
V. Series in R

UBC M320 Lecture Notes by Philip D. Loewen

A. Basic Definitions 15 Oct 2025

Given a sequence a1, a2, . . . in R, the corresponding series is another sequence
s1, s2, . . ., defined by building partial sums:

sN =

N
∑

n=1

an = a1 + a2 + · · ·+ aN ∀N ∈ N.

We are interested in the convergence properties of this new sequence, i.e., in

S = lim
N→∞

sN = lim
N→∞

N
∑

n=1

an. Notation: S =

∞
∑

n=1

an.

The series converges when S has a value in R, and diverges otherwise. For some
divergent series the extended values −∞ and +∞ may be appropriate.

Our main question: does S converge? (Other courses [Applied math/numerical
analysis] deal with, “Calculate the limit”.) To decide convergence, the first few
million terms are irrelevant, so we sometimes adopt the lazy notation S =

∑

n an.
All convergence tests adapt accordingly.

Lemma. If S =

∞
∑

n=1

an converges, then lim
k→∞

∞
∑

n=k

an = 0.

Proof. Fix any k and split the sum:

∀N ≥ k,
N
∑

n=1

an =
k−1
∑

n=1

an +
N
∑

n=k

an.

Send N → ∞. The first two sequences converge, so the third one does too: we get

S =
k−1
∑

n=1

an + τk, where τk =
∞
∑

n=k

an.

This holds for each k ∈ N. As k → ∞, the first two sequences converge, so the third
one does too: this time,

S = S + lim
k→∞

τk,

which gives τk → 0, as required. ////

We know two ways of proving a limit exists without knowing its value in advance.
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2 PHILIP D. LOEWEN

Theorem (Monotone Convergence Criterion). If an ≥ 0 for all n, then the
series S =

∑

n an converges if and only if the sequence of partial sums is bounded.

Proof. Since sn+1 − sn = an ≥ 0 for all n, the partial sums form a nondecreasing
sequence. We have dealt with these earlier. ////

Theorem (Cauchy’s Convergence Criterion). The series S =
∑

n an converges
if and only if for every ε > 0 there exists N ∈ N such that

∀m ≥ N, ∀p ≥ 0, |am + am+1 + · · ·+ am+p| < ε.

Proof. Apply Cauchy’s criterion to the sequence of partial sums: note that

|sm+p − sm−1| = |(a1 + · · ·+ am+1 + am + · · ·+ am+p)− (a1 + · · ·+ am−1)|
= |am + am+1 + · · ·+ am+p|.

Cauchy’s criterion says the sequence (sn) converges if and only if this quantity can
be made small (regardless of p) by choosing m sufficiently large. ////

Thm (Crude Divergence Test). If “lim
n

an = 0” is false, then
∑

n an diverges.

Proof. [Contraposition] Suppose
∑

n an converges. Given any ε > 0, Cauchy (above)
supplies N ∈ N such that (taking p = 0)

each m > N obeys |am| < ε.

Since ε > 0 is arbitrary, this shows limn an = 0. ////

Theorem (Comparison Test). Suppose 0 ≤ |an| ≤ bn for all n. Then . . .

(a) If
∑

n bn converges, then
∑

n an converges.

(b) If
∑

n |an| = +∞, then
∑

n bn = +∞.

Proof. (a) Apply the Cauchy criterion.

(b) The partial sums sN =
∑N

n=1 |an| form an unbounded sequence by hypothesis,

and the partial sums tN =
∑N

n=1 bn are even bigger. ////

Corollary. If
∑

n |an| < +∞, then
∑

n an converges. In words, “Absolute Conver-
gence implies Convergence.”

Proof. Use bn = |an| above. ////

Example (Harmonic Series).
∑

n

1

n
diverges to +∞. (However,

1

n
→ 0.)

