
I. Cardinal Numbers
UBC M320 Lecture Notes by Philip D. Loewen

A. Set Theory and Logic; Notation

Statements. We’re interested in “statements”, also known as “logical propositions”:
these are unambiguous declarative sentences that are either true or false. They could
involve symbols as well as words. Examples include the statements a and b below.

a : 2 + 2 = 4.

b : 2 + 2 = 5.

Statement a is true; statement b is false. It is possible to string words together and
form grammatically correct sentences whose meanings depend on interpretation, or
might be both a little bit true and a little bit false all at once. Such constructions
are outside the scope of our course.

Sets. Everything comes down to sets. A set is a collection of objects. We define nei-
ther of these terms, relying instead on the following näıve operational understanding.
A set is like a data structure, with three capabilities:

(i) Simple Lookup: For any object x and set S, exactly one of the statements
“x ∈ S” or “x 6∈ S” is true; the other is false. An object x is an element of S if
and only if x ∈ S.

(ii) Automatic Redundancy Suppression: The sets A = {0, 1, 0, 1, 0, 1, 0, 1, . . . } and
B = {0, 1} are identical. (A precise definition of equality between sets is given
below.)

(iii) Indexing: Any given set S can release each object it contains in some system-
atic fashion that makes it possible to assign unambiguous true/false values to
definitions or statements of the form, “For every object x in S, . . ..” [E.g., “For
every real number t, define At = {x ∈ R : x ≥ t}.”]

Synonyms. There is no restriction on the types of “object” inside a set. Since a
set is itself a type of object, a set can contain other sets. So it’s logically possible,
and sometimes useful, to think about a “set of sets”. It can be more understanable
to speak of a “family of sets”, or a “collection of sets”, or something similar, but in
such cases the terms below are all considered equivalent:

set= family= collection = · · · =aggregate=bag= sack= · · ·.

The Empty Set. We use ∅ to denote the empty set. Its defining property is that
the statement “x ∈ ∅” is false for every object x. In other words, it is true to say
“For all x, x 6∈ ∅”. Now the empty set is an object itself, so it may (or may not)
lie inside other sets. But be careful: The set A = {∅} is different from the set ∅:
∅ ∈ A is true, whereas ∅ ∈ ∅ is false. The notation {} is a plausible replacement for
∅; Rudin uses the notation 0. We avoid this because the symbol 0 also stands for an
important number, and it’s confusing to use the same name for two different things.
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2 PHILIP D. LOEWEN

Russell’s Paradox (1901) [optional]. The setup outlined above sounds utterly
sensible, but it conceals some logical dangers. To illustrate these, start by classifying
sets according to this definition:

A set S is normal ⇔ S 6∈ S;

A set S is abnormal ⇔ S ∈ S.

Clearly every set is either normal or abnormal, and its impossible for a set to be both
at once. Now let N be the collection of all normal sets. What type of set is N?

• If N is normal, then the definition gives N 6∈ N . Being outside the set N means
that N is abnormal. But no set can be both normal and abnormal, so this can’t
happen.

• If N is abnormal, then the definition gives N ∈ N . Being an element of the set
N means that N must be normal. But no set can be both normal and abnormal,
so this can’t happen either.

Something terrible is happening here. The normal/abnormal scheme classifies all
sets into two distinct categories, and our N cannot logically belong to either one.
What’s wrong? Our näıve view of “sets” and “objects”! To be completely solid,
we need some fundamental rules about what kinds of collections get to be called
“sets”, and these rules should disqualify N from that category. For the purposes
of MATH 320, we adopt the 9-axiom setup named ZFC, named after Zermelo and
Fraenkel plus the Axiom of Choice. Wikipedia has details, on the page entitled
“Zermelo-Fraenkel set theory”. This is the standard axiomatic basis for working
mathematicians, and it is largely compatible with the näıve approach. We will stay
out of trouble by taking care never to contemplate something as vast and vague as
the set of all sets. Let us press on.

Notation for Logic. For logical propositions a and b,

a ∨ b means “a or b”: it’s true exactly when a or b or both are true,

a ∧ b means “a and b”: it’s true exactly when a and b are true simultaneously,

∼a means “not a”: its truth value is opposite to that of a,

[a⇒ b] means “a implies b”: its truth value is (∼a)∨ b. (Think about rejecting it.)

