
VI. Hausdorff Topological Spaces

A. Open Sets – Three Steps 27 Oct 2025

Step One: Euclidean k-space. Recall that Rk = {x = (x1, . . . , xk) : xi ∈ R} is
the set of k-element tuples of real numbers. (When k = 1, we ignore the difference
in types between a 1-element tuple (x) and the ordinary real number x inside it, and
casually pretend R1 = R.)

Definition. Given x ∈ Rk and r > 0, the open ball of centre x and radius r is

B[x; r) =
{
y ∈ Rk : |y − x| < r

}
.

A subset U of Rk is open if and only if

∀x ∈ U, ∃r > 0 : B[x; r) ⊆ U. (∗)

(Intuition: Each point x in U comes with some radius r, maybe small but guaranteed
to be positive, such that one can move away from x in any direction at all without
leaving the set U . . . provided the length of the excursion is not more than r.)

Remark. For fixed x in Rk and r > 0, the set U = B[x; r) is an “open set” (so the
name “open ball” is well-deserved).

Indeed, pick any x in U . Then |x− x| < r, so ε
def
= r−|x− x| > 0.

To show that B[x; ε) ⊆ U , pick any z ∈ B[x; ε): then |z − x| < ε,
so

|z − x| = |z − x+ x− x| ≤ |z − x|+ |x− x| < r.

That is, z ∈ B[x; r) = U . Since z is arbitrary in B[x; ε), this
reasoning shows that B[x; ε) ⊆ U , as required.

Remark. In Euclidean 2-space, U = {(x, y) : y > 0} is open; C = {(x, y) : y ≥ 0}

is not open but Cc def
= {(x, y) : y < 0} is open; L = {(x, y) : y > 0 or x ≥ 0} is not

open and Lc is not open either.

Notation. 1. The collection of sets T =
{
U ⊆ Rk : U is an open set

}
defines the

usual “topology” on Rk.

2. For a given point x ∈ Rk, the collection of sets

N (x) = {S ∈ P(X) : some U ∈ T obeys x ∈ U ⊆ S}

is the family of “neighbourhoods of x”. [Some writers insist on using only open
sets as “neighbourhoods”. There is no good reason for this restriction.]
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2 PHILIP D. LOEWEN

Convergence. The statement “xn → x̂ in Rk” can be expressed equivalently as

(a) ∀ε > 0, ∃N ∈ N : ∀n > N, xn ∈ B[x̂; ε).

(b) ∀S ∈ N (x̂), ∃N ∈ N : ∀n > N, xn ∈ S.

(b⇒a): Assume (b). Given ε > 0, take S = B[x̂; ε): then S ∈ N (x), so conclusion
of (a) follows.

(a⇒b): Assume (a). Given S ∈ N (x̂), choose ε > 0 such that B[x̂; ε) ⊆ S. Apply (a)
to this ε. Get back N such that all n > N give xn ∈ B[x̂; ε). For these same n, we
have xn ∈ S, by choice of ε above.

Properties of Open Sets. The numbering here anticipates properties (HTS1)–
(HTS4) below.

(i) Both ∅ and Rk are open. In symbols,

∅ ∈ T and Rk ∈ T .

(ii) Any union of open sets is open. That is, if G is any collection of open sets, then
defining U =

⋃
G produces an open set. Recall that

⋃
G =

⋃
G∈G G. In symbols,

G ⊆ T =⇒
⋃

G ∈ T .

(iii) Any intersection of finitely many open sets is open. In symbols,

[
n ∈ N, U1, . . . , Un ∈ T

]
=⇒ U1 ∩ · · · ∩ Un ∈ T .

(iv) Distinct points can be given disjoint neighbourhoods. In symbols,

∀x, y ∈ Rk, x 6= y =⇒

[
∃U, V ∈ T : x ∈ U, y ∈ V, U ∩ V = ∅

]
.

[Sketch justifications; note that finiteness is essential in (iii), because
⋂

n (−∞, 1/n) =
(−∞, 0] is not open.]

(i) Clearly X = Rk is open; and U = ∅ ∈ T because there are no points x in U
to falsify (∗).

(ii) Let G be any subset of T , and consider U =
⋃

G =
⋃

G∈G G. If x ∈ U ,
then there exists G ∈ G such that x ∈ G ∈ T . By (∗) for G, ∃ε > 0 s.t.
B[x; ε) ⊆ G ⊆ U .