Proof. The negation of Cauchy’s criterion is

¬ (∀ε > 0, ∃N ∈ N : ∀m ≥ N, ∀p ≥ 0, |am + am+1 + · · ·+ am+p| < ε)

i.e., ∃ε > 0 : ∀N ∈ N, ∃m ≥ N, p ∈ N : |am + am+1 + · · ·+ am+p| ≥ ε.
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V. Series in R 3

This holds with ε = 1/2. Indeed, for any N ∈ N, pick m = N and p = N : then

am + · · ·+ am+p =
1

N
+

1

N + 1
+

1

N + 2
+ · · ·+ 1

N +N

≥ 1

2N
+

1

2N
+

1

2N
+ · · ·+ 1

2N
= (N + 1)×

(

1

2N

)

>
1

2
.

This is interesting because the series diverges, but the crude divergence criterion
above is not sharp enough to detect this. Informally, this is because series diverges
rather slowly. A quick sketch and an informal integral show that

∑N
n=1

1
n < 1 +

log(N), so to get a partial sum of 200 or more requires at least N = e200 terms.
That’s more than 1086. Reputable online sources use 1082 as a generous estimate of
the number of atoms in the known universe. ////

Example (Geometric Series). For a fixed real number r, consider S =
∞
∑

n=0

rn.

(Use r0 = 1 for all r.)

(a) If |r| < 1, S converges: S =
1

1− r
.

(b) If |r| ≥ 1, S diverges.

Proof. For any N ,
sN = 1 + r + r2 + . . .+ rN .

If r ≥ 1, sN ≥ N + 1 diverges to +∞ as N → ∞. (“S = +∞.”)
If r 6= 1, then

sN =
1− rN+1

1− r
∀N ≥ 0.

If |r| < 1, then sending N → ∞ gives

S = lim
N→∞

sN =
1

1− r
.

If r ≤ −1, the sequence (sN ) diverges by the Crude Divergence Test below. ////

Remark. In different words, consider f(x) =
∞
∑

n=0

xn. Then the domain of f is (−1, 1),

and f(x) =
1

1− x
on that set. Geometric series foreshadow general power series.
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20 Oct 2025

Example (Telescoping Series). For any N ≥ 2,

N
∑

n=1

2

4n2 − 1
= 1− 1

2N − 1
.

Consequently
∞
∑

n=1

2

4n2 − 1
= lim

N→∞

(

1− 1

2N − 1

)

= 1.

Proof. This starts with the partial-fractions style identity

1

2n− 1
− 1

2n+ 1
=

(2n+ 1)− (2n− 1)

(2n)2 − (1)2
=

2

4n2 − 1
.

The similarity in successive terms is key to massive cancellation (“telescoping”):

N
∑

n=1

2

4n2 − 1
=

N
∑

n=1

(

1

2n− 1
− 1

2n+ 1

)

=

(

1

1
− 1

3

)

+

(

1

3
− 1

5

)

+

(

1

5
− 1

7

)

+ . . .+

(

1

2N − 1
− 1

2N + 1

)

=
1

1
− 1

2N + 1
.

Dangerous Nonsense. We know

1 =

∞
∑

n=1

2

4n2 − 1
=

∞
∑

n=1

(

1

2n− 1
− 1

2n+ 1

)

.

This does not split to give

1 =
∞
∑

n=1

1

2n− 1
−

∞
∑

n=1

1

2n+ 1
.

Indeed, by comparison, both series on the right diverge to +∞, and the expression
∞−∞ is undefined.

Example.
∑

sin

(

100

n

)

diverges, because sin θ ≥ 2θ/π for θ ∈ [0, π/2] and the

harmonic series diverges.

Theorem (Root Test). Consider S =
∑

n an. Define α = lim supn |an|1/n.
(a) If α < 1, S converges absolutely.
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V. Series in R 5

(b) If α > 1, S diverges.

Proof. (a) Choose any r ∈ (α, 1). Since r > α, there exists N ∈ N so large that

∀n ≥ N, |an|1/n < r, i.e., |an| < rn.

