II. Numbers and Vectors

UBC M320 Lecture Notes by Philip D. Loewen

A. The Real Numbers

Naïve View-Our Plan for Now. Use \mathbb{R} with $=,<,|\cdot|,+,-, \times, \div$, as always.
Serious View (Details Later). Work hard to construct from the axioms a set \mathcal{R} with special elements \mathbb{O} and \mathbb{I}, and a subset $\mathbb{P} \subseteq \mathcal{R}$ ("positive elements"), and mappings $A: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ ("add"), $M: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R}$ ("multiply"), for which defining the basic operations above in terms of

$$
x+y=A(x, y), \quad x \cdot y=M(x, y), \quad x>\mathbb{O} \Leftrightarrow x \in \mathbb{P}
$$

produces a consistent setup in which (i) all the familiar rules of arithmetic all work; (ii) there is a subset \mathcal{Q} of \mathcal{R} that is in one-to-one correspondence with the set of rational numbers (and the correspondence respects standard arithmetic); and (iii) the extra properties of order-completeness and metric completeness also hold.

Discussion. The completeness properties are what make \mathbb{R} so special. Any line of reasoning that doesn't use them explicitly looks the same as a line of reasoning where all the numbers involved are rational. Many useful skills and arguments can be developed in \mathbb{Q} and then lifted to \mathbb{R} with no significant change.

Theorem (Archimedes). In \mathbb{R}, the set \mathbb{N} has no upper bound. That is,

$$
\forall r \in \mathbb{R}, \exists n \in \mathbb{N}: n>r
$$

Proof. It's obvious that \mathbb{N} has no upper bound in \mathbb{Q}. Verifying that this important property remains valid in \mathbb{R} requires the completeness property. Details later. ////

Corollaries. (a) For any fixed $\varepsilon>0$, some $n \in \mathbb{N}$ obeys $1 / n<\varepsilon$.
(b) Whenever $x, y \in \mathbb{R}$ obey $y-x>1$, we have $(x, y) \cap \mathbb{Z} \neq \emptyset$.
(c) For any $a, b \in \mathbb{R}$ with $a<b$, we have both $(a, b) \cap \mathbb{Q} \neq \emptyset$ and $(a, b) \backslash \mathbb{Q} \neq \emptyset$.

Proof. (a) Apply Archimedes to $r=1 / \varepsilon$ to produce $n \in \mathbb{N}$ s.t. $n>1 / \varepsilon$, i.e., $1 / n<\varepsilon$.
(b) Let $S=\{n \in \mathbb{Z}: n \geq y\}$. By Archimedes, $S \neq \emptyset$; by Fact $1, \widehat{n}=\min (S)$ exists. Let's show $z=\widehat{n}-1 \in(x, y)$:
(i) $z<y$: By definition of "min", $\widehat{n}-1 \notin S$. This means, by definition of S, that $z=\widehat{n}-1<y$.
(ii) $z>x$: We know $\widehat{n} \in S$. So, by the definition of $S, \widehat{n} \geq y>x+1$. Thus $z=\widehat{n}-1>x$.
(c) Given $a<b$, apply (a) to show that some $n \in \mathbb{N}$ obeys $1 / n<b-a$. Then $n b-n a>1$, so (b) applies to $x=n a, y=n b$. That is, there must exist some $m \in \mathbb{Z}$ for which $n a<m<n b$, or, $a<\frac{m}{n}<b$. Thus $\frac{m}{n} \in(a, b) \cap \mathbb{Q}$.

Likewise, if $a<b$ then $\frac{a}{\sqrt{2}}<\frac{b}{\sqrt{2}}$ so some $q \in \mathbb{Q}$ obeys $\frac{a}{\sqrt{2}}<q<\frac{b}{\sqrt{2}}$. It follows that $q \sqrt{2} \in(a, b) \backslash \mathbb{Q}$.
Alternatively, the set $(a, b) \cap \mathbb{Q}$ must be countable (it's an infinite subset of the countable set \mathbb{Q}), but the set (a, b) is uncountable (it's in one-to-one correspondence with the interval $(0,1))$. It follows that $(a, b) \backslash \mathbb{Q}$ must be uncountable too, which certainly implies that it is not empty.

Trichotomy. For every real number x, exactly one of the following is true:

$$
x<0, \quad x=0, \quad x>0 .
$$

By taking $x=b-a$, we deduce that whenever $a, b \in \mathbb{R}$, exactly one of the following is true:

$$
a<b, \quad a=b, \quad a>b
$$

Now for any $a, b \in \mathbb{R}$, it's rather obvious that

$$
a>b \Longrightarrow \exists \varepsilon>0: a \geq b+\varepsilon .
$$

(Indeed, if $a>b$ then $\varepsilon=a-b$ obeys the conclusion.) The contrapositive of this statement is logically equivalent, but occasionally useful:

$$
[\forall \varepsilon>0, a<b+\varepsilon] \Longrightarrow a \leq b
$$

It reveals that one way to prove the inequality " $a \leq b$ " is to prove a that the relaxed inequality $a \leq b+\varepsilon$ actually holds for every fixed number $\varepsilon>0$.