[a⇔ b] means “a if and only if b”: it’s true exactly when the truth values of a and
b are the same.

Definitions (Sets). For given subsets A and B of some “universal” set X,

A ∪B def
= {x ∈ X : (x ∈ A) ∨ (x ∈ B)} is the union of A and B,

A ∩B def
= {x ∈ X : (x ∈ A) ∧ (x ∈ B)} is the intersection of A and B

Ac def
= X \A = {x ∈ X :∼(x ∈ A)} is the complement of A, and

B \A def
= B ∩Ac = {x ∈ X : (x ∈ B)∧ ∼(x ∈ A)} .
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I. Cardinal Numbers 3

Note the connections between ∪ and ∨, ∩ and ∧, ()c, and ∼. For sets A and B, the
four expressions below have identical meanings:

A ⊆ B, A ⊂ B, B ⊇ A, B ⊃ A.

They all mean this: “∀x ∈ A, one has x ∈ B”; or, x ∈ A ⇒ x ∈ B. The definition of
“A = B” is (A ⊆ B) ∧ (B ⊆ A); equivalently, (x ∈ A) ⇔ (x ∈ B).

Tautologies. Imagine doing algebra with logical propositions. A tautology is a state-
ment like “a ∨ (∼a)” that comes out true for all possible T/F values of the variables
involved. These can be useful, especially when the central feature is “⇔”. Favourites
include

[a⇒ b] (contraposition)⇐⇒ [(∼b) ⇒ (∼a)]
[a⇔ b] (equivalence)⇐⇒ [a⇒ b] ∧ [b⇒ a]

∼(a ∧ b) (de Morgan)⇐⇒ (∼a) ∨ (∼b)
∼(a ∨ b) (de Morgan)⇐⇒ (∼a) ∧ (∼b)

Here are the corresponding statements about sets:

A ⊆ B ⇐⇒ Ac ⊇ Bc

A = B ⇐⇒ [A ⊆ B] ∧ [B ⊆ A]

(A ∩B)c = Ac ∪Bc

(A ∪B)c = Ac ∩Bc.

Quantifiers and Their Negations. Suppose S is a set, and for every object x in
S, we have a statement a(x) that involves x.

(∀x ∈ S) a(x) means “for each object x in set S, statement a(x) is true”. This
true automatically when S = ∅; otherwise ∀ works like a gener-
alized form of “ans”. [E.g., if S = {0, 1, 2}, (∀x ∈ S) a(x) is the
same as a(0) ∧ a(1) ∧ a(2).]

(∃x ∈ S) a(x) means “there exists some object x in set S for which statement a(x)
is true”. It’s automatically false when S = ∅; otherwise ∃ works
like a generalized “or”. [E.g., if S = {0, 1, 2}, (∃x ∈ S) a(x)” says
a(0) ∨ a(1) ∨ a(2).]

Important: The quantifiers ∀ and ∃ do not commute. If S and T are sets, the two
statements below are quite different (think of a specific example!):

(i) ∀x ∈ S, ∃y ∈ T : a(x, y)

(ii) ∃y ∈ T : ∀x ∈ S, a(x, y).

Negations. As de Morgan’s laws suggest, and common sense confirms,

∼[(∀x ∈ S) a(x)] ⇐⇒ (∃x ∈ S)[∼a(x)]
∼[(∃x ∈ S) a(x)] ⇐⇒ (∀x ∈ S)[∼a(x)].
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4 PHILIP D. LOEWEN

Families of Sets. If A is a set in which every element is itself a set [“a family of
sets”], we define the large-scale union and intersection operators as follows:

⋃
A def

=
⋃

A∈A

A = {x ∈ X : ∃A ∈ A s.t. x ∈ A} ,

⋂
A def

=
⋂

A∈A

A = {x ∈ X : ∀A ∈ A, x ∈ A} .

De Morgan’s Laws here take the form

[⋃
A
]c

=
⋂

A∈A

Ac,
[⋂

A
]c

=
⋃

A∈A

Ac.

