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In abstract terms, the Calculus of Variations is a subject concerned with max/min
problems for a real-valued function of several variables. Given a vector space V and
a function Φ:V → R, we explore the theory and practice of minimizing Φ[x] over
x ∈ V . Additional interest and power comes from allowing

• dim(V ) = +∞,

• constrained minimization, where the choice variable x must lie in some preas-
signed subset S of V .

We’ll investigate and generalize familiar facts and new issues, including . . .

- necessary conditions: if x minimizes Φ over V , then Φ′[x] = 0 and Φ′′[x] ≥ 0;

- existence/regularity: what spaces V are appropriate?

- sufficient conditions: if x obeys Φ′[x] = 0 and Φ′′[x] > 0 then x gives a local
minimum.

- applications, calculations, etc.

A. Bernoulli’s Challenge

Example: Brachistochrone. The birth announcement of our subject came almost
330 years ago:

“I, Johann Bernoulli, greet the most clever mathematicians in the world.
Nothing is more attractive to intelligent people than an honest, challenging
problem whose possible solution will bestow fame and remain as a lasting
monument. Following the example set by Pascal, Fermat, etc., I hope to
earn the gratitude of the entire scientific community by placing before the
finest mathematicians of our time a problem which will test their methods
and the strength of their intellect. If someone communicates to me the
solution of the proposed problem, I shall then publicly declare him worthy
of praise.” (Groningen, 1 January 1697)

Here is a statement of Bernoulli’s problem in modern terms: Given two points α
and β in a vertical plane, find the curve joining α to β down which a bead—sliding
from rest without friction—will fall in least time. The Greek works for “least” and
“time” give the unknown curve its impressive title: the brachistochrone. To set
up, install a Cartesian coordinate system with its origin at point α and the y-axis
pointing downward. Then B ≥ 0, for the bead to “fall”.

Now speed is the rate of change of distance relative to time: v = ds/dt. Along a
curve in the (x, y)-plane, ds =

√
(dx)2 + (dy)2 =

√
1 + (y′(x))2 dx, so the infinites-

imal time taken to travel along the segment of curve corresponding to a horizontal
distance dx is

dt =
ds

v
=

√
1 + (y′(x))2 dx

v
.
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2 PHILIP D. LOEWEN

Here v is the speed of the bead, given from conservation of energy as

PE + KE = const.

−mgy + 1
2mv

2 = 1
2mv

2
0 .

(Here v0 is the bead’s initial velocity: v0 ≥ 0 seems reasonable.) This gives v =√
v20 + 2gy, leading to

dt =

√
1 + (y′(x))2√
v20 + 2gy(x)

dx.

The total travel time is then

T =

∫
dt =

∫ b

x=0

√
1 + (y′(x))2

v20 + 2gy(x)
dx.

Bernoulli’s challenge is to identify the function y = y(x) that minimizes T , among
all competitors obeying the prescribed endpoint conditions y(0) = 0, y(b) = B.

Example: Geodesics in the Plane. For a smooth function y defined on [a, b], the
graph has length

s =

∫
ds =

∫ √
(dx)2 + (dy)2 =

∫ b

a

√
1 +

(
dy

dx

)2

dx.

Finding the shortest graph joining given points (a,A) and (b, B) (assume a < b) has
the same general characteristics as before: minimize the number attributed to a given
curve by some integral operation.

Example: Hamilton’s Principle of Least Action. Consider the possible motions
of a particle along the x-axis, each possibility defining a time-varying function x =
x(t). If a given potential function V = V (x) is responsible for the (only) force on
that particle, then the particle’s actual trajectory will be the one that minimizes the
“action”, a scalar quantity defined by∫

(KE(x(t), ẋ(t))− PE(x(t))) dt =

∫ (
1
2mẋ(t)2 − V (x(t))

)
dt.

One can derive Newton’s Second Law from this, so the Principle of Least Action
might be considered an even more fundamental fact.

