Dynamics

For the next two problems we work in two dimensions with uniform gravity -g in the vertical direction.

- 1. A hemisphere of radius *r* is fixed to a table. A particle of mass *m* moves on its (frictionless) surface, affected by constant vertical gravity \underline{g} . Place the coordinate system (x, y, z) where (x, y) are on the surface of the table and *z* is height off the table so that (for example) g = (0, 0, -g).
 - (a) Let $\underline{v}(t)$ be the velocity of the particle, $\underline{a}(t)$ its acceleration, and let a_{\perp} be the component of the acceleration in the direction of the outward normal to the surface. Show that

$$a_{\perp} = -\frac{|\underline{v}|^2}{r}$$

- (b) We place the particle at position x(0) = (x₀, y₀, z₀) on the hemisphere and give it an initial velocity <u>v</u>(0) in some direction. At some point the particle will slide off the surface and become airborne; find the height z(t) (*c) *Where* is the particle when it comes off the surface?
- 2. Consider the system of masses and pulleys pictured in the figure. Assume that all pulleys and ropes are massless and frictionless. Recall that while you can't push on a rope, we assume that ropes don't stretch so the *tension* along a massless rope must be constant (the mass of any segment is zero).
 - (a) Write down the equations of motion for the system; solve the equations.
 - (b) Let x, y be the heights of the two hanging masses. Compute the position of the third mass as a function of x, y, and write down the total kinetic and potential energies of the system in terms of x, y and their time derivatives. Check that the total energy is conserved.
 - (c) Suppose now that the mass *m* is actually the mass of the middle pulley, which therefore has moment of inertia $\frac{1}{2}mr^2$ (*r* is its radius). Again find the total kinetic and potential energies of the system.

3. Consider a system of *N* particles of masses m_i located at $x_i \in \mathbb{E}^d$. Let the force on the *i*th particle take the form $F_i + \sum_{j \neq i} F_{ij}$ where F_i is some external force while the interactions F_{ij} satisfy $F_{ij} = -F_{ji}$, Define the *centre of mass* of the configuration to be

$$x=\frac{1}{M}\sum_{i=1}^N m_i x_i\,,$$

where $M = \sum_{i} m_i$ is the total mass.

- (a) Show that the centre of mass satisfies the equation of motion $M\ddot{x} = F$ where $F = \sum_i F_i$ is the total external force, and that the total momentum of the particles is $M\dot{x}$. Conclude that in the absence of external forces, the centre moves at constant velocity and total momentum is conserved.
- (b) Two particles, initially moving at velocities v_1, v_2 , collide with each other. Assume that the collection is purely elastic (this is a *mathematical* abstraction in which kinetic energy $\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2$ is conserved), find the velocities after the collision.

Hint: make a Galilean transformation to the setup where the centre of mass is stationary.