(iii) Use induction, defining

P (n) : T contains any intersection of n members of T .
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VI. Hausdorff Topological Spaces 3

Start with n = 2. If U1, U2 ∈ T , let U = U1 ∩ U2. For any x in U , we have

x ∈ U1 =⇒ ∃ε1 > 0 : B[x; ε1) ⊆ U1,

x ∈ U2 =⇒ ∃ε2 > 0 : B[x; ε2) ⊆ U2.

Take ε = min {ε1, ε2} to see B[x; ε) ⊆ U1 ∩ U2 = U , as required.
Now assume P (n) is true, and let U1, . . . , Un+1 be given members of T .
Then

U
def
=

n+1⋂

k=1

Uk = [U1 ∩ U2 ∩ · · ·Un] ∩ Un+1

displays U as an intersection of two sets: the first is open by P (n), and the
second (Un+1) is open by hypothesis. Hence U is open by P (2). This estab-
lishes P (n+1), and it follows from the principle of mathematical induction
that P (k) is true for all k ∈ N.

(iv) If x, y ∈ Rk obey x 6= y, then |y − x| > 0. So let ε = |y − x|/2: then

B[x; ε) ∩ B[y; ε) = ∅.

The triangle inequality shows this. Indeed, any specific z ∈ B[x; ε) obeys
|z − x| < ε, so

|z − y| ≥ |y − x| − |z − x| > 2ε− ε = ε.

That is, z 6∈ B[y; ε). Remember that both B[x; ε) and B[y; ε) are open. ////

Step 2: Metric Spaces.

Definition. Given a nonempty set X , a function d:X×X → R is called a metric if

(a) d(x, y) ≥ 0 ∀x, y ∈ X , with equality iff x = y [positivity];

(b) d(x, y) = d(y, x) ∀x, y ∈ X [symmetry];

(c) d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X [triangle inequality].

In this case the pair (X, d) is called a metric space.

Examples. • For any nonempty set X (including Rk!),

d(x, y) =

{
0, if x = y,
1, if x 6= y.

defines the discrete metric.

• For X = Rk, d(x, y) = |y − x| defines the Euclidean metric. Properties (a)–
(b) are clear; we proved (c) earlier this term. Unless otherwise specified, this is
the metric we mean whenever we write just “Rk”.
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4 PHILIP D. LOEWEN

• For X = Rk, other famous metrics include

d1(x, y) =

k∑

n=1

|xn − yn|,

d∞(x, y) = max {|xn − yn| : n = 1, 2, . . . , k} ,

dp(x, y) =

(
k∑

n=1

|xn − yn|
p

)1/p

p ≥ 1.

Properties (a)–(c) are obvious for the first two above; for general p > 1, the
triangle inequality for dp is known as Minkowski’s Inequality. (The fact that it
is named after somebody suggests, correctly, that it is not obvious.)

• For X = ℓ2, the set of sequences x = (x1, x2, . . .) obeying
∞∑

n=1

|xn|
2
< +∞,

declaring

d(x, y) =

√√√√
∞∑

n=1

|yn − xn|
2

defines a metric that shares many features with the Euclidean metric on Rk.
Various supporting facts are explored on HW.

• For the set X of bounded functions x: [0, 1] → R,

d(x, y) = sup {|y(t)− x(t)| : t ∈ [0, 1]}

defines a metric (home practice!).

Notation. Taken together, the set X and metric d provide a complete context for
some problems. So we call the pair (X, d) a “metric space”. In this context, we define
various “balls” for any x ∈ X and r > 0:

B[x; r) = {y ∈ X : 0 ≤ d(x, y) < r} ,

B[x; r] = {y ∈ X : 0 ≤ d(x, y) ≤ r} ,

B(x; r) = {y ∈ X : 0 < d(x, y) < r} ,

B(x; r] = {y ∈ X : 0 < d(x, y) < r} .

The inequalities requiring d(x, y) ≥ 0 in the first two lines are redundant. Show-
ing them here is supposed to help explain the interpretation of various parenthe-
sis/bracket shapes.

The Open Sets. In a metric space (X, d), let T denote the collection of all subsets
G ⊆ X with this property:

∀x ∈ G, ∃r > 0 : B[x; r) ⊆ G.

A set G is called open if and only if G ∈ T .
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VI. Hausdorff Topological Spaces 5

Proposition. In any metric space (X, d), properties (i)–(iv) enumerated earlier for
open sets in Rk remain valid.

Proof. Just reread the sketchy justifications above, changing |y−x| to d(x, y) wherever
the former appears. ////

Convergence. In a metric space (X, d), a sequence (xn) and an element x̂ are related
by saying x̂ = limn→∞ xn (or xn → x̂ as n → ∞) exactly when

∀ε > 0, ∃N ∈ N : ∀n > N, d(xn, x̂) < ε.

