V. Series in R
UBC M320 Lecture Notes by Philip D. Loewen

A. Basic Definitions 15 Oct 2025

Given a sequence ai,as,... in R, the corresponding series is another sequence
S1, 82, ..., defined by building partial sums:

N
sN:Zan:al—f—ag—i—-'--i-aN VN € N.

n=1

We are interested in the convergence properties of this new sequence, i.e., in

N fe’s)
= 1i = li . Notation: S = )
S NEIIOOSN NgnooZan otation: S Zlan
n= n=

The series converges when S has a value in R, and diverges otherwise. For some
divergent series the extended values —oo and +oo may be appropriate.

Our main question: does S converge? (Other courses [Applied math/numerical
analysis| deal with, “Calculate the limit”.) To decide convergence, the first few
million terms are irrelevant, so we sometimes adopt the lazy notation S = )" a,.
All convergence tests adapt accordingly.

o o
Lemma. If S = Zl an converges, then kll)Holo Zk a, = 0.
n= n=

Proof. Fix any k and split the sum:

N k—1 N
VN >k, Zan:Zan—f—Zan.
n=1 n=1 n=k
Send N — oo. The first two sequences converge, so the third one does too: we get
k—1 00
S = Zan—l—Tk, where 7, = Zan.
n=1

n=~k

This holds for each k € N. As k — oo, the first two sequences converge, so the third
one does too: this time,

S =54+ lim 7,
k—o0
which gives 7, — 0, as required. /]]/
We know two ways of proving a limit exists without knowing its value in advance.

“05-series” ©Philip D. Loewen, 24 October 2025, page 1. 2025-10-24, 16:54.



2 PHiLip D. LOEWEN

Theorem (Monotone Convergence Criterion). If a,, > 0 for all n, then the
series S =), a, converges if and only if the sequence of partial sums is bounded.

Proof. Since s,+1 — s, = an, > 0 for all n, the partial sums form a nondecreasing
sequence. We have dealt with these earlier. /]]/

Theorem (Cauchy’s Convergence Criterion). The series S =) a, converges
if and only if for every € > 0 there exists N € N such that

Vm >N, Vp>0, |am+amt1+ -+ amgp| <Ee.

Proof. Apply Cauchy’s criterion to the sequence of partial sums: note that

|Sm4p — Sm—1| = [(a1 4+ -+ ams1 + @m + -+ Qmyp) — (a1 + - - + Qp—1)]
- |am +am+1 + "'+am+p|'

Cauchy’s criterion says the sequence (s,,) converges if and only if this quantity can
be made small (regardless of p) by choosing m sufficiently large. /]]/

Thm (Crude Divergence Test). If ‘lima,, = 0” is false, then ), a,, diverges.
Proof. [Contraposition] Suppose ) a, converges. Given any ¢ > 0, Cauchy (above)
supplies N € N such that (taking p = 0)

each m > N obeys |a,,| < ¢.
Since € > 0 is arbitrary, this shows lim,, a,, = 0. /]//
Theorem (Comparison Test). Suppose 0 < |a,| < b, for all n. Then ...
(a) If Y, b, converges, then ) a, converges.
(b) If >, |an| = 400, then ) b, = +o0.
Proof. (a) Apply the Cauchy criterion.

(b) The partial sums sy = Zgﬂ |a,,| form an unbounded sequence by hypothesis,
and the partial sums ty = 22;1 b, are even bigger. /]]/

Corollary. If )" |a,| < +oco, then ) a, converges. In words, “Absolute Conver-
gence implies Convergence.”

