SFU - UBC - UNBC - UVic
Calculus Challenge Exam

June 8, 2006, 12 noon to 3 p.m.

Host: SIMON FRASER

UNIVERSITY
Student signature
Question Maximum Score
INSTRUCTIONS 1 4
2 10
Show all your work. Full marks are given only when
the answer is correct, and is supported with a written 3 6
derivation that is orderly, logical, and complete. 4 9
Calculators are optional, not required. Correct answer 5 6
that is calculator ready, like 3+1n7 or €, are
preferred. 6 15
Any calculator acceptable for the Provincial 7 4
Examination in Principles of Mathematics 12 may be 8 6
used.
A basic formula sheet has been provided. No other 9 4
notes, books, or aids are allowed. In particular, all 10 8
calculator memories must be empty when the exam
begins. 11 8
If you need more space to solve a problem on page n, 12 6
work on the back of the page n-1. 13 2
CAUTION — Candidates guilty of any of the following
or similar practices shall be dismissed from the 14 4
examination immediately and assigned a grade of 0: 15 6
(a) Using any books, papers or memoranda.
Total 100

(b) Speaking or communicating with other
candidates.

(c) Exposing written papers to the view of other
candidates.
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[2] 1. (a) Sketch a rough graph of y(x) = % near x = 2.
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[6] 2. (a) Given that

2 4x
f(X) = xX-e

sin x +cos(2 - 3x)

find f'(x) . No simplification is necessary.

ANSWER

) [er‘“‘ % 4xze4x} [sin x +cos(2 - 3x)] - x?e**[cos x - (-3) sin(2 - 3x)]
x) =

[sinx+cos(2- 3x)]2

[4] (b) Suppose that functions F(x) and G(x) satisfy the following properties:

F(8)=2, G(38)=4, G(0)=3,

F'(38)=-1, G'(3)=0, G'(0)=2.
ANSWER: T'(0)=-2
If T(x) = F(G(x)) and U(x) =In(F(x)), find T'(0) U(3) = - 1
and U'(3). 2
SHOW YOUR WORK
T(x)=F(G(x)) U(x) = In[F(x)]
= T'(x) = F(G(x))G'(x) = U'(x) = £
F(x)
i _ ! ! ' _ ﬂ
= T'(0) = F'(G(0)) G'(0) = U'((3)= )
= T'(0) = F'(3)(2) = U'(3)= ;21

= T(0)=-2. — U(@3)= —%.
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[3] 3. (a) Let f(x)= xe”. Express f'(0)as a limit by using ANSWER:
the definition of derivative and hence evaluate f'(0). £(0) =1
SHOW YOUR WORK
£(0) = lim f(h)—1(0)
h—0 h
h 0
_ ime?)-0(e’)
h—0 h
h
= fjm X&)
h—0 A
= lime”
h—0
=1
ANSWER:
[3] (b) Let Q(X)=]1—x2|. Does g'(x)existat x =17 No
EXPLANATION

Function g(x) is differentiable at x =1 if lITimo exists. Notice that
._)

g(1+h)—g(1)
h
x> -1, x<-lorx>1

) —(1-x%), x<-lorx>1
X)=
J =%, |X| <1

g s x| <1

& g(X)={

Then

im 90N -g() _ (AR -1-[F -1 _ 2ht b

= lim(2+h) = 2,
h—0" h h-0* h h—0* h-0*

2 2 >
lim 9(+h)-g(1) = lim (=T )" ] =1=1"] — Jiims —2h-h" _
el h h—0~ h h—0"

lim (-2—h) = -2.

g(1+h)-9(1)
h

The one-sided limits are not equal, hence, ,|7|n}) does not exist.
—

Therefore, g'(x) does not existat x=1.
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[9] 4. An open steel cylinder is required which will hold V' (cm®)

of liquid. The thickness of the walls and base of the cylinder
is d (cm). Find the height h(cm) and inner radius r (cm) of

the cylinder which minimize the amount of steel required. ANSWER:
The diagram shows the cross-section of the cylinder through V
its axis. HINT: Express M, the volume of steel required, h=aXx= i/:
as a function of Xx. m
SHOW YOUR WORK
o Volume of liquid that the container can hold is given by:
£ V=nxh = h=""_.
-— Volume of steel required to build the cylinder is found as:
M= z(x+d)?(d+h)—zx*h

= 7d(x+d)* + rh[(x + d)? - x?]
= wd(x+ d)? + wh[2xd + d?]

d b X
|
i
|
1
|
1
i
i
I
i
I
i
i

kL

= md(x+d)* + 7Z'|: V2 :|[2Xd +d?] (by substituting for h)
X

zd(x+d)? + |:12:|[2Xd +d?]