This is perfectly analogous with the familiar situation in Rk. A given sequence (xn)
is called convergent if and only if there exists x̂ ∈ X such that xn → x̂ as n → ∞.

Note that the limiting statement xn → x̂ in (X, d) is logically equivalent to the
limiting statement d(xn, x̂) → 0 in R. So any method for showing that a nonnegative
sequence of real numbers converges to 0 may be useful in the study of metric spaces.
(The Squeeze Theorem is a leading candidate for this.)

In the presence of a metric, most topological concepts admit simple (and useful!)
characterizations built from sequences. Here is a first result of this type.

Proposition. In a metric space (X, d), with subset A, the following are equivalent:

(a) A is an open set.

(b) For every x ∈ A, and every sequence (xn) obeying xn → x, one has xn ∈ A for
all n sufficiently large. That is,

∃N ∈ N : ∀n > N, xn ∈ A.

(Constant sequences are allowed.)

Proof. (a⇒b) Suppose A is open. Pick any x ∈ A and any sequence (xn) converging
to x. Since A is open and x ∈ A, there exists ε > 0 so small that B[x; ε) ⊆ A.
Use this ε > 0 as the tolerance in the convergence definition: this gives some
N ∈ N such that for all n > N , one has d(xn, x) < ε. This inequality means
precisly that xn ∈ B[x; ε) ⊆ A, as required.

(b⇒a) Contraposition: Suppose A is not open. This means that there exists some
point x ∈ A such that

∀ε > 0, B[x; ε) 6⊆ A,

i.e., ∀ε > 0, B[x; ε) ∩ Ac 6= ∅.

For each n ∈ N, use this statement with ε = 1/n to see that B[x; 1/n) contains
a point xn 6∈ A. This produces a sequence xn for which xn 6∈ A for all n and
yet d(xn, x) < 1/n so that xn → x. We have shown “¬(a) =⇒ ¬(b)”, which is
logically equivalent to “(a) =⇒ (b)”. ////
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6 PHILIP D. LOEWEN

Step Three: Hausdorff Topological Spaces.

Definition. A topological space has two ingredients: a set X , and a family T of
subsets of X called “the open sets”, related by properties (HTS1)–(HTS3) below:

(HTS1) Both ∅ and X are open (i.e., ∅ ∈ T and X ∈ T ).

(HTS2) Any union of open sets is open. That is, for any subset G of T , one has⋃
G ∈ T .

(HTS3) Any intersection of finitely many open sets is open. That is, if N ∈ N and
U1, . . . , UN ∈ T , then U1 ∩ · · · ∩ UN ∈ T .

We will deal only with Hausdorff topological spaces, which also obey

(HTS4) Whenever x and y are distinct points of X , there exist disjoint open sets U
and V such that x ∈ U and y ∈ V .

We write HTS instead of Hausdorff Topological Space.

We have already verified conditions (HTS1)–(HTS4) for the topology generated
by any metric space. These notes depart slightly from the textbook presentation by
avoiding explicit references to metrics wherever possible. This perspective is useful
because it takes almost no extra work, and produces results that can be used in HTS’s
that involve topologies that do not originate with a metric. (Such HTS’s actually
exist and have uses in the wider world!)

IMPORTANT

All HTS definitions and theorems are available in any metric topology.

Example. (a) Discrete Topology. For any X one may consider

T = {U : U ⊆ X} .

In this topology, every set is open, and conditions (i)–(iv) are obvious.

(b) A non-Hausdorff topology (the only one we’ll ever consider!). Take X = {1, 2, 3}
and T = {∅, {1, 2}, {1, 3}, {1}, X}. Conditions (i)–(iii) clearly hold, but (iv) fails
on x = 2, y = 3.

(c) The usual topology on Rk. Take X = Rk. Define T by saying that U ∈ T iff
every point x in U has this property: for some ε > 0 (depending on x),

U ⊇ B[x; ε)
def
=
{
y ∈ Rk : |y − x| < ε

}
. (∗)

Conditions (i)–(iv) are demonstrated in Section A.

B. Neighbourhoods and Interior 29 Oct 2025

Definition. Let (X, T ) be a HTS. For each x ∈ X , let N (x) denote the set of all

neighbourhoods of x, defined by

S ∈ N (x) ⇐⇒ ∃U ∈ T : x ∈ U ⊆ S.
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VI. Hausdorff Topological Spaces 7

(Every open set containing x belongs to N (x). Often some non-open sets do, too.)