Proof. Use b,, = |a,| above. /1]

1 1
Example (Harmonic Series). Z — diverges to +o0o. (However, — — 0.)
n n

Proof. The negation of Cauchy’s criterion is

“(Ve>0,aINeN :Vm >N, Vp >0, |am~+ Gmi1+ -+ Gmyp| <€)
ie, 3e>0:VNeN, Im>N, peN: |ap +ams1+ -+ amip| > €.
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V. Series in R 3

This holds with € = 1/2. Indeed, for any N € N, pick m = N and p = N: then

11 1 1
R S R e Rt oy

11 1 1y 1

> L v (=) 2

Zontantan T an = +>X<2N) >

This is interesting because the series diverges, but the crude divergence criterion

above is not sharp enough to detect this. Informally, this is because series diverges
rather slowly. A quick sketch and an informal integral show that ZN L1+

n=1n
log(N), so to get a partial sum of 200 or more requires at least N = €2 terms.

That’s more than 10%¢. Reputable online sources use 1052 as a generous estimate of
the number of atoms in the known universe. /]/]/
Example (Geometric Series). For a fixed real number r, consider S = Z r'.
n=0

(Use r® =1 for all r.)

1

(a) If|r| <1, S converges: S = T
—r

(b) If |r| > 1, S diverges.

Proof. For any N,
sN:1—|—r+r2—|—...—|—rN.

If r>1, sy > N + 1 diverges to +00 as N — co. (“S = +00.”)
If r # 1, then
1—T’N+1
SN = ———— VYN > 0.
1—7r

If |r| < 1, then sending N — oo gives

1
S = lim sy = .
N—oco 1—7r

If r < —1, the sequence (sy) diverges by the Crude Divergence Test below. /]//

Remark. In different words, consider f(x) = Z x". Then the domain of f is (—1,1),

n=0

and f(x) = ] !

on that set. Geometric series foreshadow general power series.
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4 PHiLip D. LOEWEN

20 Oct 2025 |

Example (Telescoping Series). For any N > 2,

—dn? -1~ 2N -1

Consequently
i 2 = lim [1-— L =1
= dn? -1 Nooo 2N -1/

Proof. This starts with the partial-fractions style identity

1 1 (2n+1) — (2n — 1) 2

m—1 2n+1  (2n)2—(1)2  4n2—1

The similarity in successive terms is key to massive cancellation (“telescoping”):

Moo al 1 1
24712—1:2(271—1_271—1—1)

n=1 n=1
(1 1 1 1 1 1 1 1
—(I—§)+<§—5)+(5—7)+~'~+(2N_1—2N+1)
1 1
T 1 2N+1

Dangerous Nonsense. We know

> 2 > 1 1
1= - = - .
;_:14712—1 ;(211—1 2n+1)

This does not split to give

=1 =1
1:;271—1_;271“'

Indeed, by comparison, both series on the right diverge to +o0o, and the expression
00 — 00 is undefined.

1
Example. Zsin (%) diverges, because sinf > 20/x for 6 € [0,7/2] and the

harmonic series diverges.

Theorem (Root Test). Consider S =)  a,. Define o = limsup, |an|1/n.

(a) If a < 1, S converges absolutely.
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V. Series in R 5
(b) If a« > 1, S diverges.
Proof. (a) Choose any r € («, 1). Since r > a, there exists N € N so large that
l/n . n
Vn >N, la,|”"" <r, ie., |ay| <r".

Hence )~ \ |a,| converges by comparison with the geometric series »_~~ 5 7.

(b) Suppose a > 1. Choose R € (1,«). Since R < a, there is a subsequence (an, )k
of (ay,) satisfying |a,, | > R > 1 for all k. Clearly a,, # 0, so “lim, a,, = 0” is
false: divergence follows from the Crude Test. /]/]/

Remark. When applying the Root Test, it’s useful to know (Rudin, Thm. 3.20) that

Vo >0, lim 2'/" =1, and lim n!/™ = 1.
n—oo n—oo

Theorem (Ratio Test). Consider S =)  a,, where all a,, # 0.

