UBC M320 Lecture Notes by Philip D. Loewen

A. Basic Definitions

15 Oct 2025

Given a sequence a_1, a_2, \ldots in \mathbb{R} , the corresponding **series** is another sequence s_1, s_2, \ldots , defined by building **partial sums**:

$$s_N = \sum_{n=1}^N a_n = a_1 + a_2 + \dots + a_N \qquad \forall N \in \mathbb{N}.$$

We are interested in the convergence properties of this new sequence, i.e., in

$$S = \lim_{N \to \infty} s_N = \lim_{N \to \infty} \sum_{n=1}^{N} a_n. \quad \text{Notation: } S = \sum_{n=1}^{\infty} a_n.$$

The series converges when S has a value in \mathbb{R} , and diverges otherwise. For some divergent series the extended values $-\infty$ and $+\infty$ may be appropriate.

Our main question: does S converge? (Other courses [Applied math/numerical analysis] deal with, "Calculate the limit".) To decide convergence, the first few million terms are irrelevant, so we sometimes adopt the lazy notation $S = \sum_n a_n$. All convergence tests adapt accordingly.

Lemma. If
$$S = \sum_{n=1}^{\infty} a_n$$
 converges, then $\lim_{k \to \infty} \sum_{n=k}^{\infty} a_n = 0$.

Proof. Fix any k and split the sum:

$$\forall N \ge k, \qquad \sum_{n=1}^{N} a_n = \sum_{n=1}^{k-1} a_n + \sum_{n=k}^{N} a_n.$$

Send $N \to \infty$. The first two sequences converge, so the third one does too: we get

$$S = \sum_{n=1}^{k-1} a_n + \tau_k, \quad \text{where } \tau_k = \sum_{n=k}^{\infty} a_n.$$

This holds for each $k \in \mathbb{N}$. As $k \to \infty$, the first two sequences converge, so the third one does too: this time,

$$S = S + \lim_{k \to \infty} \tau_k,$$

which gives $\tau_k \to 0$, as required.

////

We know two ways of proving a limit exists without knowing its value in advance.

Theorem (Monotone Convergence Criterion). If $a_n \geq 0$ for all n, then the series $S = \sum_n a_n$ converges if and only if the sequence of partial sums is bounded.

Proof. Since $s_{n+1} - s_n = a_n \ge 0$ for all n, the partial sums form a nondecreasing sequence. We have dealt with these earlier.

Theorem (Cauchy's Convergence Criterion). The series $S = \sum_n a_n$ converges if and only if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$\forall m \ge N, \ \forall p \ge 0, \quad |a_m + a_{m+1} + \dots + a_{m+p}| < \varepsilon.$$

Proof. Apply Cauchy's criterion to the sequence of partial sums: note that

$$|s_{m+p} - s_{m-1}| = |(a_1 + \dots + a_{m+1} + a_m + \dots + a_{m+p}) - (a_1 + \dots + a_{m-1})|$$

= $|a_m + a_{m+1} + \dots + a_{m+p}|$.

Cauchy's criterion says the sequence (s_n) converges if and only if this quantity can be made small (regardless of p) by choosing m sufficiently large.

Thm (Crude Divergence Test). If " $\lim_{n} a_n = 0$ " is false, then $\sum_{n} a_n$ diverges.

Proof. [Contraposition] Suppose $\sum_n a_n$ converges. Given any $\varepsilon > 0$, Cauchy (above) supplies $N \in \mathbb{N}$ such that (taking p = 0)

each
$$m > N$$
 obeys $|a_m| < \varepsilon$.

Since $\varepsilon > 0$ is arbitrary, this shows $\lim_n a_n = 0$.

////

Theorem (Comparison Test). Suppose $0 \le |a_n| \le b_n$ for all n. Then ...

- (a) If $\sum_n b_n$ converges, then $\sum_n a_n$ converges.
- (b) If $\sum_n |a_n| = +\infty$, then $\sum_n b_n = +\infty$.

Proof. (a) Apply the Cauchy criterion.

(b) The partial sums $s_N = \sum_{n=1}^N |a_n|$ form an unbounded sequence by hypothesis, and the partial sums $t_N = \sum_{n=1}^N b_n$ are even bigger. ////

Corollary. If $\sum_n |a_n| < +\infty$, then $\sum_n a_n$ converges. In words, "Absolute Convergence implies Convergence."

Proof. Use
$$b_n = |a_n|$$
 above. ////

Example (Harmonic Series).
$$\sum_{n} \frac{1}{n}$$
 diverges to $+\infty$. (However, $\frac{1}{n} \to 0$.)

Proof. The negation of Cauchy's criterion is

$$\neg \left(\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall m \geq N, \ \forall p \geq 0, \quad |a_m + a_{m+1} + \dots + a_{m+p}| < \varepsilon \right)$$
 i.e., $\exists \varepsilon > 0 : \forall N \in \mathbb{N}, \ \exists m \geq N, \ p \in \mathbb{N} : |a_m + a_{m+1} + \dots + a_{m+p}| \geq \varepsilon$.