When the family A contains one set for each positive integer, labelled so that A =
{A1, A2, A3, . . . }, we mimic classic sigma-notation as follows:

⋃
A =

⋃

i∈N

Ai =
∞⋃

i=1

Ai = A1 ∪A2 ∪A3 ∪ · · · ,

⋂
A =

⋂

i∈N

Ai =

∞⋂

i=1

Ai = A1 ∩A2 ∩A3 ∩ · · · .

B. Hilbert’s Hotel; Mappings 06 Sep 2023

The rooms in Hilbert’s Hotel are numbered 1, 2, 3, . . ., one for each positive
integer. All rooms are occupied when the King arrives to stay the night. No problem:
for each room n in N, ask the occupant to move to room n+1. No current guests have
to share a bed or sleep outdoors, and the King gets Room 1, which is now vacant.
Sketch.

Mathematically, the mapping f : (N ∪ {0}) → N defined by

f(n) = n+ 1

is a “one-to-one correspondence” between the sets N ∪ {0} (the guests) and N (the
rooms). One-to-one correspondence is how we “count” elements of sets—including
infinite sets.

08 Sep 2023

Definition. (Mappings) Let X and Y be sets.

(a) The cartesian product is the set of all ordered pairs (x, y) where x ∈ X, y ∈ Y .
I.e.,

X × Y = {(x, y) : x ∈ X, y ∈ Y } .

(Extend: X1×X2×· · ·×Xn =

n∏

k=1

Xk = {(x1, . . . , xn) : xk ∈ Xk, ∀k = 1, . . . , n}.)
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I. Cardinal Numbers 5

(b) Any subset G of X × Y defines a set-valued mapping (or multifunction, or re-

lation) from X to Y ; the notation G:X→→Y encodes the sets involved. We
write

G(x) = {y ∈ Y : (x, y) ∈ G} ,
G−1(y) = {x ∈ X : (x, y) ∈ G} ,
dom(G) = {x ∈ X : G(x) 6= ∅} .

(Thus G−1:Y →→X corresponds to the set {(y, x) : (x, y) ∈ G}.)
(c) We extend the notation to subsets A ⊆ X and B ⊆ Y as follows:

G(A) =
⋃

a∈A

G(a) = {y ∈ Y : y ∈ G(a) for some a ∈ A}

G−1(B) =
⋃

b∈B

G−1(b) = {x ∈ X : G(x) ∩B 6= ∅} .

(d) A set-valued mapping G:X→→Y is a mapping or function when the set G(x)
contains exactly one point for each x in X. (In particular, dom(G) = X.) These
properties are encoded in the single-arrow notation G:X → Y , and in such cases
we typically write G(x) = y instead of G(x) = {y}.

(e) It is possible that G:X → Y is a function (i.e., single-valued), but G−1(y) is
not. The original notation applies:

G−1(y) = {x ∈ X : (x, y) ∈ G} = {x ∈ X : G(x) = y} .

When the function G is one-to-one (see below), the shorthand in (c) is mirrored
by writing G−1(y) = x instead of G−1(y) = {x}.

Example. (a) R2 = R× R = {(x1, x2) : x1 ∈ R, x2 ∈ R}.
(b) With X = R, Y = R, take G = {(x, y) : |y| ≤ x}. Sketch; note

domG = {x ∈ R : x ≥ 0} = [0,+∞),

G(x) =

{
∅, if x < 0,
[−x, x], if x ≥ 0,

G−1(y) = [|y|,+∞).

(c) [There is no f .] Writing just y = x2 triggers healthy reflexes in Calculus veterans.
But there is no function . . . yet. Even the letters x and y are not required or
special in any way. The reflex interpretation of “y = x2” is to think of a certain
subset of the Cartesian plane R × R = R2. Another way to define this same
set (without mentioning x or y) is to say G =

{
(t, t2) : t ∈ R

}
. This defines

a famous single-valued G:R → R, namely, G(x) = x2. This function is not
invertible, but our set-valued notation still applies, and it produces

G−1(y) =

{ ∅, if y < 0,{√
y,−√

y
}
, if y ≥ 0.
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6 PHILIP D. LOEWEN

(Aside: How many elements in the set G−1(0)? Literal interpretation of the
definition above says G−1(0) = {0,−0}, but that set contains just one element,
since 0 = −0.)

