
IV. Order Completeness
UBC M320 Lecture Notes by Philip D. Loewen 03 Oct 2025

A. Supremum and Infimum

Given any nonempty set S ⊆ R, consider

A = {a ∈ R : ∀s ∈ S, a ≤ s} .
If A 6= ∅, we say that the set S is bounded below , and we call each a ∈ A a lower

bound for S. When A = ∅, we say that A has no lower bound.

Symmetric terminology applies to

B = {b ∈ R : ∀s ∈ S, s ≤ b} .
To say S is bounded above means B 6= ∅; in this case, each b ∈ B is an upper bound

for S.

Theorem (Order Completeness). In the context above,

(a) either A = ∅ or there exists α ∈ R such that A = (−∞, α], and

(b) either B = ∅ or there exists β ∈ R such that B = [β,+∞).

When A 6= ∅, we denote α = inf(S); when B 6= ∅, we denote β = sup(S).

Proof. (b) Up to a change in the letters involved, this property of R was the highlight
of our construction.

(a) Similar, with supporting discussion later. ////

Discussion/Notation. The whole point of constructing R was to have confidence
in the existence of the quantities α and β above as actual numbers . We call α the
greatest lower bound or infimum of S, and write α = inf(S); likewise, β is called
the least upper bound or supremum of S, written β = sup(S). These are robust
alternatives to the more fragile notions of “minimum” and “maximum” respectively.

Supremum vs Maximum. The generic notation max(S) refers to the element ŝ of

the set S (if any) that obeys ŝ ≥ s for all s ∈ S. For many sets S ⊆ R, like S = (0, 1),
no such element exists. In the notation above, S = (0, 1) gives A = (−∞, 0] and
B = [1,+∞), so inf(S) = 0 and sup(S) = 1. Thus the infimum and supremum
provide conceptually robust replacements for the more fragile ideas of minimum and
maximum.

An equivalent and more often-seen characterization of β = sup(S) has 2 parts
that give structure to typical proofs involving this concept:

(i) ∀x ∈ S, x ≤ β
(i.e., β is an upper bound for S); and

(ii) ∀γ < β, ∃x ∈ S : γ < x
(i.e., every γ less than β is too small to be an upper bound for S—which
makes β the least upper bound).
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Extended Notation. In the setup above, there are only 3 possibilities for the set
of upper bounds for S, namely,

B = {b ∈ R : ∀s ∈ S, s ≤ b} .

• B = ∅ when the given set S has no upper bound;

• B = [β,+∞) when the given set S is nonempty and bounded above; and

• B = (−∞,+∞) when S = ∅.
The middle scenario is the big one: it characterizes β = sup(S). A common-sense
extension to cover the other cases would be to use the symbols −∞ and +∞ (not
real numbers!!) as follows:

supS = +∞ ⇔ the set S has no upper bound,

supS = −∞ ⇔ S = ∅.
Of course symmetry then requires

inf S = +∞ ⇔ S = ∅,
inf S = −∞ ⇔ the set S has no lower bound,

This scheme gives a “value” (either numeric or symbolic) to the supremum and
infimum for any set S ⊆ R. Further, “inf S = − sup(−S)” holds in this extended
interpretation. Let’s check that the two-part characterization of β = sup(S) offered
above is compatible with the extended interpretation.

• Case β = −∞ arises only when S = ∅. In this case assertion (i) is valid because
there are no elements x in S to falsify the strange-looking condition x ≤ −∞.
And assertion (ii) is not wrong because there are no values γ < −∞ for which
one must find an element x in S.

• Case β = +∞ trivializes test (i), but reduces line (ii) to the assertion that for
every γ in R, some element x ∈ S has x > γ. Indeed this is equivalent to saying
that S has no upper bound.

This extension has some fine points: a set S for which sup(S) = +∞ has no
upper bound, so the phrase “least upper bound” no longer provides a perfectly accu-
rate synonym for “supremum”. (It’s still a helpful mnemonic for structuring proofs,
however.)