This holds with $\varepsilon = 1/2$. Indeed, for any $N \in \mathbb{N}$, pick m = N and p = N: then

$$a_m + \dots + a_{m+p} = \frac{1}{N} + \frac{1}{N+1} + \frac{1}{N+2} + \dots + \frac{1}{N+N}$$
$$\geq \frac{1}{2N} + \frac{1}{2N} + \frac{1}{2N} + \dots + \frac{1}{2N} = (N+1) \times \left(\frac{1}{2N}\right) > \frac{1}{2}.$$

This is interesting because the series diverges, but the crude divergence criterion above is not sharp enough to detect this. Informally, this is because series diverges rather slowly. A quick sketch and an informal integral show that $\sum_{n=1}^{N} \frac{1}{n} < 1 + \log(N)$, so to get a partial sum of 200 or more requires at least $N = e^{200}$ terms. That's more than 10^{86} . Reputable online sources use 10^{82} as a generous estimate of the number of atoms in the known universe.

Example (Geometric Series). For a fixed real number r, consider $S = \sum_{n=0}^{\infty} r^n$. (Use $r^0 = 1$ for all r.)

- (a) If |r| < 1, S converges: $S = \frac{1}{1 r}$.
- (b) If $|r| \ge 1$, S diverges.

Proof. For any N,

$$s_N = 1 + r + r^2 + \ldots + r^N.$$

If $r \geq 1$, $s_N \geq N+1$ diverges to $+\infty$ as $N \to \infty$. (" $S = +\infty$.") If $r \neq 1$, then

$$s_N = \frac{1 - r^{N+1}}{1 - r} \qquad \forall N \ge 0.$$

If |r| < 1, then sending $N \to \infty$ gives

$$S = \lim_{N \to \infty} s_N = \frac{1}{1 - r}.$$

If $r \leq -1$, the sequence (s_N) diverges by the Crude Divergence Test below. ////

Remark. In different words, consider $f(x) = \sum_{n=0}^{\infty} x^n$. Then the domain of f is (-1, 1),

and $f(x) = \frac{1}{1-x}$ on that set. Geometric series foreshadow general power series.

20 Oct 2025

Example (Telescoping Series). For any $N \geq 2$,

$$\sum_{n=1}^{N} \frac{2}{4n^2 - 1} = 1 - \frac{1}{2N - 1}.$$

Consequently

$$\sum_{n=1}^{\infty} \frac{2}{4n^2 - 1} = \lim_{N \to \infty} \left(1 - \frac{1}{2N - 1} \right) = 1.$$

Proof. This starts with the partial-fractions style identity

$$\frac{1}{2n-1} - \frac{1}{2n+1} = \frac{(2n+1) - (2n-1)}{(2n)^2 - (1)^2} = \frac{2}{4n^2 - 1}.$$

The similarity in successive terms is key to massive cancellation ("telescoping"):

$$\sum_{n=1}^{N} \frac{2}{4n^2 - 1} = \sum_{n=1}^{N} \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right)$$

$$= \left(\frac{1}{1} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \left(\frac{1}{5} - \frac{1}{7} \right) + \dots + \left(\frac{1}{2N - 1} - \frac{1}{2N + 1} \right)$$

$$= \frac{1}{1} - \frac{1}{2N + 1}.$$

Dangerous Nonsense. We know

$$1 = \sum_{n=1}^{\infty} \frac{2}{4n^2 - 1} = \sum_{n=1}^{\infty} \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right).$$

This does not split to give

$$1 = \sum_{n=1}^{\infty} \frac{1}{2n-1} - \sum_{n=1}^{\infty} \frac{1}{2n+1}.$$

Indeed, by comparison, both series on the right diverge to $+\infty$, and the expression $\infty - \infty$ is undefined.

Example. $\sum \sin\left(\frac{100}{n}\right)$ diverges, because $\sin\theta \geq 2\theta/\pi$ for $\theta \in [0, \pi/2]$ and the harmonic series diverges.

Theorem (Root Test). Consider $S = \sum_n a_n$. Define $\alpha = \limsup_n |a_n|^{1/n}$. (a) If $\alpha < 1$, S converges absolutely.

(b) If $\alpha > 1$, S diverges.

Proof. (a) Choose any $r \in (\alpha, 1)$. Since $r > \alpha$, there exists $N \in \mathbb{N}$ so large that

$$\forall n \geq N$$
, $|a_n|^{1/n} < r$, i.e., $|a_n| < r^n$.

Hence $\sum_{n=N}^{\infty} |a_n|$ converges by comparison with the geometric series $\sum_{n=N}^{\infty} r^n$.

