UBC Mathematics 320(101)—Assignment 2

Due by PDF upload to Canvas at 18:00, Saturday 23 Sep 2023

Readings: Loewen, lecture notes for Week 2; Rudin, pages 24-30.

1. The Fibonacci sequence is defined recursively by saying $F(0)=1, F(1)=1$, and

$$
F(n)=F(n-1)+F(n-2) \text { for each } n=2,3, \ldots
$$

Prove that if $\varphi=\frac{1+\sqrt{5}}{2}$ denotes the "Golden Ratio" (observe $\varphi^{2}=\varphi+1$), we have

$$
F(n)=\frac{\varphi^{n+1}-(-\varphi)^{-n-1}}{\sqrt{5}}, \quad n=1,2,3, \ldots
$$

2. Construct a countable family of increasing sequences with entries from \mathbb{N} :

$$
s^{(1)}=\left(s_{1}^{(1)}, s_{2}^{(1)}, s_{3}^{(1)}, \ldots\right), s^{(2)}=\left(s_{1}^{(2)}, s_{2}^{(2)}, s_{3}^{(2)}, \ldots\right), s^{(3)}=\left(s_{1}^{(3)}, s_{2}^{(3)}, s_{3}^{(3)}, \ldots\right), \ldots
$$

Arrange your construction so that every positive integer appears in one and only one of the sequences, and the inequality $s_{n}^{(i)}<s_{n+1}^{(i)}$ holds for all $i, n \in \mathbb{N}$. Illustrate your construction by writing down explicitly the first four entries of sequences $s^{(1)}, s^{(2)}, s^{(3)}$, and $s^{(4)}$.
3. Let \mathcal{S} denote the collection (set) of \mathbb{N}-valued sequences that are increasing. That is, each object s in \mathcal{S} has the form

$$
s=\left(s_{1}, s_{2}, s_{3}, \ldots\right), \quad \text { where } \quad \forall k \in \mathbb{N}, s_{k}<s_{k+1}
$$

Decide if the set \mathcal{S} is countable or uncountable. Prove your answer.
4. Prove that the real intervals $I=[0,1]$ and $J=(0,1)$ have the same cardinal number by constructing an explicit bijection $\phi: I \rightarrow J$.
5. Taking as given an enumeration of the rationals as

$$
\mathbb{Q}=\left\{q_{1}, q_{2}, q_{3}, \ldots\right\},
$$

construct an explicit bijection f from \mathbb{R} to $\mathbb{R} \backslash \mathbb{Q}$. To confirm that your bijection is explicit enough, return decimal approximations (correct to 6 significant digits) for these four numbers: $f(\pi), f(\sqrt{3})$, $f\left(q_{2}\right)$, and $f\left(q_{3}\right)$. (Hint: It is well known that $\sqrt{2} \in \mathbb{R} \backslash \mathbb{Q}$. You don't need to prove this.)
6. (a) Show that the set of polynomials with integer coefficients is countable.
(b) Show that the set of real numbers x arising as zeros of polynomials with integer coefficients is countable. (Such a real number is called algebraic.)
(c) A real number that is not algebraic is called transcendental. Prove that the set of transcendental numbers is not empty.
(d) Is the set of transcendental numbers finite, countable, or uncountable? Why?
7. Extend the definition of "+" to cardinal numbers, as follows. Given cardinals α and β, let $\alpha+\beta=$ $|A \cup B|$, where A and B are disjoint sets such that $|A|=\alpha$ and $|B|=\beta$.
(a) Prove that this extension is well-defined. That is, show that if $|A|=|C|$ and $|B|=|D|$, with $A \cap B=\emptyset$ and $C \cap D=\emptyset$, then $|A|+|B|=|C|+|D|$.
(b) Suppose $A \neq \emptyset$ and $n \in \mathbb{N}$. Show how to construct a continuum of mutually disjoint sets A_{t}, $t \in \mathbb{R}$, such that $\left|A_{t}\right|=|A|$ for each t. ("Mutually disjoint" means $A_{s} \cap A_{t}=\emptyset$ whenever $s \neq t$.)
(c) Show that $n+\aleph_{0}=\aleph_{0}$ for any finite cardinal n.
(d) Show that $\aleph_{0}+\aleph_{0}=\aleph_{0}$.
(e) Show that $\aleph_{0}+c=c$.
(f) Show that $c+c=c$.
8. For each family of real intervals \mathcal{A} shown below, find $\bigcap \mathcal{A}$ and $\bigcup \mathcal{A}$:
(a) $\mathcal{A}=\left\{\left[\frac{1}{n}, 1-\frac{1}{n}\right]: n \in \mathbb{N}, n \geq 2\right\}$,
(b) $\mathcal{A}=\left\{\left(-1-\frac{1}{n}, 1+\frac{1}{n}\right): n \in \mathbb{N}\right\}$.
[Presentation: For each subproblem, define a set S and verify that it equals the given combination by proving two inclusions. You may assume the Archimedean Property.]