2026-01-07

Notation Shift. The Physics connection above is so potent that we change symbols
for the whole course to consider functions named x that depend on the independent
variable named t. For problems involving geometry, this requires getting used to
taking axis labels from the (t, x)-plane instead of the (x, y)-plane, and stepping away
from the assumption that the letter t must always be interpreted as the time. The
next example illustrates this.
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Chapter I. First Variations 3

Example: Soap Film in Zero-Gravity. Wire rings of radii A > 0 and B > 0 are
perpendicular to an axis through both their centres; the centres are 1 unit apart. A
soap film stretches between them, forming a surface of revolution relative to the axes
shown below. Surface tension acts to minimize the area of that surface, which we can
calculate: the infinitesimal ring at position t with horizontal slice dt has slant length
ds =

√
dt2 + dx2 =

√
1 + ẋ(t)2 dt, perimeter 2πx(t), hence area

dS = 2πx(t)
√

1 + ẋ(t)2 dt.

Total area is the “sum” of these contributions, i.e.,

S =

∫
dS =

∫ 1

0

2πx(t)
√

1 + ẋ(t)2 dt.

Integral Functionals. In each of the examples above, the integral to be minimized
has the form

Λ[x]
def
=

∫ b

a

L(t, x(t), ẋ(t)) dt.

for some function L = L(t, x, v). Specifically, we would use

(i) L(t, x, v) =

√
1 + v2√
v20 + 2gx

for the brachistochrone;

(ii) L(t, x, v) =
√

1 + v2 to find the shortest path between given points;

(iii) L(t, x, v) = 1
2mv

2 − 1
2kx

2 for the simple harmonic oscillator;

(iv) L(t, x, v) = 2πx
√

1 + v2 to identify the minimal surface of revolution.

We’ll pursue the theory for a generic “Lagrangian” L = L(t, x, v) of class C2, speaking
informally of t as “time”, x as “position” or “state”, and v as “velocity” . . . while
remembering that these terms (but not the equations!) will need replacement for
problems that originate in geometry.

Analogy/Preview. Calculus deals with minimization at every level. For uncon-
strained local minima, the only possible minimizers are critical points:

• When solving minx∈R f(x), concentrate on points x where f ′(x) = 0 . . . a single
algebraic equation for the unknown scalar x.

• When solving minx∈Rn F (x), any solution x must make ∇F (x) = 0 . . . a system
of n algebraic equations for the unknown vector x.

• When solving minx∈C2[a,b] Λ(x), expect the solution x to make DΛ[x] = 0 . . . a
differential equation for the unknown function x.

Our finite-dimensional experience with f ′(x) = 0 and ∇F (x) = 0 includes all sorts
of nonlinear challenges. But we recall that for problems where f and F happen to
be quadratic, critical points are determined by linear equations.

B. The Basic Problem; Ad-hoc Methods reference

Exploration. Consider the basic problem with Lagrangian L(x, v) = v2 + x2 and
endpoints (a,A) = (0, 1) and (b, B) = (1, 0). Among all arcs x: [0, 1] → R such that
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4 PHILIP D. LOEWEN

x(0) = 1, x(1) = 0, we must identify the one (if any) that gives the smallest value to
the integral

Λ[x]
def
=

∫ 1

0

(
ẋ(t)2 + x(t)2

)
dt.

To develop some feeling for the problem, pick a candidate arc x(t) = 1 − t and
calculate ẋ(t) = −1,

Λ[x] =

∫ 1

0

(
(−1)2 + (1− t)2

)
dt =

4

3
≈ 1.333.

Then consider some alternatives: x(t) = 1− t2 has the required endpoint values, and
it gives

Λ[x] =

∫ 1

0

(
(−2t)2 + (1− t2)2

)
dt =

28

15
≈ 1.867.

That’s worse. Or consider a piecewise-linear choice: for each x-intercept r ∈ [0, 1],
let

xr(t) =

{
1− t/r, for 0 ≤ t < r,
0, for r ≤ t ≤ 1.