Lemma. In a HTS (X, T ), with A ⊆ X , TFAE:

(i) A is open;

(ii) For each x ∈ A, one has A ∈ N (x).

Proof. (i⇒ii) For any x in A, we obviously have x ∈ A ⊆ A. When A is open, we
have A ∈ T , so the definition of A ∈ N (x) stated above holds with U = A.

(ii⇒i) For each x in A, choose an open set Ux obeying both x ∈ Ux and Ux ⊆ A.
Then let

U =
⋃

x∈A

Ux.

As a union of open sets, U is open; since Ux ⊆ A for all x, we have U ⊆ A; and for
every x in A, we have x ∈ Ux ⊆ U , so A ⊆ U . Thus A = U , and A is open. ////

Definition. Let A be any set in a HTS (X, T ). The interior of A is the set

A◦ = {x ∈ A : x ∈ U and U ⊆ A for some U ∈ T } .

(Alternative notation: A◦ = intA = {x ∈ A : A ∈ N (x)}.)

Clearly, whenever A ⊆ B then A◦ ⊆ B◦. Intuitively, A◦ is the largest open
subset of A, in the sense captured by parts (a)–(b) of the following result.

Proposition. (a) A◦ is open, and A◦ ⊆ A.

(b) If G is open and G ⊆ A, then G ⊆ A◦.

(c) A is open if and only if A = A◦.

31 Oct 2025

Proof. (a) Suppose z ∈ A◦. Then ∃U ∈ N (z) ∩ T such that U ⊆ A. Every x in U
obeys

U ∈ N (x) and U ⊆ A, i.e., x ∈ A◦.

Hence U ⊆ A◦. Since z is arbitrary in A◦, the Lemma above implies A◦ is open.

(b) For any open G ⊆ A, pick any z ∈ G. Then G ∈ N (z) and G ⊆ A, so z ∈ A◦.
Hence G ⊆ A◦.

(c) (⇐) Obvious from (a). (⇒) A ⊇ A◦ holds for any A. When A is open, choosing
G = A in part (b) gives the reverse inclusion. Hence equality holds. ////

Example. If a < b in R, then [a, b]◦ = [a, b)◦ = (a, b]◦ = (a, b)◦ = (a, b); Q◦ = ∅.

Remark. A◦ is the largest open subset of A. The smallest open subset is ∅; the largest
open superset is X . The smallest open superset may fail to exist. For example, any
open superset U of [a, b] must contain an open interval of the form (a− 1/n, b+1/n)
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8 PHILIP D. LOEWEN

for some n ∈ N; boosting n to n + 1 defines a new open set that is smaller than U ,
but still covers [a, b]. Informally, every open superset is shrinkable: it is impossible
to uniquely specify one to call “the smallest”. Note also that

⋂

n∈N

(
a−

1

n
, b+

1

n

)
= [a, b] .

This shows that an infinite intersection of open sets may fail to be open.

C. Closed Sets and Closure

Definition. In a HTS (X, T ), a set A ⊆ X is closed iff Ac is open.

Taking the set-complement in the definition above is different from taking the
logical negation. A set can be “not open” at the same time that its complement is
“not open”, and in this case it is neither open nor closed . Even on the real line, all
four possibilities below arise:

(1) the interval (0, 1) is open,

(2) the interval [0, 1] is closed,

(3) the interval [0, 1) is not open, and simultaneously not closed,

(4) the interval (−∞,+∞) is open (obviously), and simultaneously closed (be-
cause its complement is ∅, which is open).

The simple relationship between open sets and closed sets opens the possibility
that the whole axiomatic setup for Hausdorff Topological Spaces could have been
expressed in terms of closed sets instead of open ones. Here are the details.

Proposition. Given a nonempty set X , let S and T be subsets of P(X), related as
follows:

G ∈ T ⇐⇒ Gc ∈ S, i.e., F ∈ S ⇐⇒ F c ∈ T .

The following are equivalent:

(a) (X, T ) is a HTS. (Every set in T is called “open”.)

(b) The collection S has the four properties below; every set in S is called “closed”:

(i) Both ∅ ∈ S and X ∈ S.

(ii) Any intersection of closed sets is a closed set.

(iii) Any union of finitely many closed sets is a closed set.

(iv) Whenever x1 and x2 are distinct points in X , there exist closed sets F1, F2

such that

x1 ∈ F1 \ F2, x2 ∈ F2 \ F1, and F1 ∪ F2 = X.
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VI. Hausdorff Topological Spaces 9

Proof. The correspondence between properties (HTS1)–(HTS3) for T and properties
(i)–(iii) for S follows directly from de Morgan’s Laws. It remains to discuss how
(HTS4) for T relates to property (iv) for S.