(d) [Skipped.] We can draw this set as a solid cone in 3D:

G =
{
(r, x) ∈ R× R2 : |x| ≤ r

}

=
{
(r, x1, x2) ∈ R3 : r ≥ 0, x21 + x22 ≤ r2

}
.

Here

G(r) =





∅, if r < 0,
{(0, 0)} , if r = 0,{
(x1, x2) : x21 + x22 ≤ r2

}
, if r > 0.

Thus dom(G) = {r ∈ R : r ≥ 0} = [0,+∞), and, for example,

G−1 ((0, 1)) = {r ∈ R : r ≥ 1} = [1,+∞).

////

Definition. (Mapping Properties) Let f :X → Y be a (single-valued) mapping de-
fined on X.

(a) To call f one-to-one (or 1-1, or injective) means this:

∀x1, x2 ∈ X, f(x1) = f(x2) =⇒ x1 = x2

i.e., ∀x1, x2 ∈ X, x1 6= x2 =⇒ f(x1) 6= f(x2).

(b) To call f onto (or surjective) means that f(X) = Y , i.e.,

∀y ∈ Y, ∃x ∈ X : y = f(x).

(c) To call f a one-to-one correspondence (or bijection) means that f is both 1-1
and onto.

Example. Consider f :R → R, defined by f(x) =
x√

1 + x2
.

(i) f is not onto.
Any choice y ≥ 1 or y ≤ −1 violates definition (b). (Sketch.)

(ii) f is 1-1.
To prove this, assume f(x) = f(y) and deduce x = y. Indeed,

x
√

1 + y2 = y
√
1 + x2 =⇒ x2 + x2y2 = y2 + x2y2 =⇒ y = ±x.

If y = x, we are finished. But if y = −x, f(y) = f(−x) = −x/
√

1 + (−x)2 =
−f(x). Together with f(x) = f(y), this entails f(x) = 0, so x = 0. Thus y = x.

(iii) The mapping f puts R into one-to-one correspondence with the interval (−1, 1).
////

Remark. If φ:X → Y is both 1-1 and onto, then φ−1:Y → X is single-valued, 1-1
and onto. [Pf.]
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I. Cardinal Numbers 7

C. Countability

Recall N = {1, 2, 3, . . . }, the set of natural numbers.

Definition. A set S is finite if either S = ∅ or there exists some n ∈ N and some
bijection φ: {1, 2, . . . , n} → S. [Notation: |∅| = 0, |{1, 2, . . . , n} | = n.]

Definition. A set Y is countable if there exists some bijection φ:N → Y . [Notation:
|S| = ℵ0.]

Sidebar. If every infinite set were countable, we wouldn’t need to invent a special
term. It may be interesting to explore the ways this concept can break down.

Example. Some countable sets:

(a) N itself. Use φ(y) = y, the identity mapping on N.

(b) Hilbert’s Hotel: N ∪ {0}. (Use φ(n) = n− 1.)

(c) Z = {. . . ,−2,−1, 0, 1, 2, . . . }. Use ψ:N → Z defined by

ψ(n) =

{
−n/2, if n is even, i.e., n = 2k ∃k ∈ N,
(n− 1)/2, if n is odd, i.e., n = 2k − 1 ∃k ∈ N.

11 Sep 2023

(d) N× N.

Proof. Enumerate the ordered pairs in N× N as indicated below:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) · · ·

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) · · ·

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) · · ·

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) · · ·

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) · · ·

...
...

...
...

...
. . .

Note that diagonal number k includes all pairs whose elements sum to k + 1.
This makes it easy to show that the enumeration scheme is onto: the pair (m,n)
shows up on diagonal number m+n− 1, so it’s easy to calculate its index in the
sequence described above. ////

Countability and Sequences. If A is countable, with φ:N → A bijective, defining
an = φ(n) lets us write A = {a1, a2, a3, . . . }. Conversely, if A = {a1, a2, a3, . . . } is the
collection of values from some sequence with distinct terms, then defining ψ(n) = an
produces a bijection and shows A is countable.
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8 PHILIP D. LOEWEN

Well-Ordering Property for N. Every nonempty subset S of N contains a smallest
element. In symbols,

S ⊆ N, S 6= ∅ =⇒ ∃ŝ ∈ S : ∀s ∈ S, ŝ ≤ s. (∗)

We take this as known; it’s the basis for Mathematical Induction. Typical notation
for ŝ is minS or min(S).