We also extend the definitions of sup(S) and inf(S) to cover sets S in the ex-
tended real line R ∪ {±∞}. (See Rudin 1.23, p. 11.) This adds some nuance to the
simple situations above: now the statement that sup(S) = −∞ implies only that
S ⊆ {−∞}. (Given the extra information that S ⊆ R, we would deduce S = ∅, as
before.)

Low-Hanging Fruit.

• For any set S 6= ∅, inf(S) ≤ sup(S). (Indeed, any s ∈ S obeys both inf(S) ≤ s
and s ≤ sup(S). Chain these together.)
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• inf(∅) = +∞ and sup(∅) = −∞ reverses the usual inequality most spectacularly.

• inf(S) = sup(S) if and only if S is a single-element set; that element equals both
inf(S) and sup(S).

• Whenever U, V ⊆ R,

U ⊆ V =⇒ inf(V ) ≤ inf(U) and sup(U) ≤ sup(V ).

This is obvious: inf(V ) is a lower bound for V , so set inclusion makes it a
lower bound for the subset U . And inf(U) is the greatest lower bound for U ,
so inf(U) ≥ inf(V ). Etc. But note that the converse is most certainly false: let
U =

{
−1

2
, 1
2

}
and V = {−1, 1} to see a situation where inf(V ) < inf(U) and

sup(U) < sup(V ), but U 6⊆ V .

B. Lim Sup and Lim Inf

Definition. Let (xn) be a real sequence. We define the limit superior (or upper
limit) and limit inferior (or lower limit) as

lim sup
n→∞

xn = inf
n∈N

[
sup
k≥n

xk

]
, lim inf

n→∞
xn = sup

n∈N

[
inf
k≥n

xk

]
.

To expand the notation above, define for each n the extended values

sn = sup {xk : k ≥ n} = sup {xn, xn+1, . . .} ,
in = inf {xk : k ≥ n} = inf {xn, xn+1, . . .} .

The definitions mean

lim sup
n→∞

xn = inf {sn : n ∈ N} , lim inf
n→∞

xn = sup {in : n ∈ N} .

Both quantities exist, with values in R ∪ {±∞}, for absolutely any given sequence.

Example. Discuss in detail: (a) xn = 1/n, (b) xn = (−1)n + 1/n, (c) xn = n.

06 Oct 2025

Given any term-by-term inequality between two sequences, it’s safe to “take the
lim sup of both sides”: the inequality will be preserved. That’s the point of the next
result.

Lemma. For any sequences (xn) and (yn) in R ∪ {±∞} such that xn ≤ yn for all

n, one has

lim inf
n→∞

xn ≤ lim inf
n→∞

yn and lim sup
n→∞

xn ≤ lim sup
n→∞

yn.

Proof. For each n ∈ N, define

Tn(x) = {xn, xn+1, xn+2, . . .} ,
in(x) = inf Tn(x) = inf {xn, xn+1, xn+2, . . .} ,
sn(x) = sup Tn(x) = sup {xn, xn+1, xn+2, . . .} ,
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with similar notation for Tn(y), in(y), sn(y). Observe that for each n, one has
in(x) ≤ in(y). [Reason: Being a lower bound makes in(x) ≤ t for each t ∈ Tn(x).
The relationship between the given sequences makes in(x) ≤ t′ for each t′ ∈ Tn(y).
Among lower bounds for Tn(y), the greatest is in(y), so in(x) ≤ in(y).] Inserting the
second inequality below gives

∀n ∈ N, in(x) ≤ in(y) ≤ sup
p

ip(y) = sup
p

[
inf
k≥p

yk

]
= lim inf

p→∞
yp.

This shows that the quantity on the right dominates each element of the set {in(x) : n ∈ N}.
Since the supremum is the least upper bound,

lim inf
n→∞

xn = sup
n

in(x) ≤ lim inf
p→∞

yp.

A very similar line of reasoning, starting with sn(x) ≤ sn(y) for each n, leads to
the similar conclusion

lim sup
n→∞

xn = inf
n

sn(x) ≤ inf
n

sn(y) = lim sup
n→∞

yn. ////

Caution. Limiting operations respect non-strict inequalities, but not strict ones.
Look at xn = 1/n. Clearly xn > 0 for each n, yet lim supn xn = 0 = lim infn xn.
When using this idea, one must to downgrade the inequality to non-strict.