In the following chain of statements involving general points x1, x2 ∈ X and sets
G1, G2 ⊆ X , each line is logically equivalent to the next one, subject only to the
definitions F1 = Gc

2 and F2 = Gc
1:

x1 ∈ G1, x2 ∈ G2, and G1 ∩G2 = ∅

⇐⇒ x1 ∈ G1 ∩Gc
2, x2 ∈ G2 ∩Gc

1, and (Gc
1 ∪Gc

2)
c = ∅

⇐⇒ x1 ∈ Gc
2 ∩ (Gc

1)
c, x2 ∈ Gc

1 ∩ (Gc
2)

c, and Gc
2 ∪Gc

1 = X

⇐⇒ x1 ∈ F1 \ F2, x2 ∈ F2 \ F1, and F1 ∪ F2 = X

(a)⇒(b): Assume that (X, T ) is a HTS. Given any distinct points x1, x2 ∈ X ,
there exist open sets G1 and G2 for which the first line above is true. The definitions
of F1 = Gc

2 and F2 = Gc
1 then provide closed sets for which property (b)(iv) holds.

(b)⇒(a): Suppose (b) holds. Given any distinct points x1, x2 ∈ X , there exist
closed sets F1 and F2 satisfying property (b)(iv), which is the bottom line in the
chain of equivalences above. If we define G1 = F c

2 and G2 = F c
1 , the top line of the

chain confirms the conclusion of (HTS4) for these two points. ////

03 Nov 2025

Lemma. In a HTS (X, T ), with A ⊆ X , TFAE:

(i) A is closed.

(ii) For every x 6∈ A, some neighbourhood U ∈ N (x) obeys U ⊆ Ac.

Proof. Immediate from our similar lemma on open sets. ////

Lemma. In a HTS (X, T ), every single-element set is closed.

Proof. Let K = {x}. To show Kc is open, pick any y ∈ Kc. Then y 6= x, so there
exist U ∈ N(x) and V ∈ N(y) s.t. U ∩ V = ∅. In particular, V ⊆ Kc. So y ∈ (Kc)◦.
This works for every y ∈ Kc, so every point of Kc is an interior point. This makes
Kc an open set, as required. ////

Definition. Let A be a set in the HTS (X, T ). The closure of A is

A =
(
(Ac)

◦)c
.

(Alternative notation: A = clA.)

The definition implies monotonicity for this operation:

A ⊆ B =⇒ A ⊆ B.

Intuitively, A is the smallest closed superset of A, as expressed in parts (a)–(b) of
the next result.
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10 PHILIP D. LOEWEN

Prop. (a) A is closed, and A ⊇ A.

(b) If F is closed and F ⊇ A, then F ⊇ A.

(c) A is closed if and only if A = A.

Proof. (a) As the complement of the open set (Ac)
◦
, the set A is closed. Also,

(Ac)
◦ ⊆ Ac =⇒

(
(Ac)

◦)c ⊇ (Ac)
c
, i.e., A ⊇ A.

(b) Suppose F closed and F ⊇ A. Then F c is open, so F c = (F c)
◦
, and

F ⊇ A =⇒ F c ⊆ Ac

=⇒ F c = (F c)
◦ ⊆ (Ac)

◦

=⇒ F = (F c)
c ⊇

(
(Ac)

◦)c
= A.

(c) (⇐) Obvious, from (a). (⇒) If A is closed, then choosing F = A in (b) gives
A ⊇ A. Hence, by (a), A = A. ////

Example. If a < b in R, then (a, b) = [a, b) = (a, b] = [a, b] = [a, b]; Q = R.

Practice. Earlier we saw that it is impossible to make sense of the phrase “smallest
open superset of A”. For practice, use the open interval A = (0, 1) to explain why
the idea of a “largest closed subset of A” cannot be given a meaningful definition.

D. Boundary Points

Definition. Given a HTS (X, T ), let A ⊆ X . A point z in X is a boundary point
of A iff

∀G ∈ N (z), both A ∩G 6= ∅ and Ac ∩G 6= ∅.

The set of boundary points of A is denoted ∂A.

Remark. Boundary points may lie in either A or Ac. In fact, interchanging A and Ac

in the definition above makes no logical difference, so we have

∂A = ∂(Ac).

Example. In R, ∂(a, b) = ∂(a, b] = ∂[a, b) = ∂[a, b] = {a, b}; ∂Q = R; ∂Z = Z; ∂R =
∅. Notice that Q ⊆ R but ∂Q is a strict superset of ∂R. There is no “monotonicity”
relation for the boundary operation.

