
II. Numbers and Vectors
UBC M320 Lecture Notes by Philip D. Loewen

A. The Real Numbers
18 Sep 23

Näıve View–Our Plan for Now. Use R with =,<,| · |,+,−,×,÷, as always.

Serious View (Details Later). Work hard to construct from the axioms a set
R with special elements O and I, and a subset P ⊆ R (“positive elements”), and
mappings A:R×R → R (“add”), M :R×R → R (“multiply”), for which defining
the basic operations above in terms of

x+ y = A(x, y), x · y = M(x, y), x > O ⇔ x ∈ P

produces a consistent setup in which (i) all the familiar rules of arithmetic all work;
(ii) there is a subset Q of R that is in one-to-one correspondence with the set of
rational numbers (and the correspondence respects standard arithmetic); and (iii)
the extra properties of order-completeness and metric completeness also hold.

Discussion. The completeness properties are what make R so special. Any line
of reasoning that doesn’t use them explicitly looks the same as a line of reasoning
where all the numbers involved are rational. Many useful skills and arguments can
be developed in Q and then lifted to R with no significant change.

Theorem (Archimedes). In R, the set N has no upper bound. That is,

∀r ∈ R, ∃n ∈ N : n > r.

Proof. It’s obvious that N has no upper bound in Q. Verifying that this important
property remains valid in R requires the completeness property. Details later. ////

Corollaries. (a) For any fixed ε > 0, some n ∈ N obeys 1/n < ε.

(b) Whenever x, y ∈ R obey y − x > 1, we have (x, y) ∩ Z 6= ∅.
(c) For any a, b ∈ R with a < b, we have both (a, b) ∩Q 6= ∅ and (a, b) \Q 6= ∅.

Proof. (a) Apply Archimedes to r = 1/ε to produce n ∈ N s.t. n > 1/ε, i.e., 1/n < ε.

(b) Let S = {n ∈ Z : n ≥ y}. By Archimedes, S 6= ∅; by Fact 1, n̂ = min(S) exists.
Let’s show z = n̂− 1 ∈ (x, y):

(i) z < y: By definition of “min”, n̂ − 1 6∈ S. This means, by definition of S,
that z = n̂− 1 < y.

(ii) z > x: We know n̂ ∈ S. So, by the definition of S, n̂ ≥ y > x + 1. Thus
z = n̂− 1 > x.

(c) Given a < b, apply (a) to show that some n ∈ N obeys 1/n < b − a. Then
nb − na > 1, so (b) applies to x = na, y = nb. That is, there must exist some

m ∈ Z for which na < m < nb, or, a <
m

n
< b. Thus

m

n
∈ (a, b) ∩Q.
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Likewise, if a < b then
a√
2
<

b√
2
so some q ∈ Q obeys

a√
2
< q <

b√
2
. It follows

that q
√
2 ∈ (a, b) \Q.

Alternatively, the set (a, b) ∩Q must be countable (it’s an infinite subset of the
countable set Q), but the set (a, b) is uncountable (it’s in one-to-one correspon-
dence with the interval (0, 1)). It follows that (a, b) \ Q must be uncountable
too, which certainly implies that it is not empty. ////

Trichotomy. For every real number x, exactly one of the following is true:

x < 0, x = 0, x > 0.

By taking x = b− a, we deduce that whenever a, b ∈ R, exactly one of the following
is true:

a < b, a = b, a > b.

Now for any a, b ∈ R, it’s rather obvious that

a > b =⇒ ∃ε > 0 : a ≥ b+ ε.

(Indeed, if a > b then ε = a − b obeys the conclusion.) The contrapositive of this
statement is logically equivalent, but occasionally useful:

[
∀ε > 0, a < b+ ε

]
=⇒ a ≤ b.

It reveals that one way to prove the inequality “a ≤ b” is to prove a that the relaxed
inequality a ≤ b+ ε actually holds for every fixed number ε > 0.

B. Finite Dimensional Euclidean Spaces

For any k ∈ N, we write Rk for the set of ordered k-tuples

x = (x1, x2, . . . , xk) , xj ∈ R.

The standard operations on this set are vector addition

(x1, x2, . . . , xk) + (y1, y2, . . . , yk) = (x1 + y1, x2 + y2, . . . , xk + yk) ,

multiplication by real scalars

α (x1, x2, . . . , xk) = (αx1, αx2, . . . , αxk) ,

and the dot product:

(x1, x2, . . . , xk) • (y1, y2, . . . , yk) = x1y1 + x2y2 + . . .+ xkyk =
k∑

j=1

xjyj .
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The dot product induces the “norm”

|x| =
√
x • x =

√√√√
k∑

j=1

x2

j ,

which makes Rk into Euclidean k-space. (This definition is fully compatible with

the usual absolute value on R = R1, since |x| =
√
x2 holds for each real number x.)

Key algebraic properties are listed in Theorem 1.37: highlights are

(i) |x|2 = x • x (often useful in proofs),

(ii) the Schwarz inequality

|x • y| ≤ |x| |y|, with “=” iff αx+ βy = 0 for some real α, β not both zero,

(iii) the triangle inequalities

|x+ y| ≤ |x|+ |y|, |x− y| ≥
∣∣∣∣|x| − |y|

∣∣∣∣.

Discussion. (i) For any x,y ∈ Rk and t ∈ R,

0 ≤ |x− ty|2 = (x− ty) • (x− ty)

= x • x− ty • x− tx • y + t2y • y
= |x|2 − 2tx • y + t2|y|2.

If y 6= 0, the right-hand side is a quadratic polynomial in t with at most one
real root. Hence, its discriminant cannot be positive:

(− 2x • y)2 − 4
(
|x|2

)
(|y|)2 ≤ 0,

|x • y|2 ≤ (|x| |y|)2 .

Taking square roots of both sides gives the Schwarz inequality. (If y = 0, the
inequality is obvious.)

(ii) In the calculation above, we may extract

|x− ty|2 = |x|2−2tx•y+ t2|y|2, i.e., |x− ty|2− t2|y|2 = x•x−2tx•y.

Substituting c = −2t and gives

x • x+ cy • x =

∣∣∣∣x+

(
c

2

)
y

∣∣∣∣
2

−
(
c

2

)2

|y|2.

This extends the algebraic idea of “completing the square” to scalar-valued
quadratic functions with a vector variable x.
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(iii) The triangle inequality follows from the Schwarz inequality: for any x,y ∈ Rk,

|x+ y|2 = (x+ y) • (x+ y)

= |x|2 + 2x • y + |y|2

≤ |x|2 + 2|x| |y|+ |y|2 (by Schwarz, since p ≤ |p| ∀p ∈ R)

= (|x|+ |y|)2

=

∣∣∣∣|x|+ |y|
∣∣∣∣
2

.

Taking square roots of both sides gives the desired result. ////

This would be one great place to discuss order-completeness in some detail, but an-

other great place comes up after a first look at limits. Please be patient.

“02-numbers” ©c Philip D. Loewen, 19 September 2023, page 4. 2023-09-19, 21:11.