(a) Ifa M i sup ntl| 1, then S converges absolutely.
n Qn

(b) If C Jiminf | 2L ] S 1, then S diverges.
n an

Proof. (a) Choose r € (@, 1). Since r > @, there exists N € N so large that

a
Vn > N, ntl

<r, e, |apyi| <rlagl-

n

It follows that |anix| < 7%|an]|, so by comparison
Z lan k| < |an] Zrk < +o0.
k k

Convergence of S follows.
(b) Choose r € (1,a). Then r < @, so there exists N € N such that

|ant1] > rlan| > |ay| for all n > N. Thus “lim, a, = 0” is false. Divergence
follows from the Crude Test. /]/]/

Remark. The ratio test is easier to try, but the root test is more discriminating. In
both tests, certain values of «, @, a leave you with no useful conclusion.

Summary. For S =>"°  a,, with all a,, # 0, define

An+41
(¢7%)

An+41
(¢7%)

. 1 . .
a = limsup |a,|"", a = liminf

im in , o = lim sup
n—oo

n—oo

Then
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6 PHiLip D. LOEWEN

b
(i) a<l1 & & >, lan| converges = S converges;

(i) a>1 = a>1 = S diverges;
(iii) If @« =1 (which implies a <1 < @) any outcome is possible.

Some implications here remain to be proved. Focus on line (i): implication (b) is the
Root Test, proved earlier.

To prove (a), we show o < @ [Rudin Thm. 3.37].
Case @ = +o00: Stmt “a < +00” is obvious, so desired result holds.

Case @ < +00. Thanks to Archimedes, we can show o < @ by proving
() Ve >0, a<a+e.

So let € > 0 be given; define f§ = @+ ¢. [Note that § > 0 since @ > 0 and € > 0.]
Deduce the existence of some N € N such that

a
Vn > N, ntl

< 57 i'e'7 ‘an+1| < B|an"

n

(Used € = f — @ in Rudin 3.17.) Then for any p € N,
lanp| < Blanip—1] < Blantp-2| <--- < BPlan].
In other words, for any m > N,
|am| < B Nan| = [~ |an]] 8™

Thus Y
jam|”™ < BB Nan]]'" ¥m >N

Take limsup,,,_, ., both sides: strict inequality degrades to give

a< f=a+e.

Since € > 0 is arbitrary, (x) holds—proof complete! /]]/
. 1 1 1 1 . .
Example. [Rudin 3.35.] S=1+1+ 3 + 3 + 7] + 32 + ... evidently converges, with
1 1 7
S + =

T1-(1/2) "1-(@1/3) 2
How do the tests work out?

Here

Aon = 5, CL2n—|—1:3_n7 n:071727"'7

SO
Jaza| /2" = (1/2M) 7" =

5l-
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V. Series in R 7

while

n/(2n+1
Jagn VO = (1731 = (1) R
n 3 \/g'
This gives
1
a = limsup |a,|"" = — < 1,
sup |an| 7

so the root test predicts convergence. However, a = 0 and @ = +o00, because

A2n+2 1/2n—|—1 1 3 "
fr — — —
aonr|  L1/3"  2\2 +oo,
A2n+1 1/3” 2 "
= == — 0.
a2n, 1/2” (3
Here the ratio test is inapplicable, but at least not wrong! /]]/

The next test resolves some cases where a geometric comparison is too demand-
ing.

Theorem (Cauchy Condensation Test). If a, > a,4+1 > 0 for all n, TFAE:

(a) S = Z an < +00, (b) T = szCLka < 400.
n=1 k=0

Proof. (b)=-(a) The key idea is illustrated by this sandwich of inequalities:
ar + (az + az) + (a4 + a5 + ag + a7) + (ag + - + a1s)
<ai + (a2 +a2) + (as + as + as + aq) + (ag + - - - + ag)
Suppose T' < +o0. For any n, choose k so n < 2¥*1: then

n
def
= g ap = ai +az+---+ap

k=1
<aj+(ag+as)+ (ag+as+as+ar)+---+ (age + -+ agr1_1)
§a1+2a2+4a4+---+2ka2k
<T.

