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Rules and Instructions

1. Show all your work! Full marks are given only when the
answer is correct, and is supported with a written deriva-
tion that is orderly, logical, and complete. Part marks are
available in every question.

2. Calculators are optional, not required. Correct answers

that are “calculator ready,” like 3 + ln 7 or e
√

2, are fully
acceptable.

3. Any calculator acceptable for the Provincial Examination
in Principles of Mathematics 12 may be used.

4. Some basic formulas appear on page 2. No other notes,
books, or aids are allowed. In particular, all calculator

memories must be empty when the exam begins.

5. If you need more space to solve a problem on page n, work
on the back of page n − 1.

6. CAUTION - Candidates guilty of any of the following or
similar practices shall be dismissed from the examination
immediately and assigned a grade of 0:

(a) Using any books, papers or memoranda.

(b) Speaking or communicating with other candidates.

(c) Exposing written papers to the view of other candi-
dates.

7. Do not write in the grade box shown to the right.

1 6

2 4

3 5

4 7

5 6

6 6

7 8

8 9

9 6

10 9

11 9

12 9

13 9

14 7

Total 100
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UBC-SFU-UVic-UNBC Calculus Examination

Formula Sheet for 4 June 2009

Exact Values of Trigonometric Functions

θ 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π

sin θ 0 1/2
√

2/2
√

3/2 1
√

3/2
√

2/2 1/2 0

cos θ 1
√

3/2
√

2/2 1/2 0 −1/2 −
√

2/2 −
√

3/2 −1

Trigonometric Definitions and Identities

sin(−θ) = − sin θ cos(−θ) = cos θ

sin(θ ± φ) = sin θ cos φ ± sin φ cos θ sin 2θ = 2 sin θ cos θ

cos(θ ± φ) = cos θ cos φ ∓ sin θ sin φ cos 2θ = cos2 θ − sin2 θ

sin2 θ =
1 − cos 2θ

2
cos2 θ =

1 + cos 2θ

2

sin2 θ + cos2 θ = 1 tan2 θ + 1 = sec2 θ

tan θ =
sin θ

cos θ
sec θ =

1

cos θ

cot θ =
cos θ

sin θ
csc θ =

1

sin θ

Continued on page 3
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[6] 1. Find the derivative of each function below. Do not simplify.

(a) f(x) =
sin(5x)

1 + x2

f ′(x) =
(5 cos(5x)) [1 + x2] − [sin(5x)] (2x)

(1 + x2)2
.

(b) g(x) = ln
(

ex2

+
√

1 + x4

)

g′(x) =
1

ex2 +
√

1 + x4

[

ex2

(2x) +
(4x3)

2
√

1 + x4

]

.

[4] 2. Find an equation for the line that is tangent to this curve at the point where x = 1:

y = ln

(

2x − 1

2x + 1

)

.

Simplify y = ln(2x − 1) − ln(2x + 1). Thus

y′ =
2

2x − 1
− 2

2x + 1
, giving y′(1) = 2 − 2

3
=

4

3
.

When x = 1, y(1) = ln(1) − ln(3) = − ln(3). The tangent line is

y = y(1) + y′(1)[x − 1], i.e., y = − ln(3) +
4

3
(x − 1).

Continued on page 4
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[5] 3. Find an equation for the line tangent to this curve at the point (2, 1):

x2y3 + x3 − y2 = 11.

Implicit differentiation gives 2xy3 + x2(3y2y′) + 3x2 − 2yy′ = 0.

Let m denote the slope of the tangent line at (2,1). Substitution gives

4 + 12m + 12 − 2m = 0, i.e., m = −16

10
= −8

5
.

The tangent line has equation y = 1 + m(x − 2) = 1 − 8

5
(x − 2).

[7] 4. Let f(x) =
4

π
arctan(2x), and define α = f

(

1

2
+

π

1010

)

.

Clearly, α ≈ f( 1
2
) and f( 1

2
) = 1. (Alternative notation for arctan is tan−1.)

(a) Find a more accurate approximation for α.

(b) Decide if your improved approximation is larger or smaller than the exact value
of α. Explain.