The English phrases “lower limit” and “upper limit” are reasonable synonyms
for “lim inf” and “lim sup”, as shown next. Moreover, these complementary concepts
completely capture our ordinary (and extended) concepts of limits.

Proposition. Let (xn) be a sequence with values in R ∪ {±∞}. Then
(a) lim inf

n→∞
xn ≤ lim sup

n→∞

xn, and

(b) for any L ∈ R∪{±∞}, one has xn → L if and only if lim sup
n→∞

xn = L = lim inf
n→∞

xn.

Proof. For each n ∈ N, define the tail set

Tn = {xn, xn+1, xn+2, . . .} ,

and let
in = inf Tn = inf

k≥n

xk, sn = sup Tn = sup
k≥n

xk.

Observe that for each n,

in ≤ sn, in ≤ in+1, sn ≥ sn+1.

(a) For any pair m,n ∈ N, pick any integer N > max {m,n} and combine the three
observations above:

im ≤ im+1 ≤ · · · ≤ iN ≤ sN ≤ · · · ≤ sn+1 ≤ sn.
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IV. Order Completeness 5

This establishes the inequality im ≤ sn for all m,n ∈ N. For fixed n, this shows
that sn is an upper bound for the set {im : m ∈ N}, so sn must dominate the
set’s least upper bound (which we recognize):

sn ≥ sup
m

im = lim inf
m

xm.

Since this holds for each n, the value on the right is a lower bound for the set
{sn : n ∈ N}. Therefore it cannot exceed that set’s greatest lower bound (which
we recognize):

lim inf
m

xm ≤ inf
n

sn = lim sup
n

xn.

08 Oct 2025

(b) (⇒) Suppose xn → L, with L ∈ R ∪ {+∞}. For any real γ < L, the definition
provides some N ∈ N such that

γ < xn, ∀n > N.

That is, γ is a lower bound for the set TN+1, and this forces

γ ≤ iN+1 ≤ sup
n

in = lim inf
n→∞

xn.

Since this holds for all γ < L, we have L ≤ lim inf
n→∞

xn; in conjunction with

part (a), we have

L ≤ lim inf
n→∞

xn ≤ lim sup
n→∞

xn, for L ∈ R ∪ {+∞} . (†)

Similarly, suppose xn → L with L ∈ R ∪ {−∞}. For any real λ > L, the
definition provides some N ∈ N such that

xn < λ, ∀n > N.

This implies that λ is an upper bound for the set TN+1, and therefore

λ ≥ sN+1 ≥ inf
n

sn = lim sup
n→∞

xn.

Since this holds for all λ > L, we must have L ≥ lim sup
n→∞

xn. Recalling part (a),

we have
L ≥ lim sup

n→∞

xn ≥ lim inf
n→∞

xn, for L ∈ R ∪ {−∞} . (‡)

Now consider the possibilities: if L ∈ R, then both (†) and (‡) apply and the
equations in (b) follow. If L = −∞, then line (‡) is enough to confirm (b), and
if L = +∞, then (b) follows from (†).
(⇐) Consider first the case where L ∈ R ∪ {+∞}. Since L = supn in, for any
γ < L there must exist some N1 such that iN1

> γ. In short

L > −∞ =⇒ ∀γ < L, ∃N1 ∈ N : ∀n ≥ N1, xn > γ. (∗)
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On the other hand, suppose L ∈ R ∪ {−∞}. Since L = infn sn, for any λ > L
there must exist some N2 such that sN2

< λ. Put succinctly,

L < +∞ =⇒ ∀λ > L, ∃N2 ∈ N : ∀n ≥ N2, xn < λ. (∗∗)
Now consider the possibilities: If L = +∞, then line (∗) shows that xn → +∞,
and if L = −∞ then line (∗∗) shows that xn → −∞. If L ∈ R, then both
lines apply. Given any ε > 0, choose γ = L − ε in (∗) to get an integer N1 and
choose λ = L+ε in (∗∗) to get an integer N2, and chain together the guaranteed
inequalities:

∀n > N
def
= max {N1, N2} , L− ε < xn < L+ ε.