(b) Suppose $\alpha > 1$. Choose $R \in (1, \alpha)$. Since $R < \alpha$, there is a subsequence $(a_{n_k})_k$ of (a_n) satisfying $|a_{n_k}| \ge R > 1$ for all k. Clearly $a_{n_k} \not\to 0$, so " $\lim_n a_n = 0$ " is false: divergence follows from the Crude Test.

Remark. When applying the Root Test, it's useful to know (Rudin, Thm. 3.20) that

$$\forall x > 0$$
, $\lim_{n \to \infty} x^{1/n} = 1$, and $\lim_{n \to \infty} n^{1/n} = 1$.

Theorem (Ratio Test). Consider $S = \sum_{n} a_n$, where all $a_n \neq 0$.

- (a) If $\overline{\alpha} \stackrel{\text{def}}{=} \limsup_{n} \left| \frac{a_{n+1}}{a_n} \right| < 1$, then S converges absolutely.
- (b) If $\underline{\alpha} \stackrel{\text{def}}{=} \liminf_{n} \left| \frac{a_{n+1}}{a_n} \right| > 1$, then S diverges.

Proof. (a) Choose $r \in (\overline{\alpha}, 1)$. Since $r > \overline{\alpha}$, there exists $N \in \mathbb{N}$ so large that

$$\forall n \geq N, \quad \left| \frac{a_{n+1}}{a_n} \right| < r, \quad \text{i.e.,} \quad |a_{n+1}| < r|a_n|.$$

It follows that $|a_{N+k}| < r^k |a_N|$, so by comparison

$$\sum_{k} |a_{N+k}| \le |a_N| \sum_{k} r^k < +\infty.$$

Convergence of S follows.

(b) Choose $r \in (1,\underline{\alpha})$. Then $r < \underline{\alpha}$, so there exists $N \in \mathbb{N}$ such that

 $|a_{n+1}| \ge r|a_n| \ge |a_n|$ for all $n \ge N$. Thus " $\lim_n a_n = 0$ " is false. Divergence follows from the Crude Test.

Remark. The ratio test is easier to try, but the root test is more discriminating. In both tests, certain values of $\alpha, \overline{\alpha}, \underline{\alpha}$ leave you with no useful conclusion.

Summary. For $S = \sum_{n=1}^{\infty} a_n$, with all $a_n \neq 0$, define

$$\alpha = \limsup_{n \to \infty} \left| a_n \right|^{1/n}, \qquad \underline{\alpha} = \liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|, \qquad \overline{\alpha} = \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

Then

- (i) $\overline{\alpha} < 1 \stackrel{\text{(a)}}{\Longrightarrow} \alpha < 1 \stackrel{\text{(b)}}{\Longrightarrow} \sum_n |a_n| \text{ converges} \Longrightarrow S \text{ converges};$
- (ii) $\underline{\alpha} > 1 \implies \alpha > 1 \implies S$ diverges;
- (iii) If $\alpha = 1$ (which implies $\underline{\alpha} \le 1 \le \overline{\alpha}$) any outcome is possible.

Some implications here remain to be proved. Focus on line (i): implication (b) is the Root Test, proved earlier.

To prove (a), we show $\alpha \leq \overline{\alpha}$ [Rudin Thm. 3.37].

Case $\overline{\alpha} = +\infty$: Stmt " $\alpha \le +\infty$ " is obvious, so desired result holds.

Case $\overline{\alpha} < +\infty$. Thanks to Archimedes, we can show $\alpha \leq \overline{\alpha}$ by proving

(*)
$$\forall \varepsilon > 0, \quad \alpha \leq \overline{\alpha} + \varepsilon.$$

So let $\varepsilon > 0$ be given; define $\beta = \overline{\alpha} + \varepsilon$. [Note that $\beta > 0$ since $\overline{\alpha} \ge 0$ and $\varepsilon > 0$.] Deduce the existence of some $N \in \mathbb{N}$ such that

$$\forall n \geq N, \left| \frac{a_{n+1}}{a_n} \right| < \beta, \text{ i.e., } |a_{n+1}| < \beta |a_n|.$$

(Used $\varepsilon = \beta - \overline{\alpha}$ in Rudin 3.17.) Then for any $p \in \mathbb{N}$,

$$|a_{N+p}| < \beta |a_{N+p-1}| < \beta^2 |a_{N+p-2}| < \dots < \beta^p |a_N|.$$

In other words, for any m > N,

$$|a_m| < \beta^{m-N} |a_N| = \left[\beta^{-N} |a_N| \right] \beta^m.$$

Thus

$$|a_m|^{1/m} < \beta \left[\beta^{-N}|a_N|\right]^{1/m} \quad \forall m > N.$$

Take $\limsup_{m\to\infty}$ both sides: strict inequality degrades to give

$$\alpha < \beta = \overline{\alpha} + \varepsilon$$
.

Since $\varepsilon > 0$ is arbitrary, (*) holds—proof complete!