Proposition. Every subset of N is either finite or countable.

Proof. Let A ⊆ N. If A is finite, we’re done, so assume A is infinite. Write A1 = A.
Clearly A1 6= ∅, so let a1 = min(A1). Clearly a1 ≥ 1.

Then let A2 = A \ {a1}: Since A is infinite, A2 6= ∅, so let a2 = min(A2). Notice
a2 ≥ 1 + a1, so a2 ≥ 2.

Continue inductively. Having chosen an, let An+1 = A\{a1, a2, . . . , an}. Since A
is infinite, An+1 6= ∅, so pick an+1 = minAn+1. Notice an+1 ≥ 1+an, so an+1 ≥ n+1.
By induction, this defines an for each n ∈ N.

Now define φ:N → A by φ(n) = an.

This φ is 1− 1. Indeed, if m 6= n, choosing the labels to arrange m < n implies
φ(m) < φ(n).

To see that φ is onto, pick any a ∈ A. Then φ(a) ≥ a, so a = φ(k) for some
k ≤ a.

Thus φ is a bijection, and this confirms the definition that A is countable. ////

Proposition. Every subset of any countable set is either finite or countable.

Proof. Let X be a countable set, with subset S. Then there must be some bijection
ψ:N → X. Define f :S → N like this

f(s) = ψ−1(s), s ∈ S.

Then f is a bijection between S and f(S), a subset of N. By above, f(S) is either
finite or countable. Thus the same holds for S. ////

Proof. (If only we had Schroeder-Bernstein, it would be this easy.)
Let A be a countable set, with a subset S. If S is finite, the
conclusion is automatic. If S is infinite, then it has a countable
subset S1. Then S1 ⊆ S ⊆ A and S1 ∼ A. By the Proposition
above, S ∼ A also, i.e., S is countable. ////

Proposition. Every infinite set contains a countably infinite subset.

Proof. Mimic previous proof, but drop the stipulation that each new point have some
relation to the earlier selections. (You still get a sequence, only now it may fail to
include all elements of the original set.) ////
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I. Cardinal Numbers 9

Terminology. “Finite or countable” ≡ “at most countable”.

Theorem (Proving Countability). Given a set A, either (a) or (b) below implies
that A is finite-or-countable:

(a) There exist a countable set X and a one-to-one mapping f :A→ X,

(b) There exist a countable set X and an onto mapping g:X → A.

Proof. (a) Write S = f(A) = {f(x) : x ∈ A}. Since S ⊆ X, S is either finite or
countable. Since f :A→ S is a bijection, the same is true for A.

(b) Enumerate X = {x1, x2, . . . }. For each a, let f(a) = min {n ∈ N : g(xn) = a}.
(That set is nonempty because g is onto.) This defines a mapping f :A → N

that establishes a one-to-one correspondence between A and f(A). Since f(A)
is a subset of N, it must be finite or countable; the same therefore holds for A.

Details (1-1): Suppose a1, a2 ∈ A obey f(a1) = f(a2). Then, since g(xf(a)) = a
for each a ∈ A,

a1 = g(xf(a1)) = g(xf(a2)) = a2.

////

More Countable Sets. The countability of N× N has useful consequences:

1. If A and B are countable sets, then A×B is countable too.

[Write A = {a1, a2, . . . }, B = {b1, b2, . . . }, and define g:N × N → A × B by
g(m,n) = (am, bn). This g is ONTO, and N × N is countable; result follows
from (b) above.]

2. Let S2 be the collection (set) of all nonempty subsets of N with one or two
elements. Then S2 is countable.

Pf: Define g:N×N → S2 by g(m,n) = {m,n}. Clearly g is onto; since N×N is
countable, result follows from (b) above. [E.g., {5} = φ(5, 5); {1, 2} = φ(1, 2) =
φ(2, 1); etc. Note that g is not 1-1.]

13 Sep 2023

3. The union of countably many sets, each one countable, is a countable set.

Pf: Suppose A(1), A(2), . . . is a list of countable sets. Enumerate each set—for
each m ∈ N, arrange

A(m) =
{
a
(m)
1 , a

(m)
2 , a

(m)
3 , . . .