Sn

Hence (s,) is bounded above; clearly s, T, so (s,) converges.

| 22 Oct 2025 |
(a)=-(b) Suppose S < +o00. Consider a typical partial sum associated with T

2ka2k = ay + 2as + 4ay + 8ag + - - + 2" agn

~
3
I

[

k=0
<2 [%al +as + 2a4 +4ag + - + 2”_1a2n]
SQ[ ay +a2+(a3+a4)+(a5+a6+a7+a8)+---+(a2n—1+1+"'+a2n)]
< 28.
Hence (t,) is bounded above; clearly ¢, 1, so (¢,) converges. /]]/
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8 PHiLip D. LOEWEN

p-Series. The notation below comes from the famous Riemann zeta function.

oo
1
Proposition. The series ((p) ot E — (p € R) converges if and only if p > 1.
n

n=1

Proof. If p < 0, the series diverges by the Crude Test. When p > 0, we can apply
Cauchy’s Condensation Test. The sequence a,, = 1/n? is decreasing and nonnegative,
so ((p) converges if and only if this series does:

r=3 () =X 09T =2 )

k=0 k=0

This T is geometric, with ratio r = 2!~P. It converges if and only if » < 1, i.e., p > 1.

/1]

Remarks. For any fixed p > 0, we can calculate the ingredients in the root and ratio

tests:
1\/" 1\?
a= hmnsup (ﬁ) = 111511 (W) =1,

p p
n l/np n n+1

Both the root and the ratio tests are inconclusive; the series converges. (In fact,
C(2) = 72/6; ¢(4) = 7*/90; ¢(6) = 75/945; ... and 72" /((2n) is a known rational
number for all n € N. The first of these rational numbers that is not actually an
integer is 712 /((12) = 638512875/691.)

Euler’s Number. Please read about the number e in Rudin, paragraphs 3.30-3.32.

Question. Suppose p(n) > 1 for each n € N. Does this guarantee convergence for

1
E ) ? No! When p = 1+ 1/n, this series diverges. Try showing this with the
n
n=1
Cauchy Condensation Test.

Theorem (Kummer’s Test-TBB pp. 115ff). Consider S = > °°

n=1
a, > 0 for each n. Let (D,,) be any sequence of positive numbers. Define

an, where

L = liminf k%E k+1 k—l—l, T = limsup KOGk ht10k1

n—00 k41 n—00 Ap+1

(a) If L > 0 then S converges.

— 1
(b) If L < 0 and Z o= +o00, then S diverges.

Proof. (a) If L > 0 then we can choose some r € (0,L). The definition of lim inf
implies that for some N € N,
Dyar — Dgy1ap41

Vk > N, r < , e, ragsr < Dyay — Dk+1ak+1.
Ak+1
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V. Series in R

This is a telescoping-sum opportunity:

ran+1 < Dyany — Dyti1an+1

rant2 < Dyjiani1 — Dyjoang2

ran+p < DNip—1anN4p—1 — DN4pan+p
Add these, then remember that all D,, > 0 and all a,, > 0:

T(CLN+1 + ...+ aN+p) < Dnyapn — DN+paN_|_p < Dyapn — 0.
This shows that the partial sums for S are bounded (by Dyap), which implies
that S converges.
(b) If L < 0, then there exists N € N such that

k> N, Dyay — Diy1ak41

<0, ie., Dgap < Dygiiapy1.
Gk+1

Chaining together inequalities like this shows that for all p € N,
Dyan <+ < DNipaN+p,

Since Z 1
P

= +4o00 by hypothesis, we conclude ZGNJFP = 400 also, as
DN—HD

. 1
ie, antp > (Dnan)

Dnip

p
required.

/111

Example. Take Dy =1 for each k in Kummer’s Test. Also, assume aj > 0 for each
k. Then, in the notation introduced earlier (with extended-real interpretations),

1
Lzliminf( Ak —1) — =1,
n—oo \ Qk+1 a

leimsup( il —1) =——1,
n—00 Ak4+1

Thus Kummer’s Test extends the Ratio Test.

so L>0 << a<l;

Q|+

so L>0 < a>1.