(a) Recall
d

dt
arctan(t) =

1

1 + t2
. By the Chain Rule,

f ′(x) =
4

π
· 2

1 + (2x)2
, so f ′( 1

2
) =

4

π
.

The line tangent to the curve y = f(x) at the point where x = 1
2

is

y = f( 1
2
) + f ′( 1

2
)[x − 1

2
] = 1 +

4

π
[x − 1

2
].

Using the tangent to approximate the graph suggests

f(α) ≈ 1 +
4

π

[(

1

2
+

π

1010

)

− 1

2

]

= 1 + 4 × 10−10 = 1.0000000004.

(b) Differentiating f ′(x) = (8/π)[1 + 4x2]−1 gives

f ′′(x) = − 8

π
· 8x

(1 + 4x2)2
.

Clearly f ′′(x) < 0 whenever x > 0, so the curve y = f(x) is concave
down in the interval between 1

2
and α. Therefore the tangent line

lies above the curve in this region, and the approximate value found
above is a little larger than α.

Continued on page 5
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[6] 5. Find each limit below or show that it does not exist. Justify your results with algebra,
not with your calculator!

(a) lim
x→0







1

2 + x
− 1

2
x







One approach is to recognize the definition of the derivative for a certain
function:

lim
x→0







1

2 + x
− 1

2
x






=

d

dx

[

1

2 + x

]

x=0

=

[

− 1

(2 + x)2

]

x=0

= −1

4
.

A direct approach works, too:

lim
x→0

1

x

(

1

2 + x
− 1

2

)

= lim
x→0

1

x

(

2 − (2 + x)

2(2 + x)

)

= lim
x→0

( −x

2x(2 + x)

)

= −1

4
.

(b) lim
x→∞

(

√

x2 + cx − x
)

, where c is a constant. (Answer in terms of c.)

Conjugation cracks this. The given limit equals

lim
x→∞

√

x2 + cx − x

1

(√
x2 + cx + x√
x2 + cx + x

)

= lim
x→∞

(

[x2 + cx] − x2

√
x2 + cx + x

)

= lim
x→∞

(

c
√

1 + c/x + 1

)

=
c

2
.

Continued on page 6
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[6] 6. Identify the largest number in the sequence

a1 = 1, a2 = 21/2, a3 = 31/3, a4 = 41/4, . . . , an = n1/n, . . . .

Hint : Calculating each number in this infinite list would take forever. Analyzing the
function f(x) = x1/x on a suitable domain is one way to reduce the work required.

The hint is relevant because an = f(n) for the function f(x) = x1/x. Take logs
to produce the identity ln f(x) = x−1 ln(x), then differentiate to get

f ′(x)

f(x)
= −x−2 ln(x) + x−2 =

1 − ln(x)

x2
.

In the interval where x > 1, we have f(x) > 0, so the sign of f ′(x) agrees with
the sign of 1 − ln(x). Therefore f ′(x) > 0 for 1 < x < e and f ′(x) < 0 for
e < x < ∞. Since 2 < e < 3, we deduce that

f(1) < f(2) and f(3) > f(4) > f(5) > · · · .

The only contenders for the maximum value are f(2) and f(3). The calculator
can confirm that f(3) > f(2), so a3 = 31/3 is the largest number in the given
sequence.

Continued on page 7
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[8] 7. A particle moves along the x-axis, where position is measured in metres. At time
t ≥ 0, measured in seconds, the particle’s acceleration is

a = 2t − 3.

At time t = 0, the particle has position x = 10 and velocity v = −4.

(a) At some time t > 0, the particle’s direction of motion changes. Find the particle’s
position at this instant.

(b) Find the total distance travelled by the particle during the first 6 seconds of its
motion.

Let v denote the particle’s velocity. Then

v̇(t) = a(t) = 2t − 3 =⇒ v(t) = t2 − 3t + v0 for some constant v0;

−4 = v(0) = v0 =⇒ v(t) = t2 − 3t − 4 = (t − 4)(t + 1).

