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Lior Silberman’s Math 428: Problem Set 2

Dynamics
For the next two problems we work in two dimensions with uniform gravity −g in the vertical direction.

1. A hemisphere of radius r is fixed to a table. A particle of mass m moves on its (frictionless) surface, affected by
constant vertical gravity g. Place the coordinate system (x,y,z) where (x,y) are on the surface of the table and z
is height off the table so that (for example) g = (0,0,−g).
(a) Let v(t) be the velocity of the particle, a(t) its acceleration, and let a⊥ be the component of the acceleration

in the direction of the outward normal to the surface. Show that

a⊥ =−|v|2

r
.

(b) We place the particle at position x(0) = (x0,y0,z0) on the hemisphere and give it an initial velocity v(0) in
some direction. At some point the particle will slide off the surface and become airborne; find the height z(t)

(*c) Where is the particle when it comes off the surface?

2. Consider the system of masses and pulleys pictured in the figure. Assume that all pulleys and ropes are massless
and frictionless. Recall that while you can’t push on a rope, we assume that ropes don’t stretch so the tension
along a massless rope must be constant (the mass of any segment is zero).
(a) Write down the equations of motion for the system; solve the equations.
(b) Let x,y be the heights of the two hanging masses. Compute the position of the third mass as a function

of x,y, and write down the total kinetic and potential energies of the system in terms of x,y and their time
derivatives. Check that the total energy is conserved.

(c) Suppose now that the mass m is actually the mass of the middle pulley, which therefore has moment of inertia
1
2mr2 (r is its radius). Again find the total kinetic and potential energies of the system.



LIOR SILBERMAN’S MATH 428: PROBLEM SET 2 11

3. Consider a system of N particles of masses mi located at xi ∈ Ed . Let the force on the ith particle take the form
Fi +∑ j ̸=i Fi j where Fi is some external force while the interactions Fi j satisfy Fi j = −Fji, Define the centre of
mass of the configuration to be

x =
1
M

N

∑
i=1

mixi ,

where M = ∑i mi is the total mass.
(a) Show that the centre of mass satisfies the equation of motion Mẍ = F where F = ∑i Fi is the total external

force, and that the total momentum of the particles is Mẋ. Conclude that in the absence of external forces,
the centre moves at constant velocity and total momentum is conserved.

(b) Two particles, initially moving at velocities v1,v2, collide with each other. Assume that the collection is
purely elastic (this is a mathematical abstraction in which kinetic energy 1

2m1v2
1 +

1
2m2v2

2 is conserved), find
the velocities after the collision.
Hint: make a Galilean transformation to the setup where the centre of mass is stationary.
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The contraction mapping principle
A. Fix a complete metric space (X ,d). Recall that this means that every Cauchy sequence in X converges.

(a) Let {xn}∞

n=0 ⊂ X be a sequence, and suppose that ∑
∞
n=0 d (xn,xn+1)< ∞. Show that the sequence is Cauchy

(this holds in any metric space) hence converges.
? Let f : X → X be a Lipschitz continuous map with Lipschitz constant ρ < 1, in other words such that

d ( f (x), f (y))≤ ρd (x,y). A fixed point of f is a point x ∈ X such that f (x) = x.
(b) Show that f has at most one fixed point.
(c) Let x0 ∈ X be an arbitrary point, and define recursively xn+1 = f (xn). Show that problem (a) applies to this

sequence.
(d) Let x∞ = limn→∞ xn. Show that x∞ is a fixed point for f .
(e) Show that d(x0,x∞) is bounded in terms of the displacement E f (x0) = d (x0, f (x0)).

B. (Example: Newton’s method) Let F ∈C1 (En → En). Fixing y∈En, given xn ∈En set xn+1 = xn−dF−1
xn

( f (xn)− y)
if dF is invertible at xn.
(a) (Contraction) Suppose that there exists z with F(z) = y and that dFz is invertible. Show that for r small

enough, the function f (x) = x−dF−1
x (F(x)− y) is a well-defined contraction on B(z,r).

(b) (Quadratic convergence) Suppose that F is twice differentiable at z. Setting ε = |x− z| show that there is
C > 0 so that if ε is small enough, then | f (x)− z| ≤Cε2.

C. (Example: the implicit function theorem) Let U ⊂En×Em be open and let F ∈C1 (U ;Em). Suppose that for some
(x0,y0) ∈U the linear map ∂F

∂y |(x0,y0) = dF(x0,y0) ↾Rm : Rm →Rm has full rank. Then there exists a neighbourhood
x0 ∈V ⊂ En and a function g ∈C1(V ;Em) such that g(x0) = y0, {(x,g(x))}x∈V ⊂U , and such that for x ∈V we
have F (x,g(x)) = F (x0,y0). If the neighbourhood V is small enough than any two such functions must agree on
V .
• Given x we want to solve the equation F(x,y) = F (x0,y0) for y. For this let A = dF(x0,y0) ↾Rm and given x set

up the iterative scheme Gx(y) = A−1 (F (x0,y0)−F (x,y)).
(a) There is a neighbourhood (x0,y0) ∈V ×Z ⊂U such that if x ∈V then Gx is a contraction on Z.
(b) Letting g(x) be the fixed point of Gx. Show that F (x,g(x)) = F (x0,y0).
(c) Show that g ∈C1(V ;Z).
(d) Suppose F ∈Ck(U ;Em); show that g ∈Ck(U).

D. For a compact space K and a complete metric space (X ,d) write C(K;X) for the space of continuous functions
K → X .
(a) Given f ,g∈C(X ;K) show that the map z 7→ dX ( f (z),g(z)) is continuous. Conclude that D( f ,g) def

= sup{dX ( f (z),g(z)) |z ∈ K}
is well-defined.

(b) Show that D is a metric on C(X ;K), the metric of uniform convergence.
(c) Let { fn}∞

n=0 ⊂C(X ;K) be a Cauchy sequence for the metric D. Show that for each z∈Z, f∞(z)= limn→∞ fn(z)
exists.

(d) Show that limn→∞ D( fn, f∞)→ 0.
(*e) Show that f∞ is continuous, and conclude that C(X ;K) is complete.

Hint (“3ε argument”): a Given z0 ∈ K and ε > 0 we need a neighbourhood U of z0 such that f∞(U) ⊂
BX(z0,ε). Observe that for each n, fn(z0) can be made pretty close to f∞(z0), that if z is close enough to
z0then fn(z) is close to fn(z0), and that f∞(z) is close to fn(z).

RMK We will use this result to study ODE.