}
.

Then define g:N× N →
⋃

m∈N

A(m) by

g(m,n) = a(m)
n .
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10 PHILIP D. LOEWEN

This g might not be 1-1 if the sets A(m) overlap, but it’s certainly onto. Since

N × N is countable, that’s enough to show
⋃

m∈N

A(m) is countable. [Again we

have used (b) above.]

4. The set Q of rational numbers is countable.

Pf: We showed earlier that Z is countable. Hence the set of pairs Z × N is
countable, by item 1. The mapping φ:Z × N → Q defined by φ(p, q) = p/q is
clearly onto, so Q is countable by part (b) of the theorem above.

5. The set N3 = N × N × N = {(p, q, r) : p, q, r ∈ N} is countable. So is S3, the
collection of nonempty subsets of N with 3 or fewer elements.

Pf: Since both N×N and N are countable, so [by item 1] is the set P = (N×N)×N.
A bijection f :N3 → P is

f(p, q, r) = ((p, q), r) .

Clearly g(p, q, r) = {p, q, r} maps N3 onto S3.

6. The collection of all finite subsets of N is countable.

Pf: Extend items 1–2 and 5 into an obvious induction proof that for each fixed
k ∈ N, the set Nk is countable and hence so is the family Sk consisting of all
subsets of N with k or fewer elements. Now consider

F = {∅} ∪
⋃

k∈N

Sk.

As a countable union of countable sets, F is countable. Every finite subset of N
is an element of F ; every element of F is a finite subset of N.

Definition. A set Y is uncountable if both

(i) Y is infinite, and

(ii) no mapping φ:N → Y is bijective.

(Typically prove (ii) by showing every φ:N
1−1−→ Y is not onto.)

Theorem. The real interval [0, 1) is uncountable.

Proof. It suffices to show that any f :N
1−1−→ [0, 1) is not onto.

To do this, pick such an f and use decimal notation to write

f(1) = 0 . x11 x
1
2 x

1
3 x

1
4 . . .

f(2) = 0 . x21 x
2
2 x

2
3 x

2
4 . . .

f(3) = 0 . x31 x
3
2 x

3
3 x

3
4 . . .

...
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I. Cardinal Numbers 11

always choosing representations not ending with an infinite string of 9’s. Then define
y ∈ R via

y = 0 . y1 y2 y3 y4 . . .

with digits

yk =

{
5, if xkk = 7,
7, otherwise.

The digits show 5/9 ≤ y ≤ 7/9, but for each k we have yk 6= xkk so y 6= f(k). Hence
y ∈ [0, 1) \ f(N), so f is not onto. ////

Corollary. (a) R is uncountable.

(b) The set R \Q of irrational numbers is uncountable.

Proof. (a) If R were countable, its infinite subset [0, 1) would be countable too. But
this is false.

(b) Clearly R = Q ∪ (R \Q). If R \ Q were countable, this would express R as a
union of two countable sets. This would make R countable, which is known to
be false. ////

D. Cardinal Numbers 15 Sep 2023

Definition. Given sets X and Y , write X ∼ Y if there exists a one-to-one mapping
from X onto Y . (Say “X ∼ Y under φ” as shorthand for “φ:X → Y is one-to-one
and onto”.)

We will often use the following immediate consequence of the definition:

If f :X
1−1−→ Y and A ⊆ X, then A ∼ f(A).

Proposition. For any sets X, Y , Z,

(R) X ∼ X (‘∼’ is Reflexive),

(S) X ∼ Y =⇒ Y ∼ X (‘∼’ is Symmetric),

(T) X ∼ Y and Y ∼ Z =⇒ X ∼ Z (‘∼’ is Transitive).

Proof. (Exercise outline.) For (R), consider the identity mapping φ:X → X, defined
by φ(x) = x.

For (S), show that if φ:X → Y is both 1-1 and onto, then φ−1:Y → X is
well-defined, 1-1, and onto.

For (T), suppose X ∼ Y under φ and Y ∼ Z under ψ. Then X ∼ Z under ψ ◦φ.
////

For sets X, the symbol |X| denotes “the cardinal number of X”, intuitively “the
number of points in X”. With this symbol, X ∼ Y is written |X| = |Y |.
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Cardinal Inequalities. For sets X and Y ,

(a) |X| ≤ |Y | means there is a one-to-one map f :X → Y . So does |Y | ≥ |X|.