This confirms the definition of xn → L. ////

C. Cauchy Sequences

Theorem. Every Cauchy sequence in R converges.

Proof. Let (xn) be a Cauchy sequence with real values. As usual, define the tail sets

Tn = {xn, xn+1, xn+2, . . . , xn+p, . . .} , n ∈ N,

and let in = inf(Tn), sn = sup(Tn).

Every Cauchy sequence is bounded, so there must exist some M > 0 such that

∀n ∈ N, −M ≤ xn ≤ M.

Consequently
−M ≤ lim inf

n→∞
xn ≤ lim sup

n→∞

xn ≤ M. (∗)

Let ε > 0 be given. Use the Cauchy property to produce some N ∈ N such that

∀n ≥ N, ∀p ∈ N, |xn+p − xn| < ε.

In particular, whenever n ≥ N we have xn − ε < xn+p < xn + ε for all p ∈ N, so

xn − ε ≤ in ≤ sn ≤ xn + ε.

It follows that sn − in ≤ (xn + ε)− (xn − ε) = 2ε. Thus we have

∀n ≥ N, sn ≤ 2ε+ in.

Pick any specific n ≥ N and extend the above as usual:

inf {sk : k ∈ N} ≤ sn ≤ 2ε+ in ≤ 2ε+ sup {ik : k ∈ N} .
Recall the definitions: the inequality above implies

lim sup
k→∞

xk ≤ 2ε+ lim inf
k→∞

xk.

All these quantities are finite, and this works for arbitrary ε > 0, so indeed

lim sup
k→∞

xk ≤ lim inf
k→∞

xk.

In conjunction with line (∗) above, we get lim sup
k→∞

xk = lim inf
k→∞

xk. ////
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D. Monotone Sequences

Theorem (Monotone Convergence Property). For any real-valued sequence

(xn) such that

x1 ≤ x2 ≤ x3 ≤ · · · ,
exactly one of the following holds:

(a) xn → +∞ as n → ∞;

(b) xn converges.

Indeed, xn → β as n → ∞, where β = sup {xk : k ∈ N}.

Terminology. The condition in (a) characterizes a nondecreasing or weakly increas-

ing sequence; a chain of strict inequalities would be required to qualify for the term
increasing. Reversing all the inequalities defines the terms nonincreasing , weakly

decreasing , or (when strict) decreasing. The term monotone or monotonic means
nonincreasing or nondecreasing.

Proof. Let β = sup {xk : k ∈ N}. Clearly β ≥ x1 > −∞.

If β = +∞, then conclusion (a) holds. [Indeed, pick any real γ. Then γ < β,
so some sequence entry xN must exceed γ. Then by monotonicity, for all n ≥ N we
have xn ≥ xN > γ. This confirms the definition of xn → +∞.]

If β ∈ R, let ε > 0 be given. Then γ = β − ε < β, so the definition of sup gives
some N ∈ N such that xN > γ = β − ε. For every n > N , monotonicity gives

xn ≥ xN > β − ε.

But of course we have xn ≤ β for each n, so that

∀n > N, β − ε < xn ≤ β, i.e., − ε < xn − β ≤ 0 < ε. ////

Corollary. For any real-valued sequence (xn) with

x1 ≥ x2 ≥ x3 ≥ · · · ,

exactly one of the following holds:

(a) xn → −∞ as n → ∞;

(b) xn converges.

Indeed, xn → α as n → ∞, where α = inf {xk : k ∈ N}.

Proof. Invent yn = −xn and apply the previous theorem to the sequence (yn). ////
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Discussion. For any bounded real-valued sequence (xn) with the usual notation for
the tail sets Tn and extended values in, sn, we always have

in ≤ in+1, in ≤ sn, sn+1 ≤ sn.