B. Finite Dimensional Euclidean Spaces

For any $k \in \mathbb{N}$, we write \mathbb{R}^{k} for the set of ordered k-tuples

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right), \quad x_{j} \in \mathbb{R}
$$

The standard operations on this set are vector addition

$$
\left(x_{1}, x_{2}, \ldots, x_{k}\right)+\left(y_{1}, y_{2}, \ldots, y_{k}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{k}+y_{k}\right)
$$

multiplication by real scalars

$$
\alpha\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\left(\alpha x_{1}, \alpha x_{2}, \ldots, \alpha x_{k}\right),
$$

and the dot product:

$$
\left(x_{1}, x_{2}, \ldots, x_{k}\right) \bullet\left(y_{1}, y_{2}, \ldots, y_{k}\right)=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{k} y_{k}=\sum_{j=1}^{k} x_{j} y_{j}
$$

The dot product induces the "norm"

$$
|\mathbf{x}|=\sqrt{\mathbf{x} \bullet \mathbf{x}}=\sqrt{\sum_{j=1}^{k} x_{j}^{2}}
$$

which makes \mathbb{R}^{k} into Euclidean k-space. (This definition is fully compatible with the usual absolute value on $\mathbb{R}=\mathbb{R}^{1}$, since $|x|=\sqrt{x^{2}}$ holds for each real number x.) Key algebraic properties are listed in Theorem 1.37: highlights are
(i) $|\mathbf{x}|^{2}=\mathbf{x} \bullet \mathbf{x}$ (often useful in proofs),
(ii) the Schwarz inequality

$$
|\mathbf{x} \bullet \mathbf{y}| \leq|\mathbf{x}||\mathbf{y}|, \quad \text { with "=" iff } \alpha \mathbf{x}+\beta \mathbf{y}=0 \text { for some real } \alpha, \beta \text { not both zero, }
$$

(iii) the triangle inequalities

$$
|\mathbf{x}+\mathbf{y}| \leq|\mathbf{x}|+|\mathbf{y}|, \quad|\mathbf{x}-\mathbf{y}| \geq||\mathbf{x}|-|\mathbf{y}||
$$

Discussion. (i) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{k}$ and $t \in \mathbb{R}$,

$$
\begin{aligned}
0 \leq|\mathbf{x}-t \mathbf{y}|^{2} & =(\mathbf{x}-t \mathbf{y}) \bullet(\mathbf{x}-t \mathbf{y}) \\
& =\mathbf{x} \bullet \mathbf{x}-t \mathbf{y} \bullet \mathbf{x}-t \mathbf{x} \bullet \mathbf{y}+t^{2} \mathbf{y} \bullet \mathbf{y} \\
& =|\mathbf{x}|^{2}-2 t \mathbf{x} \bullet \mathbf{y}+t^{2}|\mathbf{y}|^{2}
\end{aligned}
$$

If $\mathbf{y} \neq \mathbf{0}$, the right-hand side is a quadratic polynomial in t with at most one real root. Hence, its discriminant cannot be positive:

$$
\begin{gathered}
(-2 \mathbf{x} \bullet \mathbf{y})^{2}-4\left(|\mathbf{x}|^{2}\right)(|\mathbf{y}|)^{2} \leq 0 \\
|\mathbf{x} \bullet \mathbf{y}|^{2} \leq(|\mathbf{x}||\mathbf{y}|)^{2}
\end{gathered}
$$

Taking square roots of both sides gives the Schwarz inequality. (If $\mathbf{y}=\mathbf{0}$, the inequality is obvious.)
(ii) In the calculation above, we may extract

$$
|\mathbf{x}-t \mathbf{y}|^{2}=|\mathbf{x}|^{2}-2 t \mathbf{x} \bullet \mathbf{y}+t^{2}|\mathbf{y}|^{2}, \quad \text { i.e., } \quad|\mathbf{x}-t \mathbf{y}|^{2}-t^{2}|\mathbf{y}|^{2}=\mathbf{x} \bullet \mathbf{x}-2 t \mathbf{x} \bullet \mathbf{y} .
$$

Substituting $c=-2 t$ and gives

$$
\mathbf{x} \bullet \mathbf{x}+c \mathbf{y} \bullet \mathbf{x}=\left|\mathbf{x}+\left(\frac{c}{2}\right) \mathbf{y}\right|^{2}-\left(\frac{c}{2}\right)^{2}|\mathbf{y}|^{2}
$$

This extends the algebraic idea of "completing the square" to scalar-valued quadratic functions with a vector variable \mathbf{x}.
(iii) The triangle inequality follows from the Schwarz inequality: for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{k}$,

Taking square roots of both sides gives the desired result.

This would be one great place to discuss order-completeness in some detail, but another great place comes up after a first look at limits. Please be patient.

