II. Numbers and Vectors

UBC M320 Lecture Notes by Philip D. Loewen

A. The Real Numbers

18 Sep 23

Naïve View-Our Plan for Now. Use \mathbb{R} with $=,<,|\cdot|,+,-,\times,\div$, as always.

Serious View (Details Later). Work hard to construct from the axioms a set \mathcal{R} with special elements \mathbb{O} and \mathbb{I} , and a subset $\mathbb{P} \subseteq \mathcal{R}$ ("positive elements"), and mappings $A: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ ("add"), $M: \mathcal{R} \times \mathcal{R} \to \mathcal{R}$ ("multiply"), for which defining the basic operations above in terms of

$$x + y = A(x, y),$$
 $x \cdot y = M(x, y),$ $x > \mathbb{O} \Leftrightarrow x \in \mathbb{P}$

produces a consistent setup in which (i) all the familiar rules of arithmetic all work; (ii) there is a subset Q of R that is in one-to-one correspondence with the set of rational numbers (and the correspondence respects standard arithmetic); and (iii) the extra properties of order-completeness and metric completeness also hold.

Discussion. The completeness properties are what make \mathbb{R} so special. Any line of reasoning that doesn't use them explicitly looks the same as a line of reasoning where all the numbers involved are rational. Many useful skills and arguments can be developed in \mathbb{Q} and then lifted to \mathbb{R} with no significant change.

Theorem (Archimedes). In \mathbb{R} , the set \mathbb{N} has no upper bound. That is,

$$\forall r \in \mathbb{R}, \ \exists n \in \mathbb{N} : n > r.$$

Proof. It's obvious that \mathbb{N} has no upper bound in \mathbb{Q} . Verifying that this important property remains valid in \mathbb{R} requires the completeness property. Details later. ///

Corollaries. (a) For any fixed $\varepsilon > 0$, some $n \in \mathbb{N}$ obeys $1/n < \varepsilon$.

- (b) Whenever $x, y \in \mathbb{R}$ obey y x > 1, we have $(x, y) \cap \mathbb{Z} \neq \emptyset$.
- (c) For any $a, b \in \mathbb{R}$ with a < b, we have both $(a, b) \cap \mathbb{Q} \neq \emptyset$ and $(a, b) \setminus \mathbb{Q} \neq \emptyset$.

Proof. (a) Apply Archimedes to $r = 1/\varepsilon$ to produce $n \in \mathbb{N}$ s.t. $n > 1/\varepsilon$, i.e., $1/n < \varepsilon$.

- (b) Let $S = \{n \in \mathbb{Z} : n \geq y\}$. By Archimedes, $S \neq \emptyset$; by Fact 1, $\widehat{n} = \min(S)$ exists. Let's show $z = \widehat{n} 1 \in (x, y)$:
 - (i) z < y: By definition of "min", $\widehat{n} 1 \notin S$. This means, by definition of S, that $z = \widehat{n} 1 < y$.
 - (ii) z > x: We know $\widehat{n} \in S$. So, by the definition of S, $\widehat{n} \ge y > x + 1$. Thus $z = \widehat{n} 1 > x$.
- (c) Given a < b, apply (a) to show that some $n \in \mathbb{N}$ obeys 1/n < b-a. Then nb-na>1, so (b) applies to x=na, y=nb. That is, there must exist some $m \in \mathbb{Z}$ for which na < m < nb, or, $a < \frac{m}{n} < b$. Thus $\frac{m}{n} \in (a,b) \cap \mathbb{Q}$.

Likewise, if a < b then $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$ so some $q \in \mathbb{Q}$ obeys $\frac{a}{\sqrt{2}} < q < \frac{b}{\sqrt{2}}$. It follows that $q\sqrt{2} \in (a,b) \setminus \mathbb{Q}$.

Alternatively, the set $(a,b) \cap \mathbb{Q}$ must be countable (it's an infinite subset of the countable set \mathbb{Q}), but the set (a,b) is uncountable (it's in one-to-one correspondence with the interval (0,1)). It follows that $(a,b) \setminus \mathbb{Q}$ must be uncountable too, which certainly implies that it is not empty.

Trichotomy. For every real number x, exactly one of the following is true:

$$x < 0, \qquad x = 0, \qquad x > 0.$$

By taking x = b - a, we deduce that whenever $a, b \in \mathbb{R}$, exactly one of the following is true:

$$a < b$$
, $a = b$, $a > b$.

Now for any $a, b \in \mathbb{R}$, it's rather obvious that

$$a > b \implies \exists \varepsilon > 0 : a > b + \varepsilon.$$

(Indeed, if a > b then $\varepsilon = a - b$ obeys the conclusion.) The contrapositive of this statement is logically equivalent, but occasionally useful:

$$\boxed{ \left[\forall \varepsilon > 0, a < b + \varepsilon \right] \implies a \le b. }$$

It reveals that one way to prove the inequality " $a \le b$ " is to prove a that the relaxed inequality $a \le b + \varepsilon$ actually holds for every fixed number $\varepsilon > 0$.

