Math 428: Problem Set 3, "direct method"

This one is mostly targeted at the graduate students.

Sobolev Embedding

For this group of exercises you may assume all functions are real-valued, valued in \mathbb{R}^n , or even valued in a Banach space (choose one for your solutions).

DEFINITION. Let $T: (V, \|\cdot\|_V) \to (W, \|\cdot\|_W)$ be a linear map between normed spaces. We say that T is *bounded* if there is a constant $C \ge 0$ such that for all $f \in V$, $\|Tf\|_W \le C \|f\|_V$. We say that T is *compact* if for any $\{f_n\}_{n=1}^{\infty} \subset V$ such that $\|f_n\|_V$ are uniformly bounded, there is a subsequence $\{f_{n_k}\}_{k=1}^{\infty}$ such that $\{Tf_{n_k}\}_{k=1}^{\infty} \subset W$ is a Cauchy sequence with respect to $\|\cdot\|_W$.

- 1. (Banach space background)
 - (a) Show that *T* is continuous in the norm topology iff it is bounded.
 - (b) Show that any compact operator is bounded.
 - (c) For a bounded operator *T*, its *operator norm* $||T|| = ||T||_{V \to W}$ is the infimum of all constants *C* as in the definition. Show that $||T|| = \sup \left\{ \frac{||Tf||_W}{||f||_V} : 0 \neq f \in V \right\}$ and that $||\cdot||_{V \to W}$ is a norm on the space Hom_{cts}(*V*,*W*) of continuous linear maps.
 - (d) Suppose that W is complete with respect to its norm. Show that $(\text{Hom}_{cts}(V,W), \|\cdot\|_{V\to W})$ is complete.
 - (e) Suppose *T* is bounded. Show that it extends uniquely to a bounded linear map $\hat{T}: \hat{V} \to \hat{W}$ between the completions, and that $\|\hat{T}\|_{\hat{V}\to\hat{W}} = \|T\|_{V\to W}$.

DEFINITION. For a function *f* on the interval [a,b], $k \in \mathbb{Z}_{\geq 0}$ and $0 < \alpha \leq 1$ set

$$\begin{split} \|f\|_{C^{\alpha}(a,b)} &= \sup\left\{\frac{|f(t) - f(s)|}{|t - s|^{\alpha}} \colon a \le s < t \le b\right\};\\ \|f\|_{C^{k}(a,b)} &= \sup\left\{\left|f^{(j)}(t)\right| \colon 0 \le j \le k, t \in [a,b]\right\};\\ \|f\|_{C^{k,\alpha}(a,b)} &= \|f\|_{C^{k}(a,b)} + \left\|f^{(k)}\right\|_{C^{\alpha}(a,b)}. \end{split}$$

For the first three notions we adopt the convention that if some derivative does not exist its value is ∞ and that if the supremum does not exist its value is ∞ . Identifying $C^{k,0} = C^k$ we define for each k and $0 < \alpha \le 1$

$$C^{k}(a,b) = \left\{ f^{(k)} \text{ exists and is continuous on } [a,b] \right\}$$
$$C^{k,\alpha}(a,b) = \left\{ f \in C^{k}(a,b) \mid ||f||_{C^{k,\alpha}} < \infty \right\}.$$

- 2. (Spaces of continuous functions)
 - (a) Show that $\|\cdot\|_{C^k(a,b)}$ is a norm on $C^k(a,b)$ (in particular, that it is finite for every function there) similarly for $C^{k,\alpha}$. Show that these spaces are complete.
 - (b) Show that $\|\cdot\|_{C^k}$ is equivalent to the norm $\sup\{|f(t)|\} + \sup\{|f^{(k)}(t)|\}$.
 - (c) Show that for $0 < \alpha < \beta < 1$ we have

$$C^{k}(a,b) \supseteq C^{k,\alpha}(a,b) \supseteq C^{k,\beta}(a,b) \supseteq C^{k,1}(a,b) \supseteq C^{k+1}(a,b).$$

- (d) Show that the inclusions are bounded.
- (e) Show that these inclusions (other than $C^{k,1} \subset C^{k+1}$) are *compact*. *Hint*: Arzela–Ascoli.
- 3. For $f \in C^1(a,b)$ define $||f|| = \int_a^b \left(|f(t)|^2 + |f'(t)|^2 \right) dt$.
 - (a) Show that $||f||_{H^1}$ is a norm on $C^1(a,b)$.
 - (b) Show that $|f(t) f(s)| \le ||f||_{H^1} \sqrt{|t-s|}$.
 - (c) Find a constant K so that $||f||_{C^0} \leq K ||f||_{H^1}$.
 - (d) Let $H^1(a,b)$ be the completion of $C^1(a,b)$ with respect to this norm. Show that the identity inclusion $\iota: C^1(a,b) \hookrightarrow C(a,b)$ extends to a continuous embedding $H^1(a,b) \hookrightarrow C(a,b)$.

