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Math 428: Problem Set 3, “direct method”

This one is mostly targeted at the graduate students.
Sobolev Embedding

For this group of exercises you may assume all functions are real-valued, valued in Rn, or even valued
in a Banach space (choose one for your solutions).

DEFINITION. Let T : (V,∥·∥V ) → (W,∥·∥W ) be a linear map between normed spaces. We say that
T is bounded if there is a constant C ≥ 0 such that for all f ∈ V , ∥T f∥W ≤ C∥ f∥V . We say that T is
compact if for any { fn}∞

n=1 ⊂V such that ∥ fn∥V are uniformly bounded, there is a subsequence { fnk}
∞

k=1
such that {T fnk}

∞

k=1 ⊂W is a Cauchy sequence with respect to ∥·∥W .

1. (Banach space background)
(a) Show that T is continuous in the norm topology iff it is bounded.
(b) Show that any compact operator is bounded.
(c) For a bounded operator T , its operator norm ∥T∥ = ∥T∥V→W is the infimum of all constants C

as in the definition. Show that ∥T∥ = sup
{

∥T f∥W
∥ f∥V

: 0 ̸= f ∈V
}

and that ∥·∥V→W is a norm on
the space Homcts(V,W ) of continuous linear maps.

(d) Suppose that W is complete with respect to its norm. Show that (Homcts(V,W ),∥·∥V→W ) is
complete.

(e) Suppose T is bounded. Show that it extends uniquely to a bounded linear map T̂ : V̂ → Ŵ
between the completions, and that

∥∥T̂
∥∥

V̂→Ŵ = ∥T∥V→W .

DEFINITION. For a function f on the interval [a,b], k ∈ Z≥0 and 0 < α ≤ 1 set

∥ f∥Cα (a,b) = sup
{
| f (t)− f (s)|

|t − s|α
: a ≤ s < t ≤ b

}
;

∥ f∥Ck(a,b) = sup
{∣∣∣ f ( j)(t)

∣∣∣ : 0 ≤ j ≤ k, t ∈ [a,b]
}

;

∥ f∥Ck,α (a,b) = ∥ f∥Ck(a,b)+
∥∥∥ f (k)

∥∥∥
Cα (a,b)

.

For the first three notions we adopt the convention that if some derivative does not exist its value is ∞

and that if the supremum does not exist its value is ∞. Identifying Ck,0 = Ck we define for each k and
0 < α ≤ 1

Ck(a,b) =
{

f (k) exists and is continuous on [a,b]
}

Ck,α(a,b) =
{

f ∈Ck(a,b) | ∥ f∥Ck,α < ∞

}
.
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2. (Spaces of continuous functions)
(a) Show that ∥·∥Ck(a,b) is a norm on Ck(a,b) (in particular, that it is finite for every function there)

similarly for Ck,α . Show that these spaces are complete.
(b) Show that ∥·∥Ck is equivalent to the norm sup{| f (t)|}+ sup

{∣∣∣ f (k)(t)∣∣∣} .
(c) Show that for 0 < α < β < 1 we have

Ck(a,b)⊋Ck,α(a,b)⊋Ck,β (a,b)⊋Ck,1(a,b)⊋Ck+1(a,b) .

(d) Show that the inclusions are bounded.
(e) Show that these inclusions (other than Ck,1 ⊂Ck+1) are compact.

Hint: Arzela–Ascoli.

3. For f ∈C1(a,b) define ∥ f∥=
∫ b

a

(
| f (t)|2 + | f ′(t)|2

)
dt.

(a) Show that ∥ f∥H1 is a norm on C1(a,b).
(b) Show that | f (t)− f (s)| ≤ ∥ f∥H1

√
|t − s|.

(c) Find a constant K so that ∥ f∥C0 ≤ K ∥ f∥H1 .
(d) Let H1(a,b) be the completion of C1(a,b) with respect to this norm. Show that the identity

inclusion ι : C1(a,b) ↪→C(a,b) extends to a continuous embedding H1(a,b) ↪→C(a,b).