Theorem (Raabe’s Test). Let S = ), ax, with each a, > 0. Suppose this limit
exists:

R= lim k( Ok —1).
k— o0 Ak+1
Then

(a) If R > 1, the series S converges;

(b) If R < 1, the series S diverges.

Proof. Choose Dy, = k and apply Kummer’s Test. That result involves ratios like
Dyayr — Diy1ak41

_kak—(k+1)ak+1 :k( ag _1)_1'

Ap41 Ap41

Ap41
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10 PHiLiP D. LOEWEN

By hypothesis, the right side converges, so we have L = L = R — 1 in Kummer’s
Test.

(a) If R > 1 then L > 0, so S converges.
(b) If R < 1 then L < 0, so S diverges. /]//

Enrichment. Check out the lovely further story about Gauss’s Ratio Test in Sec-
tion 3.6.11 of TBB.

24 Oct 2025

Alternating Series. Intuitively, it is easier for a series whose terms alternate in
sign to converge than for a series of positive terms. For example, the “alternating
1)n—|—1

harmonic series” S = g (7
n
n

converges, as a consequence of the following result.

Theorem (Alternating Series Test—AST). IfS = Z(—l)"an and

n
(i)ap>a1 >ay>az3 > -, (ii) lirlgnan:(),
then S converges.
Proof. Sketch sq, s1, S2,... on a number line. It looks like so > s4 > s > sg > -+,
while s1 < s3 < s5 < ---. To prove this, use condition (i): for any n € N,
<0, if n even,

Sn42—8n = (_1>n+1an+1+(_1)n+2an+2 = (_1)n+1 [@nt1 — ano] { >0, ifn odd

Furthermore, for any m € N,

— (_1)2m+1

52m4+1 — S2m a2m+1 < 0, 1e., Som41 < Som.

Given any k, ¢ € N, choose m > max {k, ¢} to get
Sok+1 < S2m+1 < S2m < Sar.
So every odd-index s,, is no larger than any even index s,:
51 <853 <85 < -0 <86 <S4 < S

It follows that both sequences (sax11)x and (sax)r are bounded and monotonic, so
they both converge. Now use (ii): Since [soxy1 — Sok| = a2 — 0 as k — oo, these
two sequences must have the same limit. It follows that the entire sequence (s;,)
converges to this common limit. /]//

Remarks. 1. The inequality ss,4+1 < S < S9, in this proof is useful in estimating S.

2. The textbook proof (Thm. 3.43) is dramatically different, and based on an inter-
esting analogue of integration by parts called “summation by parts”. It deserves
careful reading.

3. Alternative method: test Cauchy’s criterion directly.
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V. Series in R 11

Summation by Parts. The analogy with integration by parts is emphasized when
we use notation suggested by Folland’s Advanced Calculus. The goal is to simplify

> Agby.

k=0
So we define A} = Ay — Ap_1 and By = by + by + --- + b,. It’s consistent to note
by = B}, = B, — By_1 (define B_; = 0 to make by = B|, correct). Then

Aobg + A1by + Asby + -+ A,by,
= AyBo + A1(B1 — Byg) + A3(By — B1) + ...+ A (B, — Bp—1)
=(Ag—A1)By+ (A1 —As)B1+ -+ (A1 — Ap)Br—1 + A, By,
=—A\By—AyBy —---— A} B,,_1 + A, B,

In compact form,

zn: ApBj = Ap B, — zn: Al By 1.
k=0 k=1

This supports the following generalization of the AST, which can be recovered by
choosing b,, = (—1)".

Theorem (Dirichlet). Consider the series S = Z apbg. If
k=0

® ag > a1 > ag > --- and lim,,_,, a,, =0, and
e B,=0by+b+---4+0b, is a bounded sequence,

then the series S converges.