So the sequence of numbers (in) is nondecreasing, and the result above shows that it
approaches its supremum: in the extended-valued interpretation

lim
n→∞

in = sup {in : n ∈ N} = lim inf
n→∞

xn.

Similarly, the sequence (sn) is nonincreasing, and we have

lim
n→∞

sn = inf {sn : n ∈ N} = lim sup
n→∞

xn.

So another phrasing for “lim sup” could be “the limit of the tail sups”. In particular,
although the definitions make this non-obvious, the values of lim inf xn and lim supxn

are unaffected by changing any finite number of terms in the given sequence (xn).

Example. Some iterative process defines a sequence. Prove that it converges.

Solution. Use induction to prove that the sequence is monotonic and bounded, then
apply the theorem.

Example. Recursively define an+1 =
√
2an + 3, a1 = 4. Prove that the sequence

(an) converges and find its limit.

Solution. Clearly all sequence elements are positive, and satisfy

a2n+1 = 2an + 3.

If the sequence converges to some number â, the limit laws imply that the sequences
on both sides of this identity converge, with

â2 = 2â+ 3, i.e., 0 = â2 − 2â− 3 = (â− 3)(â+ 1).

So either â = −1 or â = 3, but positivity of the sequence entries forces â = 3. Having
a candidate for the limit we seek informs our approach. Since a1 = 4 > 3 = â, we
try to show

∀n ∈ N, 3 < an+1 < an. (∗)
Prove this by induction.

Case n = 1: a2 =
√
11 by substitution; clearly a2 < 4 = a1 and a2 > 3.

Induction step: If 3 < an+1 < an holds for some fixed n, consider

an+2 =
√

2an+1 + 3.

Using the known inequality gives

3 =
√

2(3) + 3 <
√

2an+1 + 3 <
√
2an + 3 = an+1,

so we deduce 3 < an+2 < an+1.

By induction (∗) holds; by the theorem on monotone convergence, the sequence (an)
converges; by the calculation above, the limit value must be â = 3.
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E. Subsequences

These allow another description of lim sup and lim inf. Please read Rudin’s
presentation in items 3.5, 3.15–3.20.

Definition. (Subsequence) Let x:N → X be a sequence with values in some set X .
A sequence y:N → X is a subsequence of (xn) if y(k) = x(n(k)) for some increasing
function (sequence) n:N → N, i.e.,

yk = xnk
, where 1 ≤ n1 < n2 < n3 < . . . .

Alternative. Every subsequence corresponds to an infinite subset S of N. It’s possi-
ble to imagine notation that avoids putting subscripts on subscripts by subscripting
the arrow in “n → ∞” instead, so that we could write

xnk
→ L as k → ∞ ⇐⇒ xn → L as n−→

S
∞.

For L ∈ R, the notation on the right would mean

∀ε > 0, ∃N ∈ N : ∀n > N (n ∈ S), |xn − L| < ε.

To get back to more standard notation, we would define indices n1, n2, . . . by enu-
merating S in increasing order. This is a lovely idea, that captures the essence of
subsequences, but let’s stick closer to the notation standardized by Rudin for a little
while longer.

Example. Subsequences of xn = n include

(1, 3, 5, 7, . . .), (2, 4, 6, 8, . . .), (2, 3, 5, 8, 13, 21, . . .), even (xn) itself,

but not (3, 1, 4, 1, 5, 9, . . .) [order permuted and elements re-used].

Proposition. Let (xn)n be a sequence in R. TFAE:

(a) (xn) converges.

(b) Every subsequence of (xn) converges.

Proof. (a⇒b) Obvious.

(b⇒a) [Contraposition] If (xn) does not converge, let nk = k: then the subse-
quence (xnk

)k = (xk)k also fails to converge. ////

Proposition. Let (xn) be a real sequence; define µ = lim inf
n→∞

xn, M = lim sup
n→∞

xn.

(a) If ℓ = limk xnk
for some subsequence (xnk

)k, then µ ≤ ℓ ≤ M .

(b) There exist subsequences
(
xnj

)
j
and (xnk

)k obeying xnj
→ µ and xnk

→ M .
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(Note: values ±∞ allowed for µ, ℓ, M throughout.)