DEFINITION. Let f ,g be reasonable functions on [a,b] (say locally L1). Say that g is a weak derivative
of f if for φ ∈C∞(R) with suppφ ⊂ [a,b] we have∫ b

a
g(t)φ(t)dt =−

∫ b

a
f (t)φ ′(t)dt .

4. Write f ′ for a weak derivative of f .
(a) Show that if f ∈C1 then the usual derivative is a weak derivative.

For the rest of the problem suppose that 0 is a weak derivative of f .
(b) Show for all φ ∈C∞

c (R) there is a constant k so that
∫ b

a f (t)φ(t)dt = k
∫ b

a φ(t)dt .
(c) Show that f = k almost everywhere.
(d) Conclude that the weak derivative is unique: if g,g′ are both weak derivatives then g = g′ a.e.

DEFINITION. For a a function f on [a,b] such that its weak derivatives exist up to the kth order set

∥ f∥2
Hk(a,b) =

∫ b

a

(
k

∑
j=0

∣∣∣ f ( j)(t)
∣∣∣2)dt

(and set the norm to be infinite if the derivatives don’t exist or if the weak derivatives are not square-
integrable.

5. (Completeness)
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(a) Show that Hk(a,b) is complete, that Ck ⊊ Hk, and that the inclusion is continuous with respect
to the norms.

(b) Show that Ck is dense in Hk.
COR Hk can also be defined as the completion of Ck with respect to the Hk norm.

6. (Embedding) Let k ≥ 1.
(a) Show that the identity map

(
Ck,∥·∥Hk

)
→
(

Ck−1, 1
2 ,∥·∥Ck−1,α

)
is continuous.

Hint: problem 4(b)
(b) Conclude that there is a continuous inclusion Hk ↪→ Ck−1, 1

2 and a compact embedding Hk ↪→
Ck−1.

DEFINITION. We say a function f is locally Hk, Ck,α , etc if for every interval [a,b] the restriction of
f to that interval has this property.

7. (“continuity of wavefunctions”) Fix a locally bounded function V and a real number E, and suppose
f ∈ L2(R) satisfies − h̄2

2m f ′′+V f = E f in the sense of weak derivatives.
(a) Show that f ∈ H2,loc(R).
(b) Show that f and f ′ are continuous functions.

Existence of Minimizers in 1d
Fix an interval I = [t0, t1] and let M : Rn × I → Mn(R) be continuous. Suppose that
M(q; t) is positive-definite and abounded below (as a quadratic form) by µ > 0. Let
U : Rn × I → R be continuous and bounded above. Fixing a,b ∈ Rn we consider the
variational problem of minimizing

S(γ) =
∫ t1

t0

[
⟨γ̇(t), γ̇(t)⟩M(γ(t);t)−U (γ(t); t)

]
dt ,

initially defined for γ ∈C∞(I;Rn).
8. (interpretation)

(a) Show that γ 7→ S(γ) is locally uniformly continuous in the H1 norm, and hence extends to a
continuous function S : H1(I;En)→ R.

(b) Show that S is bounded below on H1.
(c) Show that D =

{
γ ∈ H1 | γ(t0) = a, γ(t1) = b

}
is a closed subset (actually an affine subspace).

9. (Minimizers) Let {γn}∞

n=1 ⊂ D be a minimizing sequence, that is a sequence for which S(γn) →
infγ∈D S(γ).
(a) Show that {γn}∞

n=1 are uniformly bounded in H1 norm.
(b) Show that after passing to a subsequence we may assume that γn converge weakly to γ ∈ H1 and

uniformly in C0(I).
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(c) Does the uniform limit have to be γ?
(d) Show that S(γ)≤ liminfn S(γn), and conclude that S(γ) = minγ∈D.

Hint: use the convexity of the kinetic term and the fact a weak limit of a sequence is the strong
limit of a sequence of convex combinations of elements from the sequence.

**10. Supposing M and U are differentiable with respect to q, show that a minimizer in H1 satisfies (in
a weak sense) the Euler–Lagrange equation, and conclude that under such hypotheses it is in fact in
C1.