Proof. Think of A; = aj in the summation by parts formula above. For each n € N,
n n
Zakbk =a,B, — Za;Bk_l, where aj, = ap — ax_1.
k=0 k=1

Both RHS terms converge as n — oo. Indeed, the boundedness hypothesis guarantees
that C' = sup,, | By| is a real number, so

lap,B,| < Ca, — 0.

And the monotonicity assumption gives (by telescoping)

> larBroa| < C Y lagl =C Y (ak—1 — ax) = C(ag — an) < Cao. ©)
k=1 k=1 k=1

n
Absolute convergence implies convergence, so Z%Bk—1 has a real-valued limit as
k=1
n — oo. This completes the proof. /]/]/
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12 PHiLiP D. LOEWEN

Remark. Dirichlet’s Theorem does not assert absolute convergence for the series
>k arbr. Indeed that would be wrong, because this theorem generalizes the AST,

and therefore asserts convergence for series like Y, (—1)*¥/v/k that do not converge
absolutely. It’s true that the proof relies on the absolute convergence of a certain
series, but this is a different series from the one in the statement.

Application (Home Practice). Use geometric series methods to prove

- ol k_ pi(n+1)a/2 sin(nz/2)
Z( ) sin(z/2)

k=1
Then if by = sin(kx), deduce |B,| < =—1+75. It follows that whenever a,, | 0, the

sin(z/2)*
Fourier Sine Series

S(z) = Z ay sin(kz)
k=1

converges for each x where sin(z/2) # 0. But the only = not covered here have the
form z = 2n7w for some n € Z, and for all such = we have sin(kx) = 0 for each k£ € N.
So S(2nm) = 0 for each n € N, and thus S(x) is defined for all real z. /]]/
Absolute vs Conditional Convergence. Recall:

o If " |ay| converges, then > a, converges.

e S=)a, is said to converge absolutely if > |a,| converges.

—1)» 1" 1
Now E (\/ﬁ) converges by the AST, but g (\/ﬁ> = E —73 = T Series like
n

this one, where ) a, converges but ) |ay| does not, are called nonabsolutely or
conditionally convergent.

reading

Rearrangements. It makes intuitive sense to call any bijection ¢:N — N a rear-
rangement of the set N. Note that for any such bijection, we can say two things:

(i) For any given N € N, there exists some M € N (possibly large) for which the set
{1,2,...,N} is a subset of {¢(1),p(2),...,¢(M)}. (Of course every M' > M
will also provide a suitable superset.)

(ii) For any given M € N, there exists some N € N (possibly large) such that the
set {¢(1),(2),...,0(M)} is a subset of {1,2,..., N}. (Of course every N' > N
will also work here.)

When a series A = ), .y ax is given, a series B = ) b, is called a rear-
rangement of A if there is a rearrangement of N, say ¢, such that b, = a4, for each
n.

If all the terms in the series A are positive, facts (i)—(ii) above lead immediately
to a chain of inequalities between the partial sums for A and B that establish absolute
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V. Series in R 13

convergence also for the rearranged series B ... and of course the sums are equal. If
A has terms of mixed sign but is nonetheless absolutely convergent, a slightly more
careful approach establishes that the rearrangement B will converge and have the
same value as A. (See Rudin Thm. 3.55.)

By contrast, conditional convergence is full of horrors. To illustrate, consider
the alternating harmonic series:

1 1 1
S=1-—+4-—Z+....
27371

This converges by the AST. But if we re-order the terms by picking up 2 negative
terms after each positive one, we get

(Practice: Identify the bijection ¢: N — N that confirms that S’ qualifies as a rear-
rangement of S.) Inserting parentheses reveals something rather unsettling:

g _ (1 1 1+ 1 1 1+ 1 1 1+
N 2 4 3 6 8 5 10 12
1 1 1 1 1 1
—(5)‘1+(6)‘§+<m)‘1—+-“
1 1 1 1
ZiF“+———iW]

Yes, S’ = %S !' Innocent-looking operations like re-ordering the terms of the series
can change the number it converges to. In fact, according to a theorem of Riemann

oo
[Rudin Thm. 3.54], for every conditionally convergent series Zan and every real

n=1

number L, there exists a bijection ¢:N — N such that Z ag(ny = L. We will not
n=1
dwell on such matters; TBB explain everything in Section 3.7 and the associated

exercises.