For a set A in a HTS (X, T ),

(a) ∂A = A ∩ Ac.

(b) A is closed if and only if ∂A ⊆ A; indeed, A = A ∪ ∂A.

(c) A is open if and only if ∂A ⊆ Ac; indeed, A◦ = A \ ∂A.

Proof. Home Practice. ////
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VI. Hausdorff Topological Spaces 11

E. Limit Points and Isolated Points

Definition. Let A be a set in a HTS (X, T ). A point z in X is a limit point of A
exactly when

∀U ∈ N (z), (U \ {z}) ∩A 6= ∅.

The set of limit points for A is denoted A′. Other authors call these cluster points
or accumulation points of A, and call A′ the derived set for A.

Notes. (i) If A ⊆ B, then A′ ⊆ B′.

(ii) z 6∈ A′ ⇐⇒ ∃U ∈ N (z) : (U \ {z}) ∩ A = ∅.

The terminology suggests a connection to limits. The next result shows that
this is robust in the metric case, and at least partialy extendable to the general HTS
context.

Proposition. Let (X, T ) be a HTS, with A ⊆ X and x ∈ X .

(i) The sequential property below guarantees that x ∈ A′:

(∗) x = lim
n→∞

xn for some sequence (xn) of distinct points, each in A.

(ii) If, in addition, the topology T comes from a metric, then every x in A′ has
property (∗).

Proof. (i) Suppose (∗) holds. To show x ∈ A′, we check the definition. So let an
arbitrary U ∈ N (x) be given. Then the definition of “xn → x” gives some N ∈ N

such that xn ∈ U for all n > N . This gives an infinite number of distinct points in
the set U ∩ A. Passing to the subset (U \ {x}) ∩ A excludes at most one of these
points (namely, x), so certainly (U \ {x}) ∩ A 6= ∅.

(ii) Given any x ∈ A′, construct a suitable sequence as follows. Let r1 = 1 and
use the definition of x ∈ A′ to select some x1 ∈ B(x; r1) ∩ A. Note that x1 6= x, so
we can define r2 = d(x1, x)/2 and be sure r2 > 0. Since x ∈ A′, the set B(x; r2) ∩ A
is nonempty, so we can select some x2 in there; clearly x2 6= x1. Let r3 = d(x2, x)/2.
Choose x3 ∈ B(x; r3) ∩ A, and note that x3 6∈ {x1, x2}. Define r4 = d(x3, x)/2, and
continue. This produces a sequence of distinct elements of A for which d(xn, x) <
rn ≤ 2−n, so indeed xn → x, as required. ////

Remark. The careful formulation of the Proposition above opens the intriguing pos-
sibility that for some sets in some HTS situations, there are limit points that are
not describable using sequences. This is correct, but subtle: the distinction will only
be detectable in a topology that is fundamentally incompatible with a metric-based
description.

Example. In R, a < b implies (a, b)′ = [a, b]′ = [a, b]; Q′ = R and Z′ = ∅.

“06-hts” ©c Philip D. Loewen, 08 November 2025, page 11. 2025-11-08, 11:39.



12 PHILIP D. LOEWEN

Prop. For any set G in a HTS (X, T ),

G is open ⇐⇒ G ∩ (Gc)′ = ∅.

Proof. (⇒) Pick an arbitrary x ∈ G. Get some U ∈ N (x) such that U ⊆ G. Then
U ∩Gc = ∅, so

∅ = (U \ {x}) ∩Gc.

That is, x 6∈ (Gc)′.

(⇐) Pick any x ∈ G. By hypothesis, x 6∈ (Gc)′, so ∃U ∈ N (x) satisfying

∅ = (U \ {x}) ∩Gc = U ∩Gc. (Recall x ∈ G.)

That is, U ⊆ (Gc)c = G. Since x ∈ G is arbitrary, this shows G is open. ////

Cor. For any set F in a HTS (X, T ),

F is closed ⇐⇒ F ⊇ F ′.

Proof. Apply the previous result to F c:

F is closed ⇐⇒ F c is open ⇐⇒ F c ∩ F ′ = ∅ ⇐⇒ F ′ ⊆ F. ////

Prop. For any set A in a HTS (X, T ), the set A′ is closed.

Proof. Home Practice. ////

Theorem. For any set A, one has A = A ∪A′.

Proof. (⊇) Let F = A. Then F is closed, so F ⊇ F ′. Also, F ⊇ A, so F ′ ⊇ A′.
Hence F ⊇ F ′ ⊇ A′, and F ⊇ A ∪A′.