Hence
∑

∞

n=N |an| converges by comparison with the geometric series
∑

∞

n=N rn.

(b) Suppose α > 1. Choose R ∈ (1, α). Since R < α, there is a subsequence (ank
)k

of (an) satisfying |ank
| ≥ R > 1 for all k. Clearly ank

6→ 0, so “limn an = 0” is
false: divergence follows from the Crude Test. ////

Remark. When applying the Root Test, it’s useful to know (Rudin, Thm. 3.20) that

∀x > 0, lim
n→∞

x1/n = 1, and lim
n→∞

n1/n = 1.

Theorem (Ratio Test). Consider S =
∑

n an, where all an 6= 0.

(a) If α
def
= lim sup

n

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< 1, then S converges absolutely.

(b) If α
def
= lim inf

n

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

> 1, then S diverges.

Proof. (a) Choose r ∈ (α, 1). Since r > α, there exists N ∈ N so large that

∀n ≥ N,

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< r, i.e., |an+1| < r|an|.

It follows that |aN+k| < rk|aN |, so by comparison

∑

k

|aN+k| ≤ |aN |
∑

k

rk < +∞.

Convergence of S follows.

(b) Choose r ∈ (1, α). Then r < α, so there exists N ∈ N such that

|an+1| ≥ r|an| ≥ |an| for all n ≥ N . Thus “limn an = 0” is false. Divergence
follows from the Crude Test. ////

Remark. The ratio test is easier to try, but the root test is more discriminating. In
both tests, certain values of α, α, α leave you with no useful conclusion.

Summary. For S =
∑

∞

n=1 an, with all an 6= 0, define

α = lim sup
n→∞

|an|1/n, α = lim inf
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

, α = lim sup
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

.

Then
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6 PHILIP D. LOEWEN

(i) α < 1
(a)
=⇒ α < 1

(b)
=⇒

∑

n |an| converges =⇒ S converges;

(ii) α > 1 =⇒ α > 1 =⇒ S diverges;

(iii) If α = 1 (which implies α ≤ 1 ≤ α) any outcome is possible.

Some implications here remain to be proved. Focus on line (i): implication (b) is the
Root Test, proved earlier.

To prove (a), we show α ≤ α [Rudin Thm. 3.37].

Case α = +∞: Stmt “α ≤ +∞” is obvious, so desired result holds.

Case α < +∞. Thanks to Archimedes, we can show α ≤ α by proving

(∗) ∀ε > 0, α ≤ α+ ε.

So let ε > 0 be given; define β = α + ε. [Note that β > 0 since α ≥ 0 and ε > 0.]
Deduce the existence of some N ∈ N such that

∀n ≥ N,

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< β, i.e., |an+1| < β|an|.

(Used ε = β − α in Rudin 3.17.) Then for any p ∈ N,

|aN+p| < β|aN+p−1| < β2|aN+p−2| < · · · < βp|aN |.

In other words, for any m > N ,

|am| < βm−N |aN | =
[

β−N |aN |
]

βm.

Thus
|am|1/m < β

[

β−N |aN |
]1/m ∀m > N.

Take lim supm→∞
both sides: strict inequality degrades to give

α ≤ β = α+ ε.

Since ε > 0 is arbitrary, (∗) holds—proof complete! ////

Example. [Rudin 3.35.] S = 1+1+
1

2
+

1

3
+

1

22
+

1

32
+ . . . evidently converges, with

S =
1

1− (1/2)
+

1

1− (1/3)
=

7

2
.

How do the tests work out?

Here

a2n =
1

2n
, a2n+1 =

1

3n
, n = 0, 1, 2, . . . ,

so

|a2n|1/2n = (1/2n)
1/2n

=
1√
2
,
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V. Series in R 7

while

|a2n+1|1/(2n+1)
= (1/3n)

1/(2n+1)
=

(

1

3

)n/(2n+1)

→ 1√
3
.