////

Example. [Rudin 3.35.] $S = 1 + 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ evidently converges, with

$$S = \frac{1}{1 - (1/2)} + \frac{1}{1 - (1/3)} = \frac{7}{2}.$$

How do the tests work out?

Here

$$a_{2n} = \frac{1}{2^n}, \qquad a_{2n+1} = \frac{1}{3^n}, \qquad n = 0, 1, 2, \dots,$$

so

$$|a_{2n}|^{1/2n} = (1/2^n)^{1/2n} = \frac{1}{\sqrt{2}},$$

while

$$|a_{2n+1}|^{1/(2n+1)} = (1/3^n)^{1/(2n+1)} = \left(\frac{1}{3}\right)^{n/(2n+1)} \to \frac{1}{\sqrt{3}}.$$

This gives

$$\alpha = \limsup_{n} |a_n|^{1/n} = \frac{1}{\sqrt{2}} < 1,$$

so the root test predicts convergence. However, $\underline{\alpha} = 0$ and $\overline{\alpha} = +\infty$, because

$$\left| \frac{a_{2n+2}}{a_{2n+1}} \right| = \frac{1/2^{n+1}}{1/3^n} = \frac{1}{2} \left(\frac{3}{2} \right)^n \to +\infty,$$

$$\left| \frac{a_{2n+1}}{a_{2n}} \right| = \frac{1/3^n}{1/2^n} = \left(\frac{2}{3} \right)^n \to 0.$$

Here the ratio test is *inapplicable*, but at least *not wrong*!

The next test resolves some cases where a geometric comparison is too demanding.

Theorem (Cauchy Condensation Test). If $a_n \ge a_{n+1} \ge 0$ for all n, TFAE:

(a)
$$S = \sum_{n=1}^{\infty} a_n < +\infty$$
, (b) $T = \sum_{k=0}^{\infty} 2^k a_{2^k} < +\infty$.

Proof. (b)⇒(a) The key idea is illustrated by this sandwich of inequalities:

$$a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + (a_8 + \dots + a_{15})$$

 $\leq a_1 + (a_2 + a_2) + (a_4 + a_4 + a_4 + a_4) + (a_8 + \dots + a_8)$

Suppose $T < +\infty$. For any n, choose k so $n < 2^{k+1}$: then

$$s_n \stackrel{\text{def}}{=} \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n$$

$$\leq a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \dots + (a_{2^k} + \dots + a_{2^{k+1}-1})$$

$$\leq a_1 + 2a_2 + 4a_4 + \dots + 2^k a_{2^k}$$

$$\leq T.$$

Hence (s_n) is bounded above; clearly $s_n \uparrow$, so (s_n) converges.

22 Oct 2025

////

(a) \Rightarrow (b) Suppose $S < +\infty$. Consider a typical partial sum associated with T:

$$t_{n} = \sum_{k=0}^{n} 2^{k} a_{2^{k}} = a_{1} + 2a_{2} + 4a_{4} + 8a_{8} + \dots + 2^{n} a_{2^{n}}$$

$$\leq 2 \left[\frac{1}{2} a_{1} + a_{2} + 2a_{4} + 4a_{8} + \dots + 2^{n-1} a_{2^{n}} \right]$$

$$\leq 2 \left[a_{1} + a_{2} + (a_{3} + a_{4}) + (a_{5} + a_{6} + a_{7} + a_{8}) + \dots + (a_{2^{n-1}+1} + \dots + a_{2^{n}}) \right]$$

$$\leq 2S.$$

Hence (t_n) is bounded above; clearly $t_n \uparrow$, so (t_n) converges. ////

p-Series. The notation below comes from the famous *Riemann zeta function*.

Proposition. The series $\zeta(p) \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} \frac{1}{n^p} \ (p \in \mathbb{R})$ converges if and only if p > 1.

Proof. If $p \leq 0$, the series diverges by the Crude Test. When p > 0, we can apply Cauchy's Condensation Test. The sequence $a_n = 1/n^p$ is decreasing and nonnegative, so $\zeta(p)$ converges if and only if this series does:

$$T = \sum_{k=0}^{\infty} 2^k \left(\frac{1}{(2^k)^p} \right) = \sum_{k=0}^{\infty} (2^k)^{1-p} = \sum_{k=0}^{\infty} (2^{1-p})^k.$$

This T is geometric, with ratio $r = 2^{1-p}$. It converges if and only if r < 1, i.e., p > 1.

Remarks. For any fixed p > 0, we can calculate the ingredients in the root and ratio tests:

$$\alpha = \limsup_{n} \left(\frac{1}{n^{p}}\right)^{1/n} = \lim_{n} \left(\frac{1}{n^{1/n}}\right)^{p} = 1,$$

$$\overline{\alpha} = \underline{\alpha} = \lim_{n} \left(\frac{1/(n+1)^{p}}{1/n^{p}}\right) = \lim_{n} \left(\frac{n}{n+1}\right)^{p} = 1.$$

Both the root and the ratio tests are inconclusive; the series converges. (In fact, $\zeta(2) = \pi^2/6$; $\zeta(4) = \pi^4/90$; $\zeta(6) = \pi^6/945$; ... and $\pi^{2n}/\zeta(2n)$ is a known rational number for all $n \in \mathbb{N}$. The first of these rational numbers that is not actually an integer is $\pi^{12}/\zeta(12) = 638512875/691$.)