Likewise, if x denotes the particle’s position, we have

ẋ(t) = v(t) = t2 − 3t − 4 =⇒ x(t) =
1

3
t3 − 30

2
t2 − 4t + x0 for some x0;

10 = x(0) = x0 =⇒ x(t) =
1

3
t3 − 30

2
t2 − 4t + 10.

(a) The particle is moving to the left when 0 < t < 4 (because v(t) < 0)
and to the right when 4 < t (because v(t) > 0). Its direction of
motion changes when t = 4: its position at that instant is

x(4) = −26

3
≈ −8.67.

(b) “Total distance travelled” accounts for the change at t = 4:

s = [x(0) − x(4)] + [x(6) − x(4)] =
56

3
+

38

3
=

94

3
≈ 31.33.

Continued on page 8
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[9] 8. Newton’s Best Coffee (NBC) serves a brew that’s too hot to drink immediately.
Twenty (20) minutes after a cup is served, its temperature is 70◦C; waiting another
two (2) minutes lets the temperature drop to 68◦C. A visitor suggests that since the
temperature has dropped two degrees in two minutes, the coffee must have been 90◦C
when it was served.

(a) Explain in words, with no equations or calculations, why this reasoning is not
perfectly accurate.

(b) Decide whether the true serving temperature was higher or lower than 90◦C.
Explain your decision in words, with no equations or calculations.

(c) Assuming the room temperature at NBC is 20◦C, calculate the coffee’s actual
serving temperature.

(a) The rate of change of temperature is not constant, even under ideal
conditions.

(b) Newton’s Law of Cooling says the rate of change of temperature is
proportional to the difference between the coffee temperature and
the ambient temperature. That difference is larger when the coffee is
served than it is 20 minutes later, so the rate of change observed after
20 minutes consistently underestimates the rate at all earlier times.
The coffee must have started out hotter than 90◦C.

(c) Let T (t) denote the coffee temperature and Ts the temperature of the
surrounding environment. Let u(t) = T (t) − Ts. By Newton’s Law,
du/dt = −ku for some constant k, so

u(t) = Ae−kt, or T (t) = Ts + Ae−kt.

Given Ts = 20, we have

70 = T (20) = 20 + Ae−20k

68 = T (22) = 20 + Ae−22k

}

=⇒ 70 − 20

68 − 20
=

Ae−20k

Ae−22k
= e2k.

Hence k = 1
2

ln

(

25

24

)

≈ 0.02041, and A = 50e20k = 50

(

25

24

)10

.

The serving temperature (in degrees C) was

T (0) = 20 + A = 20 + 50

(

25

24

)10

≈ 95.2.

Continued on page 9
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[6] 9. Consider the function f(x) = x sin(|x|).
(a) Does f ′(0) exist? If so, explain why and calculate it; if not, explain why not.

(b) Does f ′′(0) exist? If so, explain why and calculate it; if not, explain why not.

(a) By definition,

f ′(0) = lim
h→0

f(0 + h) − f(0)

h
= lim

h→0

h sin |h|
h

= lim
h→0

sin |h| = 0.

Therefore f ′(0) exists and its value is 0.

(b) To make a similar calculation of f ′′(0), we need to know f ′(h) when
h is small in magnitude.

In the interval (0,∞), f(x) = x sin(x), so the product rule gives

f ′(x) = sin(x) + x cos(x) when x > 0.

In the interval (−∞, 0), f(x) = x sin(−x) = −x sin(x), so the calcu-
lation above can be re-used:

f ′(x) = − sin(x) − x cos(x) when x < 0.

Recalling f ′(0) = 0 from part (a), we investigate

f ′′(0) = lim
h→0

f ′(0 + h) − f ′(0)

h
= lim

h→0

f ′(h)

h
,

using two one-sided limits. From the right,

lim
h→0+

sin(h) + h cos(h)

h
= lim

h→0+

[

sin(h)

h
+ cos(h)

]

= 2.

From the left, by similar methods,

lim
h→0−

− sin(h) − h cos(h)

h
= lim

h→0−

[

− sin(h)

h
− cos(h)

]

= −2.

Since these results disagree, f ′′(0) does not exist.