DEFINITION. Let f, g be reasonable functions on [a, b] (say locally L^1). Say that g is a *weak derivative* of f if for $\phi \in C^{\infty}(\mathbb{R})$ with supp $\phi \subset [a, b]$ we have

$$\int_{a}^{b} g(t)\phi(t)dt = -\int_{a}^{b} f(t)\phi'(t)dt$$

- 4. Write f' for a weak derivative of f.
 - (a) Show that if $f \in C^1$ then the usual derivative is a weak derivative. For the rest of the problem suppose that 0 is a weak derivative of f.
 - (b) Show for all $\phi \in C_c^{\infty}(\mathbb{R})$ there is a constant k so that $\int_a^b f(t)\phi(t)dt = k \int_a^b \phi(t)dt$.
 - (c) Show that f = k almost everywhere.
 - (d) Conclude that the weak derivative is unique: if g, g' are both weak derivatives then g = g' a.e.

DEFINITION. For a a function f on [a,b] such that its weak derivatives exist up to the kth order set

$$||f||_{H^{k}(a,b)}^{2} = \int_{a}^{b} \left(\sum_{j=0}^{k} \left|f^{(j)}(t)\right|^{2}\right) dt$$

(and set the norm to be infinite if the derivatives don't exist or if the weak derivatives are not squareintegrable.

5. (Completeness)

- (a) Show that $H^k(a,b)$ is complete, that $C^k \subseteq H^k$, and that the inclusion is continuous with respect to the norms.
- (b) Show that C^k is dense in H^k .

COR H^k can also be defined as the completion of C^k with respect to the H^k norm.

- 6. (Embedding) Let $k \ge 1$.
 - (a) Show that the identity map $(C^k, \|\cdot\|_{H^k}) \to (C^{k-1,\frac{1}{2}}, \|\cdot\|_{C^{k-1,\alpha}})$ is continuous. *Hint:* problem 4(b)
 - (b) Conclude that there is a continuous inclusion $H^k \hookrightarrow C^{k-1,\frac{1}{2}}$ and a compact embedding $H^k \hookrightarrow$ C^{k-1} .

DEFINITION. We say a function f is *locally* H^k , $C^{k,\alpha}$, etc if for every interval [a,b] the restriction of f to that interval has this property.

- 7. ("continuity of wavefunctions") Fix a locally bounded function V and a real number E, and suppose $f \in L^2(\mathbb{R})$ satisfies $-\frac{\hbar^2}{2m}f'' + Vf = Ef$ in the sense of weak derivatives. (a) Show that $f \in H^{2,\text{loc}}(\mathbb{R})$.

 - (b) Show that f and f' are continuous functions.

Existence of Minimizers in 1d

Fix an interval $I = [t_0, t_1]$ and let $M \colon \mathbb{R}^n \times I \to M_n(\mathbb{R})$ be continuous. Suppose that M(q;t) is positive-definite and abounded below (as a quadratic form) by $\mu > 0$. Let $U: \mathbb{R}^n \times I \to \mathbb{R}$ be continuous and bounded above. Fixing $a, b \in \mathbb{R}^n$ we consider the variational problem of minimizing

$$S(\gamma) = \int_{t_0}^{t_1} \left[\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_{M(\gamma(t);t)} - U(\gamma(t);t) \right] dt$$

initially defined for $\gamma \in C^{\infty}(I; \mathbb{R}^n)$.

- 8. (interpretation)
 - (a) Show that $\gamma \mapsto S(\gamma)$ is locally uniformly continuous in the H^1 norm, and hence extends to a continuous function $S: H^1(I; \mathbb{E}^n) \to \mathbb{R}$.
 - (b) Show that S is bounded below on H^1 .
 - (c) Show that $D = \{ \gamma \in H^1 \mid \gamma(t_0) = a, \gamma(t_1) = b \}$ is a closed subset (actually an affine subspace).
- 9. (Minimizers) Let $\{\gamma_n\}_{n=1}^{\infty} \subset D$ be a minimizing sequence, that is a sequence for which $S(\gamma_n) \to \infty$ $\inf_{\gamma \in D} S(\gamma).$
 - (a) Show that $\{\gamma_n\}_{n=1}^{\infty}$ are uniformly bounded in H^1 norm.
 - (b) Show that after passing to a subsequence we may assume that γ_n converge weakly to $\gamma \in H^1$ and uniformly in $C^0(I)$.

- (c) Does the uniform limit have to be γ ?
- (d) Show that $S(\gamma) \leq \liminf_n S(\gamma_n)$, and conclude that $S(\gamma) = \min_{\gamma \in D}$. *Hint:* use the convexity of the kinetic term and the fact a weak limit of a sequence is the strong limit of a sequence of convex combinations of elements from the sequence.
- **10. Supposing *M* and *U* are differentiable with respect to *q*, show that a minimizer in H^1 satisfies (in a weak sense) the Euler–Lagrange equation, and conclude that under such hypotheses it is in fact in C^1 .