Euler's Number. Please read about the number e in Rudin, paragraphs 3.30–3.32.

Question. Suppose p(n) > 1 for each $n \in \mathbb{N}$. Does this guarantee convergence for $\sum_{n=1}^{\infty} \frac{1}{n^{p(n)}}$? No! When p = 1 + 1/n, this series diverges. Try showing this with the Cauchy Condensation Test.

Theorem (Kummer's Test-TBB pp. 115ff). Consider $S = \sum_{n=1}^{\infty} a_n$, where $a_n > 0$ for each n. Let (D_n) be any sequence of positive numbers. Define

$$\underline{L} = \liminf_{n \to \infty} \frac{D_k a_k - D_{k+1} a_{k+1}}{a_{k+1}}, \qquad \overline{L} = \limsup_{n \to \infty} \frac{D_k a_k - D_{k+1} a_{k+1}}{a_{k+1}}.$$

(a) If $\underline{L} > 0$ then S converges.

(b) If
$$\overline{L} < 0$$
 and $\sum_{n} \frac{1}{D_n} = +\infty$, then S diverges.

Proof. (a) If $\underline{L} > 0$ then we can choose some $r \in (0, \underline{L})$. The definition of \liminf implies that for some $N \in \mathbb{N}$,

$$\forall k \ge N, \qquad r < \frac{D_k a_k - D_{k+1} a_{k+1}}{a_{k+1}}, \quad \text{i.e.,} \quad r a_{k+1} < D_k a_k - D_{k+1} a_{k+1}.$$

This is a telescoping-sum opportunity:

$$ra_{N+1} < D_N a_N - D_{N+1} a_{N+1}$$

$$ra_{N+2} < D_{N+1} a_{N+1} - D_{N+2} a_{N+2}$$

$$\vdots$$

$$ra_{N+p} < D_{N+p-1} a_{N+p-1} - D_{N+p} a_{N+p}$$

Add these, then remember that all $D_n > 0$ and all $a_n > 0$:

$$r(a_{N+1} + \ldots + a_{N+p}) \le D_N a_N - D_{N+p} a_{N+p} \le D_N a_N - 0.$$

This shows that the partial sums for S are bounded (by $D_N a_N$), which implies that S converges.

(b) If $\overline{L} < 0$, then there exists $N \in \mathbb{N}$ such that

$$\forall k \ge N, \qquad \frac{D_k a_k - D_{k+1} a_{k+1}}{a_{k+1}} \le 0, \quad \text{i.e.,} \quad D_k a_k \le D_{k+1} a_{k+1}.$$

Chaining together inequalities like this shows that for all $p \in \mathbb{N}$,

$$D_N a_N \le \dots \le D_{N+p} a_{N+p}$$
, i.e., $a_{N+p} \ge (D_N a_N) \frac{1}{D_{N+p}}$.

Since
$$\sum_{p} \frac{1}{D_{N+p}} = +\infty$$
 by hypothesis, we conclude $\sum_{p} a_{N+p} = +\infty$ also, as required.

Example. Take $D_k = 1$ for each k in Kummer's Test. Also, assume $a_k > 0$ for each k. Then, in the notation introduced earlier (with extended-real interpretations),

$$\underline{L} = \liminf_{n \to \infty} \left(\frac{a_k}{a_{k+1}} - 1 \right) = \frac{1}{\overline{\alpha}} - 1, \quad \text{so} \quad \underline{L} > 0 \iff \overline{\alpha} < 1;$$

$$\overline{L} = \limsup_{n \to \infty} \left(\frac{a_k}{a_{k+1}} - 1 \right) = \frac{1}{\underline{\alpha}} - 1, \quad \text{so} \quad \overline{L} > 0 \iff \underline{\alpha} > 1.$$

Thus Kummer's Test extends the Ratio Test.

Theorem (Raabe's Test). Let $S = \sum_k a_k$, with each $a_k > 0$. Suppose this limit exists:

$$R = \lim_{k \to \infty} k \left(\frac{a_k}{a_{k+1}} - 1 \right).$$

Then

- (a) If R > 1, the series S converges;
- (b) If R < 1, the series S diverges.

Proof. Choose $D_k = k$ and apply Kummer's Test. That result involves ratios like

$$\frac{D_k a_k - D_{k+1} a_{k+1}}{a_{k+1}} = \frac{k a_k - (k+1)a_{k+1}}{a_{k+1}} = k \left(\frac{a_k}{a_{k+1}} - 1\right) - 1.$$

By hypothesis, the right side converges, so we have $\underline{L} = \overline{L} = R - 1$ in Kummer's Test.