Continued on page 10
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[9] 10. A wheel of radius 1 metre spins counterclockwise around the origin at a constant
speed of 10 revolutions per second. One end of a rod 5 metres long pivots on a point
P on the wheel’s perimeter; the rod’s other end, Q, slides back and forth along the
x-axis. See the sketch. Find the linear speed of point Q at the instant when the angle
θ shown in the sketch is π/4 radians.

O
θ

P
1 5

Q

(Hint : Split
∣

∣OQ
∣

∣ = u + w, where u and w are formed by dropping a perpendicular

from P to OQ. You can find u and w from basic trigonometry.)

The legs of the right triangle in the unit circle have lengths u = cos θ, y = sin θ.
(Please label the sketch above.) So for u and w as in the hint, Pythagoras gives

w =
√

52 − y2 =
√

52 − sin2 θ and

∣

∣OQ
∣

∣ = cos θ +
√

52 − sin2 θ.

Therefore, taking the time derivative of both sides,

d

dt

∣

∣OQ
∣

∣ = − sin θ

(

dθ

dt

)

+
−2 sin θ cos θ

2
√

52 − sin2 θ

(

dθ

dt

)

.

When θ = π/4, we have

d

dt

∣

∣OQ
∣

∣ =

(

−
√

2

2
− 1/2
√

49/2

)

(

dθ

dt

)

= −4
√

2

7

(

dθ

dt

)

.

There are 2π radians in one revolution, so
dθ

dt
= 10(2π) = 20π radians per

second. We deduce

d

dt

∣

∣OQ
∣

∣ = −4
√

2

7
(20π) ≈ −50.8.

The linear speed of Q (relative to O) is about 50.8 m/s. (“Speed” can’t be
negative.)

Continued on page 11



UBC-SFU-UVic-UNBC Calculus Exam 2009 Name: Page 11 of 15

[9] 11. Residents of island Q need a new fibre-optic cable for their network. The island is 3 km
offshore from the nearest point P on a straight coastline, and the nearest broadband
signal source is in town T , 12 km along the shore from P . See the sketch. Underwater
cable costs twice as much as dry-land cable, so the islanders decide to save money
by running underwater cable from Q to R and dry-land cable from R to T . What
location for point R gives the lowest cost?

Q

P R T

3
x 12−x

Taking the definition of x suggested in the sketch, Pythagoras gives the length

of underwater cable:
√

9 + x2. The total cost of cable along the path QRT is
proportional to

f(x) = 2
√

9 + x2 + (12 − x).

We seek to minimize f(x) over the interval 0 ≤ x ≤ 12. Here

f ′(x) =
2x√

9 + x2
− 1 =

2x −
√

9 + x2

√
9 + x2

.

In the region where x > 0, we have

f ′(x) = 0 ⇐⇒ 2x =
√

9 + x2 ⇐⇒ 4x2 = 9 + x2 ⇐⇒ x2 = 3

⇐⇒ x =
√

3.

The simplified form of f ′ above reveals that f ′(x) < 0 for 0 < x <
√

3 and

f ′(x) > 0 for x >
√

3, so the point x =
√

3 gives an absolute minimum value
for f in the domain of interest.

Continued on page 12
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[9] 12. A particle moves along a vertical line, starting at time t = 0 and finishing at time
t = 3. Its height at time t is

y = 4t3 − 24t2 + 21t, 0 ≤ t ≤ 3.

Find the highest and lowest points reached by this particle, and find when its speed
is greatest. Give full reasons for your conclusions.

Calculation gives

v =
dy

dt
= 12t2 − 48t + 21 = 3(4t2 − 16t + 7) = 3(2t − 7)(2t − 1),

a =
dv

dt
= 24t − 48 = 24(t − 2).

The highest and lowest points will occur either at a critical point of y or at an
endpoint of its domain. A critical point for y is a root of y′ = v: the only one
in the interval [0, 3] is at t = 1

2
. The contenders and results are

y(0) = 0

y( 1
2
) = 5 . . . the highest point,

y(3) = −45 . . . the lowest point.

