈ S0 does not depend
on t or h, and that H is bounded below. Let M(R) = {(x, p) | H(x, p)≤ R} (this is flow-invariant by
conservation of energy) and set

ΓR =
∥∥∇

2H
∥∥

L∞(M(R)) .

and the Lyapunov exponent

Γ̃R = lim
t→∞

1
t

sup
M(R)

log |∇Φt |

(the limit exists by subadditivity). Then all derivatives of Φ grow at most exponentially, with exponential
rate at most Γ̃R + ε ≤ ΓR + ε .

THEOREM 189 (Egorov’s Theorem up to the Ehrenfest time). Let a ∈ S. Then for γ > Γ̃R, T > 0,
δ ∈ [0, 1

2) if

|t| ≤ T +
δ

γ
log(h−1)

then
U(t)−1 OpW(a)U(t)=OpW(bt )

for a symbol bt ∈ S0
δ

with such that

bt = a◦Φt +OS0
δ

(h2−3δ ) .
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