Calculation gives

Λ[xr] =

∫ r

0

[(
− 1

r

)2

+

(
t− r
r

)2
]
dt =

1

r
+
r

3
.

Now the derivative
d

dr
Λ[xr] = − 1

r2
+

1

3
=
r2 − 3

3r2

is negative at all points in the interval 0 < r < 1, so the lowest value we can get out
of a path like this happens when r = 1 . . . our original linear guess.

Another parametric approach is to stick with x0(t) = 1 − t as the reference
arc, pick some smooth function h with h(0) = 0 = h(1) (any such function is “a
variation”), and consider the family of functions

xλ(t)
def
=x0(t) + λh(t), 0 ≤ t ≤ 1.

Since h(t) vanishes at both ends of the interval, the endpoint values for xλ agree with
those for x, no matter what λ we apply. To be concrete, take h(t) = t2 − t. Then
xλ(t) = 1− t+ λ(t2 − t), and

Λ[xλ] =

∫ 1

0

[
(− 1 + λ(2t− 1))

2
+
(
1− t+ λ(t2 − t)

)2]
dt =

11

30
λ2 − 1

6
λ+

4

3
.

This is a convex quadratic, with a global minimum at λ = 5
22 . The corresponding

integral value is Λ[x5/22] ≈ 1.314. At last, an improvement!
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Chapter I. First Variations 5

Now replace the linear reference arc x0(t) = 1 − t, with some general function
x̂ satisfying the given endpoint conditions, and consider a rather arbitrary h with
h(0) = 0 = h(1). Build xλ(t) = x̂(t) + λh(t) as before, and consider

φ(λ)
def
= Λ[xλ]

=

∫ 1

0

[
( ˙̂x+ λḣ)2 + (x̂+ λh)2

]
dt

= Λ[x̂] + λ2Λ[h] + 2λ

∫ 1

0

(
˙̂xḣ+ x̂h

)
dt.

For a particular choice of h, consider φ′(0): if this is not zero then φ(λ) will be less
than φ(0) on some open interval with an endpoint at λ = 0. That is, the function x̂
is improvable, and a small perturbation involving h will do the job. So for h to fail
as a candidate for improvement, we need φ′(0) = 0, i.e.,

0 =

∫ 1

0

(
˙̂xḣ+ x̂h

)
dt

= ˙̂x(t)h(t)

∣∣∣∣1
t=0

+

∫ 1

0

[
x̂h− ¨̂xh

]
dt

=

∫ 1

0

[
x̂(t)− ¨̂x(t)

]
h(t) dt.

This is the golden moment: if we choose x̂ to make the bracketed quantity identically
0, i.e.,

¨̂x(t)− x̂(t) = 0, (DEL)

then there will be no variations at all that make a first-order improvement on x̂.
Solving this ODE and enforcing the given endpoint conditions x̂(0) = 1 and x̂(1) = 0
identifies a unique candidate:

x̂(t) =
et−1 − e−(t−1)

e−1 − e1
.

Further, with λ = 1 above, we have for every nonzero variation h that Λ[h] > 0, so

Λ[x̂+ h] = Λ[x̂] + Λ[h] > Λ[x̂].

Therefore the arc x̂ actually gives the global minimizer for the problem set up above.
Calculation gives Λ[x̂] ≈ 1.313. ////

Discussion. The differential equation (DEL) describing the arc x̂ above is called the
Euler-Lagrange Equation (in differential form). It’s a key ingredient in the theory we
are about to explore. Re-running the argument implicit above in more abstract terms
will reveal how to produce the corresponding differential equation for any reasonable
integrand L = L(t, x, v). This is our next priority.