(a) If R > 1 then $\underline{L} > 0$, so S converges.

(b) If
$$R < 1$$
 then $\overline{L} < 0$, so S diverges. ////

Enrichment. Check out the lovely further story about Gauss's Ratio Test in Section 3.6.11 of TBB.

24 Oct 2025

Alternating Series. Intuitively, it is easier for a series whose terms alternate in sign to converge than for a series of positive terms. For example, the "alternating harmonic series" $S = \sum_{n} \frac{(-1)^{n+1}}{n}$ converges, as a consequence of the following result.

Theorem (Alternating Series Test—AST). If $S = \sum_{n} (-1)^n a_n$ and

(i)
$$a_0 \ge a_1 \ge a_2 \ge a_3 \ge \cdots$$
, (ii) $\lim_n a_n = 0$,

then S converges.

Proof. Sketch s_0, s_1, s_2, \ldots on a number line. It looks like $s_2 \geq s_4 \geq s_6 \geq s_8 \geq \cdots$, while $s_1 \leq s_3 \leq s_5 \leq \cdots$. To prove this, use condition (i): for any $n \in \mathbb{N}$,

$$s_{n+2} - s_n = (-1)^{n+1} a_{n+1} + (-1)^{n+2} a_{n+2} = (-1)^{n+1} \left[a_{n+1} - a_{n+2} \right] \begin{cases} \le 0, & \text{if } n \text{ even,} \\ \ge 0, & \text{if } n \text{ odd.} \end{cases}$$

Furthermore, for any $m \in \mathbb{N}$,

$$s_{2m+1} - s_{2m} = (-1)^{2m+1} a_{2m+1} \le 0$$
, i.e., $s_{2m+1} \le s_{2m}$.

Given any $k, \ell \in \mathbb{N}$, choose $m \ge \max\{k, \ell\}$ to get

$$s_{2k+1} < s_{2m+1} < s_{2m} < s_{2\ell}$$

So every odd-index s_n is no larger than any even index s_n :

$$s_1 < s_3 < s_5 < \cdots < s_6 < s_4 < s_2$$
.

It follows that both sequences $(s_{2k+1})_k$ and $(s_{2k})_k$ are bounded and monotonic, so they both converge. Now use (ii): Since $|s_{2k+1} - s_{2k}| = a_{2k} \to 0$ as $k \to \infty$, these two sequences must have the same limit. It follows that the entire sequence (s_n) converges to this common limit.

Remarks. 1. The inequality $s_{2n+1} \leq S \leq s_{2n}$ in this proof is useful in estimating S.

- 2. The textbook proof (Thm. 3.43) is dramatically different, and based on an interesting analogue of integration by parts called "summation by parts". It deserves careful reading.
- 3. Alternative method: test Cauchy's criterion directly.

Summation by Parts. The analogy with integration by parts is emphasized when we use notation suggested by Folland's *Advanced Calculus*. The goal is to simplify

$$\sum_{k=0}^{n} A_k b_k.$$

So we define $A'_k = A_k - A_{k-1}$ and $B_k = b_0 + b_1 + \cdots + b_k$. It's consistent to note $b_k = B'_k = B_k - B_{k-1}$ (define $B_{-1} = 0$ to make $b_0 = B'_0$ correct). Then

$$A_0b_0 + A_1b_1 + A_2b_2 + \dots + A_nb_n$$

$$= A_0B_0 + A_1(B_1 - B_0) + A_2(B_2 - B_1) + \dots + A_n(B_n - B_{n-1})$$

$$= (A_0 - A_1)B_0 + (A_1 - A_2)B_1 + \dots + (A_{n-1} - A_n)B_{n-1} + A_nB_n$$

$$= -A'_1B_0 - A'_2B_1 - \dots - A'_nB_{n-1} + A_nB_n$$

In compact form,

$$\sum_{k=0}^{n} A_k B'_k = A_n B_n - \sum_{k=1}^{n} A'_k B_{k-1}.$$

This supports the following generalization of the AST, which can be recovered by choosing $b_n = (-1)^n$.

Theorem (Dirichlet). Consider the series $S = \sum_{k=0}^{\infty} a_k b_k$. If

- $a_0 \ge a_1 \ge a_2 \ge \cdots$ and $\lim_{n\to\infty} a_n = 0$, and
- $B_n = b_0 + b_1 + \cdots + b_n$ is a bounded sequence,

then the series S converges.