This gives

α = lim sup
n

|an|1/n =
1√
2
< 1,

so the root test predicts convergence. However, α = 0 and α = +∞, because
∣

∣

∣

∣

a2n+2

a2n+1

∣

∣

∣

∣

=
1/2n+1

1/3n
=

1

2

(

3

2

)n

→ +∞,

∣

∣

∣

∣

a2n+1

a2n

∣

∣

∣

∣

=
1/3n

1/2n
=

(

2

3

)n

→ 0.

Here the ratio test is inapplicable, but at least not wrong ! ////

The next test resolves some cases where a geometric comparison is too demand-
ing.

Theorem (Cauchy Condensation Test). If an ≥ an+1 ≥ 0 for all n, TFAE:

(a) S =
∞
∑

n=1

an < +∞, (b) T =
∞
∑

k=0

2ka2k < +∞.

Proof. (b)⇒(a) The key idea is illustrated by this sandwich of inequalities:

a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + (a8 + · · ·+ a15)

≤a1 + (a2 + a2) + (a4 + a4 + a4 + a4) + (a8 + · · ·+ a8)

Suppose T < +∞. For any n, choose k so n < 2k+1: then

sn
def
=

n
∑

k=1

ak = a1 + a2 + · · ·+ an

≤ a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + · · ·+ (a2k + · · ·+ a2k+1−1)

≤ a1 + 2a2 + 4a4 + · · ·+ 2ka2k

≤ T.

Hence (sn) is bounded above; clearly sn ↑, so (sn) converges.

22 Oct 2025

(a)⇒(b) Suppose S < +∞. Consider a typical partial sum associated with T :

tn =

n
∑

k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + · · ·+ 2na2n

≤ 2
[

1
2
a1 + a2 + 2a4 + 4a8 + · · ·+ 2n−1a2n

]

≤ 2
[

a1 + a2 + (a3 + a4) + (a5 + a6 + a7 + a8) + · · ·+ (a2n−1+1 + · · ·+ a2n)
]

≤ 2S.

Hence (tn) is bounded above; clearly tn ↑, so (tn) converges. ////
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8 PHILIP D. LOEWEN

p-Series. The notation below comes from the famous Riemann zeta function.

Proposition. The series ζ(p)
def
=

∞
∑

n=1

1

np
(p ∈ R) converges if and only if p > 1.

Proof. If p ≤ 0, the series diverges by the Crude Test. When p > 0, we can apply
Cauchy’s Condensation Test. The sequence an = 1/np is decreasing and nonnegative,
so ζ(p) converges if and only if this series does:

T =
∞
∑

k=0

2k
(

1

(2k)p

)

=
∞
∑

k=0

(

2k
)1−p

=
∞
∑

k=0

(

21−p
)k

.

This T is geometric, with ratio r = 21−p. It converges if and only if r < 1, i.e., p > 1.
////

Remarks. For any fixed p > 0, we can calculate the ingredients in the root and ratio
tests:

α = lim sup
n

(

1

np

)1/n

= lim
n

(

1

n1/n

)p

= 1,

α = α = lim
n

(

1/(n+ 1)p

1/np

)

= lim
n

(

n

n+ 1

)p

= 1.

Both the root and the ratio tests are inconclusive; the series converges. (In fact,
ζ(2) = π2/6; ζ(4) = π4/90; ζ(6) = π6/945; . . . and π2n/ζ(2n) is a known rational
number for all n ∈ N. The first of these rational numbers that is not actually an
integer is π12/ζ(12) = 638512875/691.)

Euler’s Number. Please read about the number e in Rudin, paragraphs 3.30–3.32.

Question. Suppose p(n) > 1 for each n ∈ N. Does this guarantee convergence for
∞
∑

n=1

1

np(n)
? No! When p = 1 + 1/n, this series diverges. Try showing this with the

Cauchy Condensation Test.

