II. Numbers and Vectors
UBC M320 Lecture Notes by Philip D. Loewen

18 Sep 23

A. The Real Numbers

Naive View—Our Plan for Now. Use R with =,<,| - |,4+,—,%,+, as always.

Serious View (Details Later). Work hard to construct from the axioms a set
R with special elements O and I, and a subset P C R (“positive elements”), and
mappings A: R X R - R (“add”), M: R x R — R (“multiply”), for which defining
the basic operations above in terms of

x+y=Ax,y), x-y=M(z,y), r>0&zelP

produces a consistent setup in which (i) all the familiar rules of arithmetic all work;
(ii) there is a subset Q of R that is in one-to-one correspondence with the set of
rational numbers (and the correspondence respects standard arithmetic); and (iii)
the extra properties of order-completeness and metric completeness also hold.

Discussion. The completeness properties are what make R so special. Any line
of reasoning that doesn’t use them explicitly looks the same as a line of reasoning
where all the numbers involved are rational. Many useful skills and arguments can
be developed in QQ and then lifted to R with no significant change.

Theorem (Archimedes). In R, the set N has no upper bound. That is,

VreR, IneN :n>r.

Proof. 1t’s obvious that N has no upper bound in Q. Verifying that this important
property remains valid in R requires the completeness property. Details later. ////
Corollaries. (a) For any fixed € > 0, some n € N obeys 1/n < e.

(b) Whenever z,y € R obey y — x > 1, we have (z,y) NZ # ().

(c) For any a,b € R with a < b, we have both (a,b) NQ # 0 and (a,b) \ Q # 0.

Proof. (a) Apply Archimedes to r = 1/e to produce n € Ns.t. n > 1/e,ie., 1/n <e.
(b) Let S={n €Z : n>y}. By Archimedes, S # 0; by Fact 1, n = min(S) exists.
Let’s show z =n — 1 € (z,y):
(i) z < y: By definition of “min”, n — 1 ¢ S. This means, by definition of S,
that z=n—1<uy.
(ii) z > x: We know n € S. So, by the definition of S, 7 > y > x + 1. Thus
z=n—1>u.
(c) Given a < b, apply (a) to show that some n € N obeys 1/n < b —a. Then
nb —na > 1, so (b) applies to z = na, y = nb. That is, there must exist some

m € Z for which na < m < nb, or,a<@<b. Thus € (a,b) N Q.
n n
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b b
Likewise, if a < b then 4 < —= so some q € QQ obeys i < q < —. It follows

V2 V2 V2 V2
that ¢v/2 € (a,b) \ Q.

Alternatively, the set (a,b) N Q must be countable (it’s an infinite subset of the
countable set Q), but the set (a,b) is uncountable (it’s in one-to-one correspon-
dence with the interval (0,1)). It follows that (a,b) \ Q must be uncountable
too, which certainly implies that it is not empty. /]]/

Trichotomy. For every real number x, exactly one of the following is true:
x <0, x =0, x> 0.

By taking x = b — a, we deduce that whenever a,b € R, exactly one of the following
is true:
a <b, a=>, a >b.

Now for any a,b € R, it’s rather obvious that
a>b — de>0:a>b+=.

(Indeed, if a > b then € = a — b obeys the conclusion.) The contrapositive of this
statement is logically equivalent, but occasionally useful:

Ve >0,a<b+e| = a<h.

It reveals that one way to prove the inequality “a < b” is to prove a that the relaxed
inequality a < b+ ¢ actually holds for every fixed number € > 0.

B. Finite Dimensional Euclidean Spaces
For any k € N, we write R¥ for the set of ordered k-tuples
x = (21,22,...,25), x; €R.
The standard operations on this set are vector addition
(21,22, wk) + (Y192, - 0k) = (@1 + Y1, 22+ Y2, Tk + Yk)
multiplication by real scalars
a(ry,xe,...,x) = (axy, ax9, ..., 0x)) ,

and the dot product:

k

(@1, 22, 21) ® (Y1, Y2y -, Yk) = 1YL + Doy + o ThYe = D X505
j=1
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The dot product induces the “norm”

x| = Vxex =

k
2
Z%
j=1

which makes R* into Euclidean k-space. (This definition is fully compatible with

the usual absolute value on R = R!, since |x| = V22 holds for each real number z.)
Key algebraic properties are listed in Theorem 1.37: highlights are

(i) \X\Q = x o X (often useful in proofs),

(ii) the Schwarz inequality

|xey| <|x||y|, with “=” iff ax+ By = 0 for some real «, § not both zero,
(iii) the triangle inequalities

x+y| < x|+ |yl, x—y| >

x| — |yr\.

Discussion. (i) For any x,y € R* and ¢ € R,
0< [x—ty]” = (x—ty) e (x—ty)
:xox—tyox—txoy+t2yoy
= ]x]Q—thoy+t2|y|2.

If y # 0, the right-hand side is a quadratic polynomial in ¢t with at most one
real root. Hence, its discriminant cannot be positive:

(—2xey)’ =4 (k) (Iy])* <.
xoy® < (x| ly])*.

Taking square roots of both sides gives the Schwarz inequality. (If y = 0, the
inequality is obvious.)

(ii) In the calculation above, we may extract

\X—ty|2 = ]x]2—2txoy—|—t2]y]2, ie., ]X—ty]2—t2|y]2 = xXex—2ixey.

<+ (5) yr - (5) P

This extends the algebraic idea of “completing the square” to scalar-valued
quadratic functions with a vector variable x.

Substituting ¢ = —2t¢ and gives

XeX+cyex =
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(iii) The triangle inequality follows from the Schwarz inequality: for any x,y € R¥,

x+yl =(x+y)e(x+y)
=[x +2x oy + [y|”
< x> + 2|y +[y[*  (by Schwarz, since p < |p| ¥p € R)

= (x| +Iy1)’

x| + [yl
Taking square roots of both sides gives the desired result. /]]/

This would be one great place to discuss order-completeness in some detail, but an-
other great place comes up after a first look at limits. Please be patient.
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