2

= zd(x+d)? + ZVXd de
X

2
= zd(x+d)’ 2Vd+‘ig

Notice that x > 0, so Mis well-defined. Compute the derivative of M with respect to x.

2 3
M(x) = 2zd(x+d)- 228 2V _ 2rdx(x+d)-2Va(x+d)

x X x3
_2d(zx® - V)(x +d)
= = :
Setting M'(x) =0 implies V = zx° (as x = —d since x,d >0). *)

, /V , .
Now investigate the critical point X, = 3|— by calculating the second derivative of M.
T

2
M) = 2nd+ V0 6ng
X X

Notice that M"(x)>0 for all x>0. Therefore, from the Second Derivative Test it follows that M(x)

e 4
reaches a global minimum at X, = 3/—.
T

Finally, V = zx*h is given and V = zx* (from *). Hence, it follows thath,, = Xx,,,.
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5. A car moves in a straight line. At time t (measured in seconds)
its position (measured in metres) is
1

Page 6 of 16

s(ty=——1%, 0<t<5.
100 ANSWER:

:
[2] (a) Find its average velocity between t=0 and t=5. 4

JUSTIFY YOUR ANSWER

To find the average velocity take the distance travelled divided by the time elapsed:

, _8(6)-s(0) _ 15 1

b 5 1005 4
ANSWER:
3¢
[2] (b) Find its instantaneous velocity for 0 < t < 5. 100

JUSTIFY YOUR ANSWER

To find instantaneous velocity take the derivative of the position function.

T dt 100

ds 3P
V -—

ANSWER:

its average velocity? 3

543

[2] (c) At what time is the instantaneous velocity of the car equal to =

JUSTIFY YOUR ANSWER

2
S ot :>100=12t2:3t=‘/@=‘fg§=ﬂ
4 100 12 3 3
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6. Consider the function f(x) = x2e'’*.

[8] (a) Find the following (no explanation is required in parts i) - iv) ):
ANSWER:
i.  lim x2e"¥ 0
x—>0"
ANSWER:
i.  lim x2eV¥ %
x—0*
ANSWER:
o0
i, lim Neg X
ANSWER:
v lim % -k ©
ANSWER:
V. f (X) f/(x)=(2x_1)e1/x
SHOW YOUR WORK
f’(X) - 2X91/X +X2 [_%jeﬂx
=(2x-1)e'*
. F10) ANSWER:
Vi. X
f"(X) — e1/Xl:2_g+i2:I
X X
SHOW YOUR WORK

i / LIRPRY 1/ 2.1
f'(x) = 2e' X+(2x—1)[—— e'*= g!/x 2——);+—2
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[6] (b) Using your findings, find the following.
i. The x-intercepts and y-intercepts (if any)

There are none.

ii. The local maxima and minima (if any)

f'(x)=0, (2x-1)e"’* =0 yields a single critical point x = %

Since f”(l) 50, X= 1is a local minimum, f(l) = E.
2 2 2" 4

Notice that f'(0)is not defined however x =0 is not in the domain of the function.

iii. The inflection points (if any)

Consider

F1(X) = e”"{2—§+l2} -0
X X

= e”"[2x2 —2x+1]= 0

= 2x°-2x+1=0

2i\/:Z_O
——-

= X=

This equation has no real roots. Thus, there are no inflection points. Notice that
f"(0)is not defined however x =Qis not in the domain of the function.

iv. The largest intervals on which the graph is concave up and concave down
Since f"(x)> 0 for all x e (—w,0)U(0,2), f(x) is concave up on its domain.

v. The asymptotes

It follows from part (a) sections (i) and (ii) that there is a vertical asymptote x=0.