Proof. Think of $A_k = a_k$ in the summation by parts formula above. For each $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} a_k b_k = a_n B_n - \sum_{k=1}^{n} a'_k B_{k-1}, \quad \text{where } a'_k = a_k - a_{k-1}.$$

Both RHS terms converge as $n \to \infty$. Indeed, the boundedness hypothesis guarantees that $C = \sup_n |B_n|$ is a real number, so

$$|a_n B_n| \le C a_n \to 0.$$

And the monotonicity assumption gives (by telescoping)

$$\sum_{k=1}^{n} |a'_k B_{k-1}| \le C \sum_{k=1}^{n} |a'_k| = C \sum_{k=1}^{n} (a_{k-1} - a_k) = C(a_0 - a_n) \le Ca_0.$$
 (†)

Absolute convergence implies convergence, so $\sum_{k=1}^{n} a'_k B_{k-1}$ has a real-valued limit as $n \to \infty$. This completes the proof.

Remark. Dirichlet's Theorem does not assert absolute convergence for the series $\sum_k a_k b_k$. Indeed that would be wrong, because this theorem generalizes the AST, and therefore asserts convergence for series like $\sum_k (-1)^k / \sqrt{k}$ that do not converge absolutely. It's true that the proof relies on the absolute convergence of a certain series, but this is a different series from the one in the statement.

Application (Home Practice). Use geometric series methods to prove

$$\sum_{k=1}^{n} (e^{ix})^k = e^{i(n+1)x/2} \frac{\sin(nx/2)}{\sin(x/2)}.$$

Then if $b_k = \sin(kx)$, deduce $|B_n| \leq \frac{1}{\sin(x/2)}$. It follows that whenever $a_n \downarrow 0$, the Fourier Sine Series

$$S(x) = \sum_{k=1}^{\infty} a_k \sin(kx)$$

converges for each x where $\sin(x/2) \neq 0$. But the only x not covered here have the form $x = 2n\pi$ for some $n \in \mathbb{Z}$, and for all such x we have $\sin(kx) = 0$ for each $k \in \mathbb{N}$. So $S(2n\pi) = 0$ for each $n \in \mathbb{N}$, and thus S(x) is defined for all real x.

Absolute vs Conditional Convergence. Recall:

- If $\sum_{n} |a_n|$ converges, then $\sum_{n} a_n$ converges.
- $S = \sum_n a_n$ is said to **converge absolutely** if $\sum_n |a_n|$ converges.

Now $\sum_{n} \frac{(-1)^n}{\sqrt{n}}$ converges by the AST, but $\sum_{n} \left| \frac{(-1)^n}{\sqrt{n}} \right| = \sum_{n} \frac{1}{n^{1/2}} = +\infty$. Series like

this one, where $\sum_n a_n$ converges but $\sum_n |a_n|$ does not, are called **nonabsolutely** or **conditionally** convergent.

reading

Rearrangements. It makes intuitive sense to call any bijection $\phi: \mathbb{N} \to \mathbb{N}$ a rearrangement of the set \mathbb{N} . Note that for any such bijection, we can say two things:

- (i) For any given $N \in \mathbb{N}$, there exists some $M \in \mathbb{N}$ (possibly large) for which the set $\{1, 2, ..., N\}$ is a subset of $\{\phi(1), \phi(2), ..., \phi(M)\}$. (Of course every $M' \geq M$ will also provide a suitable superset.)
- (ii) For any given $M \in \mathbb{N}$, there exists some $N \in \mathbb{N}$ (possibly large) such that the set $\{\phi(1), \phi(2), \ldots, \phi(M)\}$ is a subset of $\{1, 2, \ldots, N\}$. (Of course every $N' \geq N$ will also work here.)

When a series $A = \sum_{k \in \mathbb{N}} a_k$ is given, a series $B = \sum_{n \in \mathbb{N}} b_n$ is called a rearrangement of A if there is a rearrangement of N, say ϕ , such that $b_n = a_{\phi(n)}$ for each n.

If all the terms in the series A are positive, facts (i)–(ii) above lead immediately to a chain of inequalities between the partial sums for A and B that establish absolute

convergence also for the rearranged series B ... and of course the sums are equal. If A has terms of mixed sign but is nonetheless absolutely convergent, a slightly more careful approach establishes that the rearrangement B will converge and have the same value as A. (See Rudin Thm. 3.55.)

By contrast, conditional convergence is full of horrors. To illustrate, consider the alternating harmonic series:

$$S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \pm \cdots$$

This converges by the AST. But if we re-order the terms by picking up 2 negative terms after each positive one, we get

$$S' = 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \frac{1}{10} - \frac{1}{12} + \dots$$

(Practice: Identify the bijection $\phi: \mathbb{N} \to \mathbb{N}$ that confirms that S' qualifies as a rearrangement of S.) Inserting parentheses reveals something rather unsettling:

$$S' = \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \left(\frac{1}{5} - \frac{1}{10}\right) - \frac{1}{12} + \dots$$

$$= \left(\frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{6}\right) - \frac{1}{8} + \left(\frac{1}{10}\right) - \frac{1}{12} + \dots$$

$$= \frac{1}{2} \left[1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \pm \dots\right].$$

Yes, $S' = \frac{1}{2}S!$ Innocent-looking operations like re-ordering the terms of the series can change the number it converges to. In fact, according to a theorem of Riemann

[Rudin Thm. 3.54], for every conditionally convergent series $\sum_{n=1}^{\infty} a_n$ and every real

number L, there exists a bijection $\phi: \mathbb{N} \to \mathbb{N}$ such that $\sum_{n=1}^{\infty} a_{\phi(n)} = L$. We will not dwell on such matters; TBB explain everything in Section 3.7 and the associated exercises.