Theorem (Kummer’s Test–TBB pp. 115ff). Consider S =
∑

∞

n=1 an, where
an > 0 for each n. Let (Dn) be any sequence of positive numbers. Define

L = lim inf
n→∞

Dkak −Dk+1ak+1

ak+1
, L = lim sup

n→∞

Dkak −Dk+1ak+1

ak+1
.

(a) If L > 0 then S converges.

(b) If L < 0 and
∑

n

1

Dn
= +∞, then S diverges.

Proof. (a) If L > 0 then we can choose some r ∈ (0, L). The definition of lim inf
implies that for some N ∈ N,

∀k ≥ N, r <
Dkak −Dk+1ak+1

ak+1
, i.e., rak+1 < Dkak −Dk+1ak+1.
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V. Series in R 9

This is a telescoping-sum opportunity:

raN+1 < DNaN −DN+1aN+1

raN+2 < DN+1aN+1 −DN+2aN+2

...

raN+p < DN+p−1aN+p−1 −DN+paN+p

Add these, then remember that all Dn > 0 and all an > 0:

r(aN+1 + . . .+ aN+p) ≤ DNaN −DN+paN+p ≤ DNaN − 0.

This shows that the partial sums for S are bounded (by DNaN ), which implies
that S converges.

(b) If L < 0, then there exists N ∈ N such that

∀k ≥ N,
Dkak −Dk+1ak+1

ak+1
≤ 0, i.e., Dkak ≤ Dk+1ak+1.

Chaining together inequalities like this shows that for all p ∈ N,

DNaN ≤ · · · ≤ DN+paN+p, i.e., aN+p ≥ (DNaN )
1

DN+p
.

Since
∑

p

1

DN+p
= +∞ by hypothesis, we conclude

∑

p

aN+p = +∞ also, as

required. ////

Example. Take Dk = 1 for each k in Kummer’s Test. Also, assume ak > 0 for each
k. Then, in the notation introduced earlier (with extended-real interpretations),

L = lim inf
n→∞

(

ak
ak+1

− 1

)

=
1

α
− 1, so L > 0 ⇐⇒ α < 1;

L = lim sup
n→∞

(

ak
ak+1

− 1

)

=
1

α
− 1, so L > 0 ⇐⇒ α > 1.

Thus Kummer’s Test extends the Ratio Test.

Theorem (Raabe’s Test). Let S =
∑

k ak, with each ak > 0. Suppose this limit
exists:

R = lim
k→∞

k

(

ak
ak+1

− 1

)

.

Then

(a) If R > 1, the series S converges;

(b) If R < 1, the series S diverges.

Proof. Choose Dk = k and apply Kummer’s Test. That result involves ratios like

Dkak −Dk+1ak+1

ak+1
=

kak − (k + 1)ak+1

ak+1
= k

(

ak
ak+1

− 1

)

− 1.
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By hypothesis, the right side converges, so we have L = L = R − 1 in Kummer’s
Test.

(a) If R > 1 then L > 0, so S converges.

(b) If R < 1 then L < 0, so S diverges. ////

Enrichment. Check out the lovely further story about Gauss’s Ratio Test in Sec-
tion 3.6.11 of TBB.

24 Oct 2025

Alternating Series. Intuitively, it is easier for a series whose terms alternate in
sign to converge than for a series of positive terms. For example, the “alternating

harmonic series” S =
∑

n

(−1)n+1

n
converges, as a consequence of the following result.

Theorem (Alternating Series Test—AST). If S =
∑

n

(−1)nan and

(i) a0 ≥ a1 ≥ a2 ≥ a3 ≥ · · · , (ii) lim
n

an = 0,

then S converges.