Calculus Challenge Exam, June 8, 2006 Page 9of 16

[2] (c) Sketch a rough graph of f(x) indicating your findings:

y
" | .
vertical ] —t | I.
asymptote SRR | ]
| —> - :
\\ ~ \ / T 1]
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[4] 7. A copper cube of side 5 c¢m is shaved on all sides to produce ANSWER:
a cube of side (5 — &) cm. Given that the density of copper
is 8.96 g/cm® and that the shaving decreases the mass of the ¢ ~ 0.0014 cm
cube by 0.96 g, use a linear approximation to estimate ¢ .

JUSTIFY YOUR ANSWER

Let x be the side length of the cube. Denote density of the copper p =8.96 Then the volume of the
m(x) _ m(x)

cube, V(x), and its mass, m(x), are related through the formula: V(x)= 5,96

. Using linear

approximation:

V(5—¢) ~ V(5)+V'(5)[(5-¢)-5]
V(5-¢) ~ V(5)+V'(5)(~¢)
V(5—-5)-V(5) ~ V'(5)(~)

0.96
_V(5)-V(5-¢) g9 _0.107
V'(5) V'(5) V'(5)

Using the fact that V'(x)= 3x*and correspondingly, V'(5)=3(5)* = 75, we get
0107 _ 0.107
Vi) | 75

~ 0.0014 (cm).



Calculus Challenge Exam, June 8, 2006 Page 10 of 16

[6] 8. Consider the curve

in the first quadrant. Show that the length of a segment XY of

a tangent line to the curve at a point P cut off by the coordinate XY
axes is constant and find this length.

X2/3 +y2/3 =4

ANSWER:

=8

EXPLANATION

Using implicit differentiation,
1/3

2 3,2 _ys y [YJ
—X T 4+= Y'=0= y=-=
3 3 y y y .
Denote the coordinates of the given points: P(x,,Y,), X(x.,0), and

Y(0,y,) . Then the slope of the tangent line to the curve at P is found:
1/3

i

Subsequently, equation of the tangent line to the curve at point P is:

v 1/3
Y=Y Z_(';O"J (X=X,).

0

Points Y(0, y.)and X(x,,0) on the graph correspond to y — and x — intercepts of the tangent line,
correspondingly. Using the above equation twice gives:

y*'"yo:_[

1/3 1/3
%} (0-x,), 0—y0=—(ﬁj (X% —X,).

0

Simplifying and using the fact that x02/3 + y§/3 = 4 (point Pis on the curve):

1/3
Ve =Yot % (%"-j =¥ (v5 2+ x5%) = 4y°,

0

1/3
X
_ o | _ /80,218, 203\ _ 4 /3
x*—xo+yo(y—] = X324 2%y = 4x]/3,

0

Finally, the length of the segment XY of the tangent line

XY = [@+y?= \/(4x;/3)2 +(4y,"2) = 16377 416y, = [16(x,2° + y,#°) = [16(4) =8.




Calculus Challenge Exam, June 8, 2006 Page 11 of 16

[4] 9. Using logarithmic differentiation, find y'(0) given that

= N ;{;:—;i% 7x ASER
y'(0)=-1
SHOW YOUR WORK
Iny =In i+ 2x 1+ 4x ’
S1+3x1+5xUN1+7x

1 1 1 1 1
= - — — .y
Iny 2In(1+2x)+4|n(1+4x) 3In(1+3x) 5In(1+5x) Z n(1+7x)

Differentiate both sides with respectto x:
e AR CRE E A R G
yy “21+2x) 4\1+4x) 31+3x) 51+5x) 7\1+7x)’

, 1 1 1 1 1
y =Yy + - - - ;
1+2x 1+4x 1+3x 1+5x 1+7x

y'(0)=y(0)(1+1-1-1-1),

y'(0) =-y(0) =-1.
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[8] 10. Two carts, A and B, are on the floor of a warehouse.
The carts are connected by a rope 25 metres long. The rope is
stretched tight and pulled over a pulley attached to a rafter ANSWER:
3 metres above a point Q between the carts (see picture).
How fast is the distance y between the cart B and point Q