(b) |X| < |Y | means |X| ≤ |Y | but every f :X
1−1−→ Y fails to be onto. So does

|Y | > |X|.

Standard symbols. |N| = ℵ0, |R| = c. Thus X is finite or countable iff |X| ≤ ℵ0 =
|N|, and we know “c > ℵ0”.

Beyond Uncountability. Given any set X, consider the collection of all its subsets:

P(X)
def
= {U : U ⊆ X} .

This is called “the power set” for X, and in some presentations it is denoted by 2X .

Proposition. For any set X, |X| < |P(X)|.

Proof. (Case X = ∅ trivial: see Rudin Problem 2.1.) To show |X| ≤ |P(X)|, define
f :X

1−1−→ P(X) by f(x) = {x}.

To deduce that |X| < |P(X)|, let any f :X 1−1−→ P(X) be given. We’ll show f is
not onto.

Indeed, define S ∈ P(X) like this:

S = {x ∈ X : x 6∈ f(x)} .
Claim: S 6∈ f(X).
Suppose not, i.e., S ∈ f(X). Then S = f(y) for some y ∈ X. Two cases arise:

(i) y ∈ S = f(y). Then, by def of S, y 6∈ f(y) — contradiction.

(ii) y 6∈ S = f(y). Then, by def of S, y ∈ S — contradiction.

Thus S 6∈ f(X), so f is not onto. ////

This shows that there is an infinite chain of distinct cardinal numbers:

0 < 1 < 2 < · · · < |N| < |R| < |P(R)| < |P(P(R))| < · · · .

Remarks. It can be shown that |R| = |P(N)|. The continuum hypothesis is the
assertion that there is no set S for which ℵ0 < |S| < c. This turns out to be
undecidable in the ZFC axiom system: both the claim and its negation are compatible
with ZFC! The details are beyond the scope of MATH 320.)

Theorem (Schroeder-Bernstein). If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

Proof. Nontrivial. [See Section E, below.] ////

Example. If a < b and c < d, then as real intervals (a, b) ∼ [c, d].

Proof. Choose a1, b1 ∈ R satisfying [a1, b1] ⊆ (a, b); also choose c1, d1 ∈ R such that
[c1, d1] ⊆ (c, d). Then [c, d] ∼ [a1, b1] ⊆ (a, b) by a linear bijection, and (a, b) ∼
(c1, d1) ⊆ [c, d] by a linear bijection, so (a, b) ∼ [c, d] by Schroeder-Bernstein. ////
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E. Schroeder-Bernstein Theorem

When dealing with inequalities between real numbers, the following statement
feels “obvious” because it is so familiar; it’s also a reasonably direct consequence of
the defining properties of the symbols “≤” and “=”:

[
a ≤ b and b ≤ a

]
=⇒ a = b. (∗)

Now we have recycled the same symbols for use in comparing cardinal numbers, but
given both of them new meanings in this context. So if two sets A and B are given,
the following statement is similar to the previous one in appearance only, and not in

meaning : [
|A| ≤ |B| and |B| ≤ |A|

]
=⇒ |A| = |B|. (∗∗)

Proving (∗∗) is by no means as simple as saying, “That’s how inequalities work”! On
the contrary, the only way to justify hijacking familiar comparison symbols like “≤”
for new uses is to provide an independent proof that the new definitions work the
way inequalities are expected to behave. That’s the point of this section.

Proposition. If both A0 ⊇ A1 ⊇ A2 and A0 ∼ A2, then A0 ∼ A1.

Proof. The hypothesis allows for the extreme situations where either A0 = A1 or
A0 = A2. In either case the conclusion is obvious, so we only need to handle the case
where both inclusions in the setup are strict. In symbols, we will assume

A0 \A1 6= ∅ and A1 \A2 6= ∅.

This preamble is not necessary, but it adds some reassuring nondegeneracy to the
ingredients we build later.

Since A0 ∼ A2 by hypothesis, there exists a bijection f :A0 → A2. Use this f to
define a sequence of nested sets:

A3 = f(A1), A4 = f(A2), . . . , An+2 = f(An), . . . .