Proof. Sketch s0, s1, s2, . . . on a number line. It looks like s2 ≥ s4 ≥ s6 ≥ s8 ≥ · · ·,
while s1 ≤ s3 ≤ s5 ≤ · · ·. To prove this, use condition (i): for any n ∈ N,

sn+2−sn = (−1)n+1an+1+(−1)n+2an+2 = (−1)n+1 [an+1 − an+2]

{

≤ 0, if n even,
≥ 0, if n odd.

Furthermore, for any m ∈ N,

s2m+1 − s2m = (−1)2m+1a2m+1 ≤ 0, i.e., s2m+1 ≤ s2m.

Given any k, ℓ ∈ N, choose m ≥ max {k, ℓ} to get

s2k+1 ≤ s2m+1 ≤ s2m ≤ s2ℓ.

So every odd-index sn is no larger than any even index sn:

s1 ≤ s3 ≤ s5 ≤ · · · ≤ s6 ≤ s4 ≤ s2.

It follows that both sequences (s2k+1)k and (s2k)k are bounded and monotonic, so
they both converge. Now use (ii): Since |s2k+1 − s2k| = a2k → 0 as k → ∞, these
two sequences must have the same limit. It follows that the entire sequence (sn)
converges to this common limit. ////

Remarks. 1. The inequality s2n+1 ≤ S ≤ s2n in this proof is useful in estimating S.

2. The textbook proof (Thm. 3.43) is dramatically different, and based on an inter-
esting analogue of integration by parts called “summation by parts”. It deserves
careful reading.

3. Alternative method: test Cauchy’s criterion directly.
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Summation by Parts. The analogy with integration by parts is emphasized when
we use notation suggested by Folland’s Advanced Calculus . The goal is to simplify

n
∑

k=0

Akbk.

So we define A′

k = Ak − Ak−1 and Bk = b0 + b1 + · · · + bk. It’s consistent to note
bk = B′

k = Bk −Bk−1 (define B−1 = 0 to make b0 = B′

0 correct). Then

A0b0 + A1b1 + A2b2 + · · ·+Anbn

= A0B0 +A1(B1 −B0) +A2(B2 −B1) + . . .+An(Bn −Bn−1)

= (A0 − A1)B0 + (A1 − A2)B1 + · · ·+ (An−1 − An)Bn−1 + AnBn

= −A′

1B0 − A′

2B1 − · · · −A′

nBn−1 + AnBn

In compact form,
n
∑

k=0

AkB
′

k = AnBn −
n
∑

k=1

A′

kBk−1.

This supports the following generalization of the AST, which can be recovered by
choosing bn = (−1)n.

Theorem (Dirichlet). Consider the series S =

∞
∑

k=0

akbk. If

• a0 ≥ a1 ≥ a2 ≥ · · · and limn→∞ an = 0, and

• Bn = b0 + b1 + · · ·+ bn is a bounded sequence,

then the series S converges.

Proof. Think of Ak = ak in the summation by parts formula above. For each n ∈ N,

n
∑

k=0

akbk = anBn −
n
∑

k=1

a′kBk−1, where a′k = ak − ak−1.

Both RHS terms converge as n → ∞. Indeed, the boundedness hypothesis guarantees
that C = supn |Bn| is a real number, so

|anBn| ≤ Can → 0.

And the monotonicity assumption gives (by telescoping)

n
∑

k=1

|a′kBk−1| ≤ C

n
∑

k=1

|a′k| = C

n
∑

k=1

(ak−1 − ak) = C(a0 − an) ≤ Ca0. (†)

Absolute convergence implies convergence, so
n
∑

k=1

a′kBk−1 has a real-valued limit as

n → ∞. This completes the proof. ////
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12 PHILIP D. LOEWEN

Remark. Dirichlet’s Theorem does not assert absolute convergence for the series
∑

k akbk. Indeed that would be wrong, because this theorem generalizes the AST,

and therefore asserts convergence for series like
∑

k(−1)k/
√
k that do not converge

absolutely. It’s true that the proof relies on the absolute convergence of a certain
series, but this is a different series from the one in the statement.