B. Finite Dimensional Euclidean Spaces

For any $k \in \mathbb{N}$, we write \mathbb{R}^k for the set of ordered k-tuples

$$\mathbf{x} = (x_1, x_2, \dots, x_k), \quad x_i \in \mathbb{R}.$$

The standard operations on this set are vector addition

$$(x_1, x_2, \dots, x_k) + (y_1, y_2, \dots, y_k) = (x_1 + y_1, x_2 + y_2, \dots, x_k + y_k),$$

multiplication by real scalars

$$\alpha(x_1, x_2, \dots, x_k) = (\alpha x_1, \alpha x_2, \dots, \alpha x_k),$$

and the dot product:

$$(x_1, x_2, \dots, x_k) \bullet (y_1, y_2, \dots, y_k) = x_1 y_1 + x_2 y_2 + \dots + x_k y_k = \sum_{j=1}^k x_j y_j.$$

The dot product induces the "norm"

$$|\mathbf{x}| = \sqrt{\mathbf{x} \bullet \mathbf{x}} = \sqrt{\sum_{j=1}^{k} x_j^2},$$

which makes \mathbb{R}^k into **Euclidean** k-space. (This definition is fully compatible with the usual absolute value on $\mathbb{R} = \mathbb{R}^1$, since $|x| = \sqrt{x^2}$ holds for each real number x.) Key algebraic properties are listed in Theorem 1.37: highlights are

- (i) $|\mathbf{x}|^2 = \mathbf{x} \bullet \mathbf{x}$ (often useful in proofs),
- (ii) the Schwarz inequality

 $|\mathbf{x} \bullet \mathbf{y}| \leq |\mathbf{x}| |\mathbf{y}|$, with "=" iff $\alpha \mathbf{x} + \beta \mathbf{y} = 0$ for some real α, β not both zero,

(iii) the triangle inequalities

$$|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|, \qquad |\mathbf{x} - \mathbf{y}| \ge |\mathbf{x}| - |\mathbf{y}||.$$

Discussion. (i) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^k$ and $t \in \mathbb{R}$,

$$0 \le |\mathbf{x} - t\mathbf{y}|^2 = (\mathbf{x} - t\mathbf{y}) \bullet (\mathbf{x} - t\mathbf{y})$$
$$= \mathbf{x} \bullet \mathbf{x} - t\mathbf{y} \bullet \mathbf{x} - t\mathbf{x} \bullet \mathbf{y} + t^2\mathbf{y} \bullet \mathbf{y}$$
$$= |\mathbf{x}|^2 - 2t\mathbf{x} \bullet \mathbf{y} + t^2|\mathbf{y}|^2.$$

If $y \neq 0$, the right-hand side is a quadratic polynomial in t with at most one real root. Hence, its discriminant cannot be positive:

$$(-2\mathbf{x} \bullet \mathbf{y})^{2} - 4(|\mathbf{x}|^{2})(|\mathbf{y}|)^{2} \le 0,$$
$$|\mathbf{x} \bullet \mathbf{y}|^{2} \le (|\mathbf{x}| |\mathbf{y}|)^{2}.$$

Taking square roots of both sides gives the Schwarz inequality. (If y = 0, the inequality is obvious.)

(ii) In the calculation above, we may extract

$$|\mathbf{x} - t\mathbf{y}|^2 = |\mathbf{x}|^2 - 2t\mathbf{x} \cdot \mathbf{y} + t^2 |\mathbf{y}|^2$$
, i.e., $|\mathbf{x} - t\mathbf{y}|^2 - t^2 |\mathbf{y}|^2 = \mathbf{x} \cdot \mathbf{x} - 2t\mathbf{x} \cdot \mathbf{y}$.

Substituting c = -2t and gives

$$\mathbf{x} \bullet \mathbf{x} + c\mathbf{y} \bullet \mathbf{x} = \left| \mathbf{x} + \left(\frac{c}{2} \right) \mathbf{y} \right|^2 - \left(\frac{c}{2} \right)^2 |\mathbf{y}|^2.$$

This extends the algebraic idea of "completing the square" to scalar-valued quadratic functions with a vector variable \mathbf{x} .

(iii) The triangle inequality follows from the Schwarz inequality: for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^k$,

$$|\mathbf{x} + \mathbf{y}|^{2} = (\mathbf{x} + \mathbf{y}) \bullet (\mathbf{x} + \mathbf{y})$$

$$= |\mathbf{x}|^{2} + 2\mathbf{x} \bullet \mathbf{y} + |\mathbf{y}|^{2}$$

$$\leq |\mathbf{x}|^{2} + 2|\mathbf{x}| |\mathbf{y}| + |\mathbf{y}|^{2} \qquad \text{(by Schwarz, since } p \leq |p| \ \forall p \in \mathbb{R})$$

$$= (|\mathbf{x}| + |\mathbf{y}|)^{2}$$

$$= |\mathbf{x}| + |\mathbf{y}|^{2}.$$

Taking square roots of both sides gives the desired result. ////

This would be one great place to discuss order-completeness in some detail, but another great place comes up after a first look at limits. Please be patient.