Symplectic integrators

In this problem set we work to the standard phase space $M = \mathbb{R}^d \times (\mathbb{R}^d)^*$ equipped with the standard symplectic structure $J = \begin{pmatrix} I_d \\ -I_d \end{pmatrix}$ and take a standard Hamiltonian $H(x,p) = \frac{p^2}{2m} + V(x)$ on $\mathbb{R}^d \times (\mathbb{R}^d)^*$. The Hamiltonian flow is then

$$\begin{cases} \dot{x} = \frac{1}{m}p\\ \dot{p} = -dV \end{cases}$$

Suppose that *V* is a smooth convex function (e.g. x^2). For greater generality you may consider H = T(p) + V(x) where *T*, *V* are both smooth and convex.

- 1. Verify that *H* is conserved by the motion.
- 2. Consider the Euler Scheme from PS1: fixing a timestep h, it is

$$\begin{cases} x_{k+1} &= x_k + h\frac{1}{m}p_k \\ p_{k+1} &= p_k - hdV(x_k) \end{cases}$$

- (a) Show that $H(x_{k+1}, p_{k+1}) H(x_k, p_k) = Ch^2 + O(h^3)$ where C > 0.
- (b*) Suppose V is radial. What happens to the angular momentum of the system?
- (c) Show that $F(x,p) = \left(x + \frac{h}{m}p, p hdV(x)\right)$ does not preserve volume (i.e. its Jacobian determinant is not 1), violating Liouville's Theorem
- (d) Show that F is not even a symplectomorphism.
- 3*. (For those who have experiment with numerical methods) Consider instead the Implicit Euler Scheme, where (x_{k+1}, p_{k+1}) is defined by

$$\begin{cases} x_{k+1} &= x_k + h \frac{1}{m} p_{k+1} \\ p_{k+1} &= p_k - h dV(x_{k+1}) \end{cases}$$

(note that this is a nonlinear system of equations for x_{k+1}, y_{k+1}).

- (a) Show that now $H(x_{k+1}, p_{k+1}) < H(x_k, p_k)$.
- (b) What happens to the angular momentum in the radial case?
- 4. Now consider instead the "buggy Euler scheme"

$$\begin{cases} x_{k+1} &= x_k + h\frac{1}{m}p_k \\ p_{k+1} &= p_k - hdV(x_{k+1}) \end{cases}$$

(observe the use of the updated x_{k+1} value in the second equation)

- (a) Show that in the limit $h \to 0$ this scheme still solves the ODE. Similarly if we first compute p_{k+1} and then set $x_{k+1} = x_k + \frac{h}{m}p_{k+1}$.
- (b) Under what conditions on the matrix $A \in M_d(\mathbb{R})$, is the *transvection* $\tilde{A} = \begin{pmatrix} I_d \\ A & I_d \end{pmatrix} \in M_{2d}(\mathbb{R})$ a symplecto-

morphism (in that $\tilde{A}^T J \tilde{A} = J$)?

(c) Show that any transformation F(x,p) = (x+dT(p),p) and G(x,p) = (x,p-dV(x)) of *M* is a symplectomorphism. Apply this to the numerical scheme under consideration.

5**. (The Shadow Hamiltonian)

- (a) Show that the maps $\varphi_h^{(1)}(x,p) = (x + hdT(p), p) = \exp(hX_T)$ and $\varphi_h^{(2)}(x,p) = \exp(hX_V)$ are the exact time-*h* Hamiltonian flows for the Hamiltonians *T*,*V*.
- (b) Applying the Baker–Campbell–Hausdorff formula, conclude that $\varphi_h^{(2)}(x,p)\varphi_h^{(1)}(x,p) = \exp(hX)$ where X = $X_T + X_V + \cdots$ where all higher-order terms are commutators of X_T, X_V .
- (c) Applying the formula $[X_A, X_B] = X_{\{A,B\}}$ show that $X = X_{\tilde{H}}$ for a *shadow Hamiltonian* $\tilde{H} = T + V + O(h)$.
- (d) Show that \tilde{H} is conserved exactly by the numerical scheme.
- 6**. Consider now the *Vernet integrator* $\varphi_{h/2}^{(1)}(x,p)\varphi_h^{(2)}(x,p)\varphi_{h/2}^{(1)}(x,p)$ (a) Repeat 4(a), showing that this is now a second-order scheme.

 - (b) Repeat 4(c), showing that this scheme is symplectic.
 - (c) Repeat problem 5, obtaining a shadow Hamiltonian here as well.