(⊆) Let C = A ∪ A′. An arbitrary z ∈ Cc will obey both z 6∈ A and z 6∈ A′, so
∃U ∈ N (z) ∩ T such that

∅ = (U \ {z}) ∩ A = U ∩ A, i.e., U ⊆ Ac.

Hence Cc ⊆ (Ac)◦, giving C ⊇ ((Ac)◦)
c
= A. ////

Definition. For a set A in a HTS (X, T ), the collection of isolated points is A\A′.
I.e., x is an isolated point of A iff both

x ∈ A and ∃U ∈ N (x) : A ∩ U = {x} .

Example. In (R, usual),

Z consists only of isolated points (i.e., Z = Z \ Z′, because Z′ = ∅);

Q has no isolated points (i.e., Q \Q′ = Q \ R = ∅);

A = [Q ∩ (−∞, 0)] ∪ N has A′ = (−∞, 0], so the isolated points of A form the
set N.
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VI. Hausdorff Topological Spaces 13

Terminology Summary. Given a set A in a HTS (X, T ),

Ac = X \A, the complement of A

A◦ = the interior of A,

A = the closure of A,

A′ = the limit points of A,

∂A = the boundary of A,

A \A′ = the isolated points of A.

E.g., in Rk, for the set A = B[0; 1) ∪ {2e1} =
{
x ∈ Rk : |x| < 1

}
∪ {(2, 0, . . . , 0)},

Ac =
{
x ∈ Rk : |x| ≥ 1

}
∩
{
x ∈ Rk : x 6= 2e1

}
,

A◦ = B[0; 1),

A =
{
x ∈ Rk : |x| ≤ 1

}
∪ {2e1} ,

A′ =
{
x ∈ Rk : |x| ≤ 1

}
,

∂A =
{
x ∈ Rk : |x| = 1

}
∪ {2e1} ,

A \A′ = {2e1} = {(2, 0, . . . , 0)} .

F. Sequential Characterizations

In any HTS where the topology comes from a metric, every single one of the con-
cepts and symbols introduced above can be described in terms of sequences. Earlier
sections have presented sequential characterizations of open sets and limit points in
metric spaces. Students are urged to formulate sequential descriptions also for closed
sets, boundary points, and isolated points.

G. The sequence space ℓ2

Recall the set ℓ2 from HW07 Q2. A “point” x in ℓ2 is a square-summable real
sequence:

x = (x1, x2, . . .) ,

and we have shown that the definitions

〈x , y〉 =
∞∑

k=1

xkyk, ‖x‖ =
√

〈x , x〉

make ℓ2 similar in some ways to the finite-dimensional Euclidean spaces Rd (d ∈ N).
The similarity is strong enough to justify calling points in ℓ2 “vectors” instead of
“sequences”. Taking X = ℓ2 is an excellent testing ground for our HTS concepts.

First, d(x, y) = ‖y − x‖ defines a metric on X = ℓ2, so we have a metric space
that’s truly different from the familiar finite-dimensional Euclidean ones.
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14 PHILIP D. LOEWEN

Second, ℓ2 has another natural topology that is Hausdorff but not metric. That’s
the weak topology, defined next.

For any nonzero vector v in ℓ2, the hyperplane with normal v is the linear sub-
space {

y ∈ ℓ2 : 〈v , y〉 = 0
}
.

(Some would think of the subspace Rv as a line in ℓ2, and this hyperplane as its

orthogonal complement, writing (Rv)
⊥
.) Given any x ∈ ℓ2, the shifted set

x+
{
y ∈ ℓ2 : 〈v , y〉 = 0

}
= {x+ y : 〈v , y〉 = 0} = {w : 〈v , w − x〉 = 0}

is the hyperplane through x with normal v. Fatten this up to define a slab centred on

x with normal v:
Ω(x; v) = {w : |〈v , w − x〉 | < 1} .

Imagine moving away from the centre point x in the normal direction v, by choosing
w = x+ tv for some parameter t > 0. You leave the slab at the instant when

1 = |〈v , w − x〉 | = |〈v , tv〉 | = ‖tv‖ ‖v‖ ⇐⇒ t =
1

‖v‖2
,

so the transition point obeys ‖w − x‖ = 1

‖v‖ . Thus the thickness of the slab is 2/‖v‖:

stretching the normal vector squeezes the slab.

We overload notation for slabs and say for any x ∈ ℓ2 and V ⊆ ℓ2,

Ω(x;V ) =
⋂

v∈V

Ω(x; v) =
⋂

{Ω(x; v) : v ∈ V } .