“01-var1” ©c Philip D. Loewen, 08 Feb 2026, page 5. 2026-02-08, 08:56.
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C. Piecewise Smooth Arcs 2026-01-12

Let’s define the space PWC[a, b], also denoted Ĉ[a, b]: this the set of functions
v = v(t) for which there is some finite list of points a = t0 < t1 < · · · < tn = b such
that both

(i) v is defined and continuous at all points of every open interval (tk−1, tk), and

(ii) the following one-sided limits exist in R:

v(t+k−1) = lim
t→t+

k−1

v(t), v(t−k ) = lim
t→t−

k

v(t), k = 1, 2, . . . , n.

A piecewise continuous function v may undefined or discontinuous at finitely many
points, and those points must belong to the set {t0, . . . , tn}. Any discontinuity of
v must be a simple jump. To say that v is “essentially equal” to a second function
w ∈ PWC[a, b] means that v(t) = w(t) at all but finitely many points.

Let’s invent the phrase “essentially all t in [a, b]”, abbreviated “e.a.t ∈ [a, b]”, to
express “for all t in [a, b], but with at most finitely many exceptions.”

Every v in PWC is a bounded function. And if E = {t0, . . . , tn} covers the
exceptional points for v, then for any real numbers y0, . . . , yn, we can construct
w = w(t) defined on all of [a, b] via

w(t) =

{
yk, if t = tk for some k = 0, 1, . . . , n,
v(t), otherwise,

This w will belong to PWC[a, b], essentially equal to v, and bounded on [a, b], hence
Riemann integrable on every subset of [a, b]. In particular, for any given A, the arc

x(t) = A+

∫ t

a

w(r) dr, t ∈ [a, b]

will be well-defined, independent of the choices for y0, . . . , yn, and satisfy

ẋ(t) = w(t) = v(t) ∀t ∈ (tk−1, tk), k = 1, . . . , n.

Let’s streamline future discussions by omitting the cleanup story above and saying
simply

x(t) = A+

∫ t

a

v(r) dr, t ∈ [a, b].

2026-01-14

Then we can define the space PWS[a, b], or Ĉ1[a, b], like this:

x ∈ PWS[a, b] ⇐⇒ x(t) = A+

∫ t

a

v(r) dr for some v ∈ PWC[a, b], A ∈ R.

In this definition, the integrand v() can be replaced with any w() ∈ PWC[a, b]
that is essentially equal to v(). Every x in PWS[a, b] is continuous. Thanks to the
Fundamental Theorem of Calculus, we have ẋ() ∈ PWC[a, b] with ẋ() essentially
equal to v().

For x ∈ PWS[a, b], the points in (a, b) where ẋ() has a jump discontinuity are
called corner points. (Sketching the graph of x() makes this seem appropriate.)
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Chapter I. First Variations 7

Lemma (Integration by Parts). For any p, h ∈ PWS[a, b], one has∫ b

a

ṗ(t)h(t) dt = p(t)h(t)

∣∣∣∣b
t=a

−
∫ b

a

p(t)ḣ(t) dt.

Proof. (Exercise.) Choose a partition a = t0 < t1 < · · · < tn = b such that all
exceptional points for both h and p lie in E = {t0, . . . , tn}. Use ordinary integration
by parts on each subinterval:∫ b

a

ṗ(t)h(t) dt =

n∑
k=1

(∫ tk

tk−1

ṗ(t)h(t) dt

)

=

n∑
k=1

(
p(t)h(t)

∣∣∣∣tk
tk−1

−
∫ tk

tk−1

p(t)ḣ(t) dt

)

=

n∑
k=1

(
p(tk)h(tk)− p(tk−1)h(tk−1)

)
−

n∑
k=1

(∫ tk

tk−1

p(t)ḣ(t) dt

)

= p(b)h(b)− p(a)h(a)−
∫ b

a

p(t)ḣ(t) dt.

////

Corollary. For any h ∈ PWS[a, b],

∫ b

a

ḣ(t) dt = h(b)− h(a).