F. Power Series
Here are some things worth knowing, not covered in class.

Series involving a variable parameter (a.k.a. “series of functions”) have many uses in
pure and applied mathematics. Typically the series will converge for some x and not

for others, and we want to know what happens where. For example, the set of real x

1
where the series ((x) = Z — converges is precisely the interval (1, 400).
nI

n=1
The simplest series of functions are power series, which have the form

oo

Z cn(x —x0)"

n=0
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14 PHiLiP D. LOEWEN

for given constants ¢, and zg. (Shorthand: (x — z()? = 1 for all z, including = = x
. a slight offence against our usual refusal to define 0°.) For these, the set of x
giving convergence has a simple shape.

Theorem. For any power series Z cn(x — x0)", there exists R € [0, +00) U {+o0}

such that |r — x| < R implies absolute convergence and |x — z¢| > R implies diver-
gence.

Remarks. 1. The series obviously converges (to ¢g) when z = z¢, even when R = 0.
This does not contradict the statement, “|z — 2| < 0 implies convergence.”

2. This same result is valid for complex ¢,, xg, and x. In this case, the inequality
|x — xg] < R describes an open disk in C, centred at x(, called the disk of
convergence. (If R = 0 the disk is empty; if R = +o0 it is the whole plane.)
This explains why the number R is called the radius of convergence for the
given series.

3. You can find R using the root test as in proof below (the ratio test often works,
too): there is no need to memorize a special formula for power series.

4. The theorem gives no information about points x where |z — z¢| = R: for these,
use one of the various convergence tests developed previously.

Proof. For fixed = # x(, this is an ordinary series with summands
ap, = cp(x — x0)".
Apply the Root Test, computing

a = limsup |a,|""
n

= limsup |en (z — 20)" /"

= |z — zo| limsup |e,|/™
n

def
= |z — xo| 7.

The series is certain to converge if o < 1, i.e., either v = 0 or else |x — x| < 1/7; and
to diverge if a > 1, i.e., either v = 400 or else |x — x| > 1/v. Hence the statement

holds for R = 1/v (extended interpretation in [0, +00]). /]]/
=" . .
Example. For Z — (in which z¢y = 0), apply the Ratio Test:
n!
n=0
ntl !
a = limsup 2/t 1) = lim sup < =0 Vr € R.
n—00 " /n! n—oo | (M+1)
This series converges for all real z: R = 4o00.
[Corollary: lim x—' = 0 for all real z, by the Crude Test for Divergence.]
n—oo nl
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V. Series in R 15

= nlz" ) )
For Zl ol the Ratio test gives
n=

1 | n+1 1 n+1
a = limsup (n+1) 93‘ /(n+1) = lim sup 931 - :m Vr € R.
n—00 nlax™/nn nooo |(1+1) e
Convergence is assured if |z| < e. Similarly,
1 | n+1 1 n+1
o = lim inf (n+ Dtz /(n+1) :m Ve e R,
n—oo nlax™/nm e

so divergence is assured if |x| > e. Hence the radius of convergence is R = e. When
x = e, divergence follows from the Crude Test. Indeed, the power series definition

gives
n

x
Ve >0, Vn € N, em>—'.
n!

In particular, when x = n € N, e™ > n™/n!, so the terms of the given series obey

nle”
>1 Vn € N.
nn
When z = —e, terms of the same size show up with alternating signs. The Crude

Test still applies, and shows divergence. The series converges if and only if |z| < e.
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