Decreasing at a rate

32
changing when cart A is 4 metres away from Q and is being ——=metres per second
pulled away from Q at a speed of 2 metres per second? V391

JUSTIFY YOUR ANSWER

[ f)P 1]
3
A ' B
x Q y
p T . M e o
«— -«—

Using the fact that total length of the rope is given to be 25 metres:

AP + PB = 25,
X2 +3% 1+ y? +3% =25,

Differentiate both sides with respect to time t

X o, Y b, ")

VX249 dt o [y? 432 dt
dx . ,

When x(t) =4, i 2. Immediate consequences of this are:
AP =416+9 =5,
PB=25-5=20,
y =VPB? —3% = /202 -9 =/391.
From (**),

(o),
Ja2 19 [(JBor)p 43z dt

5 20 dt

dy 32
= ==

dt 7391

Thus, the distance y between the cart B and point Q is decreasing at this moment at a rate metres

32
V391

per second.
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[56] 11. (a) Find the general solution of the differential equation

Page 13 of 16

ANSWER:
dy yimls
2 - 2 x
i =y(y-2). 1-Ce
SHOW YOUR WORK
ay
y(y—2)
— || ——=-—|dy=x+C,
I y(y 2) ot IL/ 2 y}

= Y22 _o(x+0)

y
L Y2 _ w0 Yo2 _Ce¥, C =&

y y

= y-2=Cye?*
= y(1-Ce**)=2
= Y= —

1-C,e**
[2] (b) Find the particular solution of the above equation that ANSWER:

satisfies initial condition y(0) =0.5.
y(X)=———5
1+3e

SHOW YOUR WORK
2 1
0)= =—
YO0=1-¢ "2
=4=1-C,
= C,=-3
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[11  (c) What happens to the value of y(x) found in Part (b) as x — o« ?

EXPLAIN YOUR ANSWER

, . 2
Y e

Hence, the x-axis is a horizontal asymptote on the graph of y(x).

[6] 12. Find area of the shaded region included between the curves

) q ANSWER:
y =sinx and y =cos x Areazz[ﬁ—l}
between x=0 and x=7x/2.
SHOW YOUR WORK
y !4

Area =2 [ (cos x—sin x)dx
0

2[sinx +cos x]g/4

=2{—\12—?—+§—0—1}
@) w2 /x :2[\/5_1}
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ANSWER:
15

f(t)=le‘2'—4coslt+lt+—.
4 2 2 4

[4] 13. Given that f"(t) = e 2! +cos%t for all t, find an explicit

formula for f(t) if f(0)=f'(0)=0.

SHOW YOUR WORK

Applying antidifferentiation and satisfying initial conditions twice:

fi(t)=——e 2! +23in1t+ C,
2

f(O):—l'_4+CZZO, :>CZ:1_5’

f(t)=1e‘2'—4coslt+lt+1—5.
4 2 2 4

. secx-—1
lim ———. 0
x>0 xsec x

SHOW YOUR WORK

. secx—-1 .. 1-cosx
lim = lim =
x—0 Xxsec x x—>0 X

0.

(or using the trigonometric formula for half-angle:

2sin2 X sin%
._secx—-1 . 1-cosx . 2 . o X
lim = lim = lim = lim| —=2 |- limsinX =1.0=0.
x->0 xsec x x—0 X x—0 X x—0 X x—0 2

2
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[6] 15. Use the chain rule to show that aq—(sin‘1 X = =
X

Page 16 of 16

1-x
EXPLANATIONS
Let y =sin"'x. Thenx=siny.
Differentiate both sides with respect to x.
1 1 T T
1=cosy-y' = y'= , ——<Yy<—
cosy 2 2
= y'=—1— as sin® y+cos®y =1
J1-sin®y
— y':; as x=siny

+1-x°

“ o

However, notice that cos y is positive when —% <y <% S0 we retain only “+” sign.

Thus, i(sin‘1 X) =

’
dx V1-x?

, as required.