Proof. Use p(t) = 1 above. (The point: using the plain vanilla FTC on subintervals
where ḣ is continuous and stitching the results together gives no surprises. The proof
above specializes to lay out the details.) ////

The next result is sometimes called “the Fundamental Lemma in the Calculus
of Variations” — even though it looks like a stand-alone math fact.

Lemma (duBois-Reymond). If N : [a, b]→ R is piecewise continuous, TFAE:

(a)

∫ b

a

N(t)ḣ(t) dt = 0 for all h ∈ PWS[a, b] with h(a) = 0 = h(b).

(b) The function N is essentially constant.

Proof. (b⇒a): If N(t) = c for all t in [a, b] (allowing finitely many exceptions), then
each h as in part (a) obeys∫ b

a

N(t)ḣ(t) dt =

∫ b

a

cḣ(t) dt = ch(t)

∣∣∣∣b
t=a

= 0.

(a⇒b): Given a piecewise continuous function N with property (a), note that for
any constant c the argument in (a) implies

0 =

∫ b

a

(N(t)− c) ḣ(t) dr.
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8 PHILIP D. LOEWEN

If we can choose c to arrange ḣ(t) = N(t) − c, this will imply statement (b), by
establishing

0 =

∫ b

a

(N(t)− c)2 dr. (∗)

For any c, a candidate for h with the derivative we seek and h(a) = 0 is defined by

h(t) =

∫ t

a

(N(r)− c) dr =

∫ t

a

N(r) dr − c(t− a). (∗∗)

The right endpoint condition on h can be achieved with a careful choice of c:

0 = h(b) =

∫ b

a

N(r) dr − c(b− a) ⇐⇒ c =
1

b− a

∫ b

a

N(r) dr.

With this value for c, the definition in (∗∗) gives the desired property (∗). ////

D. Piecewise Smooth Extremals in the Basic Problem

Now for any L ∈ C([a, b] × R × R) and x ∈ PWS[a, b], the function t 7→
L(t, x(t), ẋ(t)) is piecewise continuous, so it is meaningful to define

Λ[x] =

∫ b

a

L (t, x(t), ẋ(t)) dt.

So the basic problem in the COV still makes sense for competing arcs x in the function
space PWS[a, b]. This is where we will work for the rest of the course.

Suppose L ∈ C1 and we pose the Basic Problem over PWS[a, b]. Pick arbitrary
arcs x̂, h ∈ PWS[a, b], let φ(λ) = Λ[x̂+ λh], and calculate as before:

φ′(0) = lim
λ→0+

1

λ

[
Λ[x̂+ λh]− Λ[x̂]

]
(1)

= lim
λ→0+

1

λ

∫ b

a

[
L
(
t, x̂(t) + λh(t), ˙̂x(t) + λḣ(t)

)
− L(t, x(t), ẋ(t))

]
dt (2)

=

∫ b

a

lim
λ→0+

1

λ

[
L
(
t, x̂(t) + λh(t), ˙̂x(t) + λḣ(t)

)
− L

(
t, x̂(t), ˙̂x(t)

)]
dt (3)

=

∫ b

a

∂

∂λ

[
L
(
t, x̂(t) + λh(t), ˙̂x(t) + λḣ(t)

)]
λ=0

dt (4)

=

∫ b

a

[
Lx

(
t, x̂(t), ˙̂x(t)

)
h(t) + Lv

(
t, x̂(t), ˙̂x(t)

)
ḣ(t)

]
dt (5)

Here line (1) is the definition of the directional derivative, and line (2) comes from
the definition of Λ. Passing from (2) to (3) requires that we interchange the limit and
the integral. In our case this is justified because the limit is approached uniformly
in t, a consequence of L ∈ C1. See, e.g., Walter Rudin, Real and Complex Analysis,
page 223. Existence of the derivative in (4) and its evaluation in (5) also follow from
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our assumption that L ∈ C1; the definition of this derivative allows it to be evaluated
as shown inside the integral in (3).