The extreme velocities will occur either at a critical point of v or at an endpoint
of its domain. A critical point for v is a root of v′ = a: the only one in the
interval [0, 3] is at t = 2. So the velocities of interest are

v(0) = 21, v(2) = −27, v(3) = −15.

Now speed is the magnitude of velocity, so the particle’s maximum speed in
the given interval is |v(2)| = 27.

Continued on page 13
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[9] 13. Using the axes provided on the next page, make a reasonable sketch of the curve

y = 4x + 2 − 5 ln(1 + x2). (Hint : (1 + x2)2y′′ = 10(x2 − 1).)

Support your sketch with calculations that identify the following features:

(a) The exact (x, y) coordinates of each critical point.

(b) Exact intervals on which the curve is increasing or decreasing.

(c) The exact (x, y) coordinates of each inflection point.

(d) Is it correct to say, “The line y = 4x + 2 is a slant asymptote for this curve?”
Why or why not?

(a) Here y′ = 4 − 5

(

2x

1 + x2

)

=
4 − 4x2 − 10x

1 + x2
.

Factoring reveals that x = 1
2

and x = 2 are critical points:

y′ =
−2(2x − 1)(x − 2)

1 + x2
.

The corresponding points on the curve are

(

1

2
, 4 − 5 ln(5/4)

)

, (2, 10 − 5 ln(5)) .

(b) One has y′ < 0 when 1
2

< x < 2, so the curve is decreasing on this
interval. On the interval (−∞, 1

2
) it is increasing; likewise for the

interval (2, +∞).

(c) The hint saves direct calculation: y′′ =
10(x − 1)(x + 1)

(1 + x2)2
.

This has two zeros, at x = −1 and x = 1. Between them one has
y′′ < 0, so the curve is concave down. In the two complementary
intervals, y′′ > 0, so the curve is concave up. Therefore we have true
inflection points in both locations, with exact coordinates

(−1,−2 − 5 ln(2)), (1, 6 + 5 ln(2)) .

(d) The line y = 4x + 2 is not a slant asymptote for the given curve
because the difference between the y-values on the curve and the y-
values on the line is 5 ln(1 + x2), and this does not have limit 0 as
either x → −∞ or x → +∞.

Continued on page 14
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Here is a computerized sketch of the curve. The labelling here is inadequate:
students are expected to do better.

The line y = 4x + 2 is tangent to the curve at the point (0, 2), and since
5 ln(1 + x2) ≥ 0 for all real x, the curve always lies below it. This helps guide
the production of the sketch below. (The line y = 4x + 2 is shown here for
reference only: it’s not an asymptote, as noted in part (d).)

IP

IPCP CP

Continued on page 15
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[7] 14. Eddie is in a hurry to find the area A that lies above the x-axis and below the curve

y =
(a2 − x2)

a
.

(Here a > 0 is a constant.) Observing that the curve is concave down and passes

through three points that also lie on the semicircle y =
√

a2 − x2, Eddie decides to
approximate A using the area between the x-axis and the semicircle.

(a) Is Eddie’s approximation larger or smaller than the true value of A?

(b) Find the exact value of A and use it to calculate the percentage error in Eddie’s
approximation.

(a) The circle has vertical tangent lines when it meets the x-axis, whereas
the parabola has oblique ones. Thus it’s reasonable to guess that the
semicircle’s area will be larger than A. Of course, we’ll soon find out.

(b) The exact area is

A =

∫ a

−a

(

a2 − x2

a

)

dx =
1

a

[

a2x − x3

3

]a

x=−a

=
4

3
a2.

Eddie’s approximation is E = 1
2
πa2. The relative error in this ap-

proximation is

E − A

A
=

π
2
a2 − 4

3
a2

4
3
a2

=
3π

8
− 1 ≈ 0.1781.

Thus E is too big by about 18%.

Here are some sketches showing the situation when a = 1. (Sketches
are not required for credit.)

−1 0 1
−0.5

0

0.5

1

1.5

A

−1 0 1
−0.5

0

0.5

1

1.5

E

−1 0 1
−0.5

0

0.5

1

1.5

both

The End