Application (Home Practice). Use geometric series methods to prove

n
∑

k=1

(

eix
)k

= ei(n+1)x/2 sin(nx/2)

sin(x/2)
.

Then if bk = sin(kx), deduce |Bn| ≤ 1
sin(x/2) . It follows that whenever an ↓ 0, the

Fourier Sine Series

S(x) =
∞
∑

k=1

ak sin(kx)

converges for each x where sin(x/2) 6= 0. But the only x not covered here have the
form x = 2nπ for some n ∈ Z, and for all such x we have sin(kx) = 0 for each k ∈ N.
So S(2nπ) = 0 for each n ∈ N, and thus S(x) is defined for all real x. ////

Absolute vs Conditional Convergence. Recall:

• If
∑

n |an| converges, then
∑

n an converges.

• S =
∑

n an is said to converge absolutely if
∑

n |an| converges.

Now
∑

n

(−1)n√
n

converges by the AST, but
∑

n

∣

∣

∣

∣

(−1)n√
n

∣

∣

∣

∣

=
∑

n

1

n1/2
= +∞. Series like

this one, where
∑

n an converges but
∑

n |an| does not, are called nonabsolutely or
conditionally convergent.

reading

Rearrangements. It makes intuitive sense to call any bijection φ:N → N a rear-
rangement of the set N. Note that for any such bijection, we can say two things:

(i) For any given N ∈ N, there exists some M ∈ N (possibly large) for which the set
{1, 2, . . . , N} is a subset of {φ(1), φ(2), . . . , φ(M)}. (Of course every M ′ ≥ M
will also provide a suitable superset.)

(ii) For any given M ∈ N, there exists some N ∈ N (possibly large) such that the
set {φ(1), φ(2), . . . , φ(M)} is a subset of {1, 2, . . . , N}. (Of course every N ′ ≥ N
will also work here.)

When a series A =
∑

k∈N
ak is given, a series B =

∑

n∈N
bn is called a rear-

rangement of A if there is a rearrangement of N, say φ, such that bn = aφ(n) for each
n.

If all the terms in the series A are positive, facts (i)–(ii) above lead immediately
to a chain of inequalities between the partial sums for A and B that establish absolute
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V. Series in R 13

convergence also for the rearranged series B . . . and of course the sums are equal. If
A has terms of mixed sign but is nonetheless absolutely convergent, a slightly more
careful approach establishes that the rearrangement B will converge and have the
same value as A. (See Rudin Thm. 3.55.)

By contrast, conditional convergence is full of horrors. To illustrate, consider
the alternating harmonic series:

S = 1− 1

2
+

1

3
− 1

4
± · · · .

This converges by the AST. But if we re-order the terms by picking up 2 negative
terms after each positive one, we get

S′ = 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ . . . .

(Practice: Identify the bijection φ:N → N that confirms that S′ qualifies as a rear-
rangement of S.) Inserting parentheses reveals something rather unsettling:

S′ =

(

1− 1

2

)

− 1

4
+

(

1

3
− 1

6

)

− 1

8
+

(

1

5
− 1

10

)

− 1

12
+ . . .

=

(

1

2

)

− 1

4
+

(

1

6

)

− 1

8
+

(

1

10

)

− 1

12
+ . . .

=
1

2

[

1− 1

2
+

1

3
− 1

4
± · · ·

]

.

Yes, S′ = 1
2S! Innocent-looking operations like re-ordering the terms of the series

can change the number it converges to. In fact, according to a theorem of Riemann

[Rudin Thm. 3.54], for every conditionally convergent series
∞
∑

n=1

an and every real

number L, there exists a bijection φ:N → N such that
∞
∑

n=1

aφ(n) = L. We will not

dwell on such matters; TBB explain everything in Section 3.7 and the associated
exercises.

F. Power Series

Here are some things worth knowing, not covered in class.