F. Power Series

Here are some things worth knowing, not covered in class.

Series involving a variable parameter (a.k.a. "series of functions") have many uses in pure and applied mathematics. Typically the series will converge for some x and not for others, and we want to know what happens where. For example, the set of real x

where the series $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ converges is precisely the interval $(1, +\infty)$.

The simplest series of functions are power series, which have the form

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n$$

for given constants c_n and x_0 . (Shorthand: $(x - x_0)^0 = 1$ for all x, including $x = x_0$... a slight offence against our usual refusal to define 0^0 .) For these, the set of x giving convergence has a simple shape.

Theorem. For any power series $\sum c_n(x-x_0)^n$, there exists $R \in [0,+\infty) \cup \{+\infty\}$ such that $|x-x_0| < R$ implies absolute convergence and $|x-x_0| > R$ implies divergence.

Remarks. 1. The series obviously converges (to c_0) when $x = x_0$, even when R = 0. This does not contradict the statement, " $|x - x_0| < 0$ implies convergence."

- 2. This same result is valid for complex c_n , x_0 , and x. In this case, the inequality $|x-x_0| < R$ describes an open disk in \mathbb{C} , centred at x_0 , called the **disk of convergence.** (If R=0 the disk is empty; if $R=+\infty$ it is the whole plane.) This explains why the number R is called the **radius of convergence** for the given series.
- 3. You can find R using the root test as in proof below (the ratio test often works, too): there is no need to memorize a special formula for power series.
- 4. The theorem gives no information about points x where $|x x_0| = R$: for these, use one of the various convergence tests developed previously.

Proof. For fixed $x \neq x_0$, this is an ordinary series with summands

$$a_n = c_n (x - x_0)^n.$$

Apply the Root Test, computing

$$\alpha = \limsup_{n} |a_n|^{1/n}$$

$$= \limsup_{n} |c_n(x - x_0)^n|^{1/n}$$

$$= |x - x_0| \lim_{n} \sup_{n} |c_n|^{1/n}$$

$$\stackrel{\text{def}}{=} |x - x_0| \gamma.$$

The series is certain to converge if $\alpha < 1$, i.e., either $\gamma = 0$ or else $|x - x_0| < 1/\gamma$; and to diverge if $\alpha > 1$, i.e., either $\gamma = +\infty$ or else $|x - x_0| > 1/\gamma$. Hence the statement holds for $R = 1/\gamma$ (extended interpretation in $[0, +\infty]$).

Example. For $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ (in which $x_0 = 0$), apply the Ratio Test:

$$\overline{\alpha} = \limsup_{n \to \infty} \left| \frac{x^{n+1}/(n+1)!}{x^n/n!} \right| = \limsup_{n \to \infty} \left| \frac{x}{(n+1)} \right| = 0 \quad \forall x \in \mathbb{R}.$$

This series converges for all real x: $R = +\infty$.

[Corollary: $\lim_{n\to\infty}\frac{x^n}{n!}=0$ for all real x, by the Crude Test for Divergence.]

For
$$\sum_{n=1}^{\infty} \frac{n!x^n}{n^n}$$
, the Ratio test gives

$$\overline{\alpha} = \limsup_{n \to \infty} \left| \frac{(n+1)! \, x^{n+1} / (n+1)^{n+1}}{n! x^n / n^n} \right| = \limsup_{n \to \infty} \left| \frac{x}{\left(1 + \frac{1}{n}\right)^n} \right| = \frac{|x|}{e} \qquad \forall x \in \mathbb{R}.$$

Convergence is assured if |x| < e. Similarly,

$$\underline{\alpha} = \liminf_{n \to \infty} \left| \frac{(n+1)! \, x^{n+1} / (n+1)^{n+1}}{n! x^n / n^n} \right| = \frac{|x|}{e} \qquad \forall x \in \mathbb{R},$$

so divergence is assured if |x| > e. Hence the radius of convergence is R = e. When x = e, divergence follows from the Crude Test. Indeed, the power series definition gives

$$\forall x \ge 0, \ \forall n \in \mathbb{N}, \ e^x > \frac{x^n}{n!}.$$

In particular, when $x = n \in \mathbb{N}$, $e^n > n^n/n!$, so the terms of the given series obey

$$\frac{n!e^n}{n^n} > 1 \qquad \forall n \in \mathbb{N}.$$

When x = -e, terms of the same size show up with alternating signs. The Crude Test still applies, and shows divergence. The series converges if and only if |x| < e.