Applying f to the each set in the chain of inclusions A0 ⊇ A1 ⊇ A2 gives A2 ⊇ A3 ⊇
A4, and this process can be repeated inductively to reveal that

A0 ⊇ A1 ⊇ A2 ⊇ A3 ⊇ A4 ⊇ · · · .

Since A0 6= A1 6= A2 and f is 1-1, every inclusion in this infinite chain is strict.

Now observe that

A0 =

(
∞⋂

k=0

Ak

)
∪
(

∞⋃

k=0

(Ak \Ak+1)

)
. (†)
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To prove (†), notice that the inclusion ⊇ is obvious. For the reverse inclusion, ⊆, pick
any specific element x of A0. If this x lies in each set An, n ∈ N, then x appears in
the first parenthesized set on the right of (†). Otherwise, the set {n ∈ N : x 6∈ An}
must be nonempty, so we can use the well-ordering property of N to define k =
(−1) + min {n : x 6∈ An}. For this k, we have n ≥ 0 and x ∈ Ak \ Ak+1. Therefore
x appears in the second parenthesized set on the right of (†).

To simplify notation, let’s write

S =
∞⋂

k=0

Ak, Dn = An \An+1, n ≥ 0.

Now f is a bijection from An to An+2 for every n = 0, 1, 2, . . .. Therefore, for every
n ≥ 0, we have

f(Dn) = f(An \An+1) = f(An) \ f(An+1) = An+2 \An+3 = Dn+2. (‡)

Then equation (†) expresses A0 as a union of disjoint sets, as follows:

A0 =

(
D0 ∪D1 ∪D2 ∪ · · ·

)
∪ S.

Recall that D0 = A0 \A1, so

A1 =

(
D1 ∪D2 ∪D3 ∪ · · ·

)
∪ S.

To define a bijection φ:A0 → A1, we just make a “Hilbert’s Hotel”-style shift of the
even-subscripted sets in this disjoint union, leaving everything else unchanged:

φ(x) =

{
f(x), if x ∈ D2n for some n ≥ 0,
x, otherwise.

This φ is clearly 1-1 and onto, as required. ////

The following corollary is known as the Schroeder-Bernstein Theorem (SBT).

Corollary (SBT). Given sets A and B, suppose there are subsets A1 ⊆ A and
B1 ⊆ B such that A ∼ B1 ⊆ B and B ∼ A1 ⊆ A. Then A ∼ B.

Proof. Since B ∼ A1, there exists a bijection f :B → A1. Use it to define

A2
def
= f(B1) ⊆ f(B) = A1 ⊆ A. (∗)

Then A2 ∼ B1 thanks to f , while B1 ∼ A is given, so A2 ∼ A. Using (∗) with the
Proposition above, we have A ∼ A1. But A1 ∼ B by hypothesis, so A ∼ B. ////
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Example. Let A denote the real interval [0, 1), and let B = [0, 1) × [0, 1) denote
the unit square in the Cartesian plane (with part of its boundary removed). Then
|B| = |A|.

Proof. It suffices to define a 1-1 function f :B → A. Why? Because then A1
def
= f(B)

obeys B ∼ A1 ⊆ A, while A ∼ A × {0} ⊆ B is obvious, so A ∼ B by Schroeder-
Bernstein.

To define f , let any (x, y) in B be given. Write the decimal expansions

x = 0 . x1 x2 x3 . . . =
∞∑

k=1

xk
10k

, xk ∈ {0, . . . , 9} ,

y = 0 . y1 y2 y3 . . . =

∞∑

k=1

yk
10k

, yk ∈ {0, . . . , 9} ,

always choosing the (unique) representation that does not end with an infinite string
of 9’s. Then let

f(x, y) = 0 . x1 y1 x2 y2 x3 y2 . . . =

∞∑

k=1

xk
102k−1

+

∞∑

k=1

yk
102k

.

The digit string specified for f(x, y) will not end in an infinite chain of 9’s, and
f(x1, y2) = f(x2, y2) clearly implies (x1, y1) = (x2, y2), so f is a 1-1 mapping from B
into A.

Q: Is this f surjective?

A: No. One element of A = [0, 1) lying outside f(B) is 1/11 = 0 . 09. ////
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