Series involving a variable parameter (a.k.a. “series of functions”) have many uses in
pure and applied mathematics. Typically the series will converge for some x and not
for others, and we want to know what happens where. For example, the set of real x

where the series ζ(x) =
∞
∑

n=1

1

nx
converges is precisely the interval (1,+∞).

The simplest series of functions are power series, which have the form

∞
∑

n=0

cn(x− x0)
n
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14 PHILIP D. LOEWEN

for given constants cn and x0. (Shorthand: (x− x0)
0 = 1 for all x, including x = x0

. . . a slight offence against our usual refusal to define 00.) For these, the set of x
giving convergence has a simple shape.

Theorem. For any power series
∑

cn(x− x0)
n, there exists R ∈ [0,+∞) ∪ {+∞}

such that |x− x0| < R implies absolute convergence and |x− x0| > R implies diver-
gence.

Remarks. 1. The series obviously converges (to c0) when x = x0, even when R = 0.
This does not contradict the statement, “|x− x0| < 0 implies convergence.”

2. This same result is valid for complex cn, x0, and x. In this case, the inequality
|x− x0| < R describes an open disk in C, centred at x0, called the disk of
convergence. (If R = 0 the disk is empty; if R = +∞ it is the whole plane.)
This explains why the number R is called the radius of convergence for the
given series.

3. You can find R using the root test as in proof below (the ratio test often works,
too): there is no need to memorize a special formula for power series.

4. The theorem gives no information about points x where |x− x0| = R: for these,
use one of the various convergence tests developed previously.

Proof. For fixed x 6= x0, this is an ordinary series with summands

an = cn(x− x0)
n.

Apply the Root Test, computing

α = lim sup
n

|an|1/n

= lim sup
n

|cn(x− x0)
n|1/n

= |x− x0| lim sup
n

|cn|1/n

def
= |x− x0| γ.

The series is certain to converge if α < 1, i.e., either γ = 0 or else |x− x0| < 1/γ; and
to diverge if α > 1, i.e., either γ = +∞ or else |x− x0| > 1/γ. Hence the statement
holds for R = 1/γ (extended interpretation in [0,+∞]). ////

Example. For

∞
∑

n=0

xn

n!
(in which x0 = 0), apply the Ratio Test:

α = lim sup
n→∞

∣

∣

∣

∣

xn+1/(n+ 1)!

xn/n!

∣

∣

∣

∣

= lim sup
n→∞

∣

∣

∣

∣

x

(n+ 1)

∣

∣

∣

∣

= 0 ∀x ∈ R.

This series converges for all real x: R = +∞.

[Corollary: lim
n→∞

xn

n!
= 0 for all real x, by the Crude Test for Divergence.]
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V. Series in R 15

For

∞
∑

n=1

n!xn

nn
, the Ratio test gives

α = lim sup
n→∞

∣

∣

∣

∣

(n+ 1)! xn+1/(n+ 1)n+1

n!xn/nn

∣

∣

∣

∣

= lim sup
n→∞

∣

∣

∣

∣

∣

x
(

1 + 1
n

)n

∣

∣

∣

∣

∣

=
|x|
e

∀x ∈ R.

Convergence is assured if |x| < e. Similarly,

α = lim inf
n→∞

∣

∣

∣

∣

(n+ 1)! xn+1/(n+ 1)n+1

n!xn/nn

∣

∣

∣

∣

=
|x|
e

∀x ∈ R,

so divergence is assured if |x| > e. Hence the radius of convergence is R = e. When
x = e, divergence follows from the Crude Test. Indeed, the power series definition
gives

∀x ≥ 0, ∀n ∈ N, ex >
xn

n!
.

In particular, when x = n ∈ N, en > nn/n!, so the terms of the given series obey

n!en

nn
> 1 ∀n ∈ N.

When x = −e, terms of the same size show up with alternating signs. The Crude
Test still applies, and shows divergence. The series converges if and only if |x| < e.
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