The contraction mapping principle

- A. Fix a complete metric space (X,d). Recall that this means that every Cauchy sequence in X converges.
 - (a) Let $\{x_n\}_{n=0}^{\infty} \subset X$ be a sequence, and suppose that $\sum_{n=0}^{\infty} d(x_n, x_{n+1}) < \infty$. Show that the sequence is Cauchy (this holds in any metric space) hence converges.
 - ? Let $f: X \to X$ be a Lipschitz continuous map with Lipschitz constant $\rho < 1$, in other words such that $d(f(x), f(y)) \le \rho d(x, y)$. A *fixed point* of *f* is a point $x \in X$ such that f(x) = x.
 - (b) Show that f has at most one fixed point.
 - (c) Let $x_0 \in X$ be an arbitrary point, and define recursively $x_{n+1} = f(x_n)$. Show that problem (a) applies to this sequence.
 - (d) Let $x_{\infty} = \lim_{n \to \infty} x_n$. Show that x_{∞} is a fixed point for f.
 - (e) Show that $d(x_0, x_\infty)$ is bounded in terms of the displacement $E_f(x_0) = d(x_0, f(x_0))$.
- B. (Example: Newton's method) Let $F \in C^1(\mathbb{E}^n \to \mathbb{E}^n)$. Fixing $y \in \mathbb{E}^n$, given $x_n \in \mathbb{E}^n$ set $x_{n+1} = x_n dF_{x_n}^{-1}(f(x_n) y)$ if dF is invertible at x_n .
 - (a) (Contraction) Suppose that there exists z with F(z) = y and that dF_z is invertible. Show that for r small enough, the function $f(x) = x dF_x^{-1}(F(x) y)$ is a well-defined contraction on B(z, r).
 - (b) (Quadratic convergence) Suppose that F is twice differentiable at z. Setting $\varepsilon = |x z|$ show that there is C > 0 so that if ε is small enough, then $|f(x) z| \le C\varepsilon^2$.
- C. (Example: the implicit function theorem) Let $U \subset \mathbb{E}^n \times \mathbb{E}^m$ be open and let $F \in C^1(U; \mathbb{E}^m)$. Suppose that for some $(x_0, y_0) \in U$ the linear map $\frac{\partial F}{\partial y}|_{(x_0, y_0)} = dF_{(x_0, y_0)}|_{\mathbb{R}^m} : \mathbb{R}^m \to \mathbb{R}^m$ has full rank. Then there exists a neighbourhood $x_0 \in V \subset \mathbb{E}^n$ and a function $g \in C^1(V; \mathbb{E}^m)$ such that $g(x_0) = y_0$, $\{(x, g(x))\}_{x \in V} \subset U$, and such that for $x \in V$ we have $F(x, g(x)) = F(x_0, y_0)$. If the neighbourhood V is small enough than any two such functions must agree on V.
 - Given *x* we want to solve the equation $F(x, y) = F(x_0, y_0)$ for *y*. For this let $A = dF_{(x_0, y_0)} \upharpoonright_{\mathbb{R}^m}$ and given *x* set up the iterative scheme $G_x(y) = A^{-1}(F(x_0, y_0) F(x, y))$.
 - (a) There is a neighbourhood $(x_0, y_0) \in V \times Z \subset U$ such that if $x \in V$ then G_x is a contraction on Z.
 - (b) Letting g(x) be the fixed point of G_x . Show that $F(x,g(x)) = F(x_0,y_0)$.
 - (c) Show that $g \in C^1(V;Z)$.
 - (d) Suppose $F \in C^k(U; \mathbb{E}^m)$; show that $g \in C^k(U)$.
- D. For a compact space K and a complete metric space (X,d) write C(K;X) for the space of continuous functions $K \to X$.
 - (a) Given $f, g \in C(X; K)$ show that the map $z \mapsto d_X(f(z), g(z))$ is continuous. Conclude that $D(f, g) \stackrel{\text{def}}{=} \sup \{ d_X(f(z), g(z)) \}$ is well-defined.
 - (b) Show that D is a metric on C(X; K), the metric of *uniform convergence*.
 - (c) Let $\{f_n\}_{n=0}^{\infty} \subset C(X;K)$ be a Cauchy sequence for the metric *D*. Show that for each $z \in Z$, $f_{\infty}(z) = \lim_{n \to \infty} f_n(z)$ exists.
 - (d) Show that $\lim_{n\to\infty} D(f_n, f_\infty) \to 0$.
 - (*e) Show that f_∞ is continuous, and conclude that C(X;K) is complete. *Hint* ("3ε argument"): a Given z₀ ∈ K and ε > 0 we need a neighbourhood U of z₀ such that f_∞(U) ⊂ B_X(z₀,ε). Observe that for each n, f_n(z₀) can be made pretty close to f_∞(z₀), that if z is close enough to z₀then f_n(z) is close to f_n(z₀), and that f_∞(z) is close to f_n(z).

RMK We will use this result to study ODE.