Here comes the weak topology: Collect into a family T all the subsets G ⊆ ℓ2

for which every point x ∈ G has the property that Ω(x;V ) ⊆ G for some finite set
V . (Note that the finite set V typically depends on x; changing x might require a
new V .)

Lemma. For every z ∈ ℓ2 and every finite set V ⊆ ℓ2, one has Ω(z;V ) ∈ T .

Proof. Given a finite set V and point z, let G = Ω(z;V ). Pick any x ∈ G. Then we
know |〈x− z , v〉 | < 1 for each v ∈ V . Since V is a finite set, the following definition
makes sense:

r = max
v∈V

|〈x− z , v〉 | < 1.

We must show that G contains a generalized slab centred at x. Let α = 1/(1−
r) > 0 (noting r + (1/α) = 1) and define Vx = {αv : v ∈ V }. The vectors in Vx are
just stretched versions of the vectors in V , so in particular Vx is a finite set. Let’s
show that Ω(x;Vx) ⊆ Ω(z;V ). To prove this, pick any y ∈ Ω(x;Vx) and test the
inequalities required for y ∈ Ω(z;V ). This combines the add-subtract trick with the
multiply-divide trick:

∀v ∈ V, |〈y − z , v〉 | ≤
1

α
|〈y − x , αv〉 |+ |〈x− z , v〉 | <

1

α
+ r = 1,

as required. ////
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VI. Hausdorff Topological Spaces 15

H. Subspaces; Relative Topologies; Bases

Definition. Let (X, T ) be a HTS. For any subset Y ⊆ X , the collection

TY = {G ∩ Y : G ∈ T } .

makes (Y, TY ) into a HTS all by itself. (Practice: Check axioms (HTS1)–(HTS4).)
It’s typical to call (Y, TY ) a (topological) subspace of (X, T ). (There is no simple
relationship with the concept of “subspace” in linear algebra.)

In the context above, it’s hard to completely forget about X , so we must be
especially careful with the words we use. For example, we will call a set A ∈ TY
open relative to Y . To see why this is important, let X be the real line with the
usual topology for T , and consider the subset Y = [−1, 1]. The set A = (0, 1] is open
relative to Y , because A = (0, 2) ∩ Y belongs to TY . . . but clearly A is not open in
the original sense (“relative to X”).

If the subset Y ⊆ X happens to be open to start with, then TY ⊆ T . In this
case a subset of Y is open relative to TY iff it is open in the original sense from X .
Thus the terms “open relative to Y ” and simply “open” mean the same thing. But,
as indicated above, if we start with a Y that is not open in X , extra care is needed.

Example. Let X = R. If Y = Q, the set W = (0, 1) ∩ Q is open relative to Y , but
it is not open in X .
Or, let X = R2 and let Y = R × {0} = {(x, 0) : x ∈ R}. The segment I =
{(x, 0) : 0 < x < 1} is open relative to Y , but not open in X . ////

A topological base. Given any nonempty set X and a collection of subsets B ⊆
P(X), try using sets in B to define neighbourhoods and reverse-engineer a topology.
That is, for each x in X , make a speculative definition that looks very familiar:

N (x) = {S ⊆ X : ∃B ∈ B with x ∈ B, B ⊆ S} .

Then declare a set G ⊆ X to be “open” if and only if either G = ∅ or G ∈ N (x)
holds for each x ∈ G. We know and trust this linkage between open sets and neigh-
bourhoods in any HTS. What properties do we need from the set B to make this
approach succeed? The answer is embedded in the next result.

Proposition. Given a nonempty set X , suppose B ⊆ P(X) satisfies conditions (a)–
(c) below. Then the construction above defines a Hausdorff topology T on X . In
this case, the set B is called a base for T .

(a)
⋃
B = X [every point of X belongs to at least one set B in B];

(b) whenever B1, B2 ∈ B and x ∈ B1 ∩B2, there exists some B ∈ B satisfying
x ∈ B ⊆ B1 ∩B2; and

(c) whenever x1, x2 ∈ X obey x1 6= x2, there exist B1, B2 ∈ B satisfying x1 ∈
B1, x2 ∈ B2, and B1 ∩B2 = ∅.
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Examples. In Rk, let B denote the set of balls B[p; r) for which the centre point p
lies in Qk and the radius r > 0 is rational. This is a base for the usual topology on
Rk. It is interesting because B is a countable collection of sets. A topological space
for which a countable base exists is called “second-countable”: see “Second-countable
space” on Wikipedia if you would like to know more.
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