Proof. For each n ∈ N, define

Tn = {xn, xn+1, xn+2, . . .} , in = inf Tn = inf
k≥n

xk, sn = sup Tn = sup
k≥n

xk.

(a) For each k ∈ N, xnk
≥ inf {xj : j ≥ nk} = ink

. As k → ∞, we have xnk
→ ℓ

and ink
→ µ: hence ℓ ≥ µ. Similarly, xnk

≤ snk
∀k, so ℓ ≤ M .

(b) Let’s build (xnk
)k with xnk

−→
k
M . (Similar arguments work for µ.)

Case 1: M = +∞. Here infn sn = +∞, so sn = +∞ for all n. Pick n1 = 1.
Now sn1

= +∞ means that Tn1
= {xk : k ≥ 1} has no upper bound. So pick

n2 ≥ n1 such that xn2
> 2. Take care to choose n2 > n1. After choosing

n1 < . . . < nk, note that snk
= +∞, so there must exist some nk+1 > nk such

that xnk+1
> k+ 1. By induction, this defines a whole subsequence along which

xnk
> k for each k ∈ N. Clearly xnk

→ +∞ as k → ∞.

Case 2: M ∈ R. Pick n1 = 1. For each k ≥ 2, define rk = M−1/k and Rk = M+1/k
and apply this two-step reasoning:

(i) Since Rk > M = infn sn, some Nk must obey Rk > sNk
. In particular,

Rk > xn for all n ≥ Nk. Define N̂k = 1 +max {Nk, n1, . . . , nk−1}.
(ii) Since rk < M = infn sn, we certainly have rk < s

1+N̂k
. Hence there exists

nk > N̂k such that xnk
> rk. Since nk > Nk also, it is eligible for the

inequality in (i). Thus

M − 1

k
= rk < xnk

< Rk = M +
1

k
.

This construction works for all k: it guarantees both nk < nk+1 for all k and
(by the Squeeze Theorem) xnk

→ M as k → ∞.

Case 3: M = −∞. Exercise. [We always have µ ≤ M . So M = −∞ forces µ = −∞,
i.e., M = µ. This is equivalent to xn → −∞ by some earlier result. The original
sequence is a subsequence of itself.] ////

F. Proof Tips

Many homework problems request a proof that xn → L for some given sequence
(xn) and extended real value L. This amounts to proving the inequalities

L ≤ lim inf
n→∞

xn ≤ lim sup
n→∞

xn ≤ L. (∗)

(The middle inequality always holds; the outer ones might be “interesting”.)

Let’s discuss the case of (∗) in which L is a real number. One way to prove it
starts by wrapping the number L in an arbitrary open interval (α, β). That is, we
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invent symbols α and β for which α < L < β is all we know. We treat these new
elements as constants at first. That gives us access to positive numbers ε1 = L − α
and ε2 = β −L that can provide the margins or tolerances that are so typical in our
definitions. We put these to work, trying to establish the following relaxed version
of the chain of inequalities in (∗):

α ≤ lim inf
n→∞

xn ≤ lim sup
n→∞

xn ≤ β. (†)

If we can get (†) for arbitrary choices of α and β as above, then we can easily
harvest (∗). Just imagine inventing sequences αk = L− 1/k and βk + 1/k and using
those in (†) to get

∀k ∈ N, L− 1

k
≤ lim inf

n→∞
xn ≤ lim sup

n→∞

xn ≤ L+
1

k
.

In the limit as k → ∞, the numbers sandwiched in the middle don’t depend on k,
and the other (non-strict) inequalities are respected by the limiting operation, so (∗)
is the result. (This is essentially the Squeeze Theorem discussed previously.)

Having seen this idea once, it gets tedious to repeat the story about the sequences
αk and βk every single time. We can just show the inequalities in (†) and say, “Since
this holds for arbitrary α < L and β > L, we can now let α → L− and β → L+ to
obtain (∗).”

The approach above admits natural adaptations to handle proofs in which the
desired values are L = −∞ or L = +∞, or in which there is only one inequality to
prove.
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