Using the notation L̂(t) = L
(
t, x̂(t), ˙̂x(t)

)
and likewise defining L̂x(t) and L̂v(t),

we summarize: if L ∈ C1 and x̂ ∈ PWS[a, b], then L̂x and L̂v are in PWC[a, b] and

φ′(0) =

∫ b

a

[
L̂x(t)h(t) + L̂v(t)ḣ(t)

]
dt ∀h ∈ Ĉ1[a, b]. (∗)

This is the point where we formerly applied integration by parts. But now, we know
only that L̂v(t) is piecewise continuous, so we need a new approach. The inspired
idea is still to integrate by parts, but to start with the less-obvious term. That is,
introduce a function p̂ ∈ PWS[a, b] by picking some constant k and letting

p̂(t) = k +

∫ t

a

L̂x(r) dr.

Then ˙̂p(t) = L̂x(t) for essentially all t, so the first term on the right in (∗) is∫ b

a

L̂x(t)h(t) dt =

∫ b

a

˙̂p(t)h(t) dt = p̂(t)h(t)

∣∣∣∣b
t=a

−
∫ b

a

p̂(t)ḣ(t) dt.

We conclude: For each h ∈ Ĉ1[a, b],

d

dλ
Λ[x̂+ λh]

∣∣∣∣
λ=0

=

[
p̂(t)h(t)

]b
t=a

+

∫ b

a

(
L̂v(t)− p̂(t)

)
ḣ(t) dt. (∗∗)

Note that this expression defines a linear mapping from PWS[a, b] to R (the input is
h).

2026-01-16

Theorem (Euler-Lagrange Equation—Integral Form). If x̂ gives the mini-
mum in the basic problem (P ), then there is a constant c such that

L̂v(t) = c+

∫ t

a

L̂x(r) dr, e.a. t ∈ [a, b]. (IEL)

Proof. Minimality of x̂ implies that for every h ∈ PWS[a, b] with h(a) = 0 = h(b),
λ = 0 must be a minimizer for φ(λ). So every such h obeys

0 =

∫ b

a

N̂(t)ḣ(t) dt, where N̂(t) = L̂v(t)− p̂(t).

Thanks to the Fundamental Lemma, it follows that N̂ is essentially constant. ////

Remark. Note that c = L̂v(a
+) in (IEL). Sometimes it’s convenient to let p̂ denote

the function on the right side.
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10 PHILIP D. LOEWEN

Terminology. Any x̂ ∈ PWS[a, b] obeying (IEL) (with finitely many exceptions) on
an open interval is called an extremal for L.

Regularity. The extremality condition (IEL) matches a LHS that is a priori just
piecewise continuous with a RHS that is evidently piecewise smooth. That discrep-
ancy is noteworthy. It suggests a possible theme to explore: Exremality promotes
regularity. For now, we harvest the first of two Weierstrass-Erdmann Corner
Conditions:

Proposition (WE1). If L ∈ C1 and x̂ gives the minimum in the Basic Problem

(over PWS[a, b]) then all discontinuities of t 7→ L̂v(t) are removable. That is, for
each t ∈ (a, b), the one-sided limits below exist (in R) and are equal:

L̂v(t
−)

def
= lim

r→t−
Lv

(
r, x̂(r), ˙̂x(r)

)
and L̂v(t

+)
def
= lim

r→t+
Lv

(
r, x̂(r), ˙̂x(r)

)
.

Proof. Take the limits on the right side of IEL instead of the left. ////

Reversibility. At each particular point t where ˙̂x is continuous, the Fundamental
Theorem of Calculus affirms that the right side in (IEL) is differentiable, with

d

dt
L̂v(t) = L̂x(t). (DEL)

This is the familiar differential form of the Euler-Lagrange equation. So (IEL) implies
(WE1) at every corner point, and (DEL) on every open interval between corner
points. This relationship is reversible: any arc that satisfies (DEL) on successive
open intervals and satisfies (WE1) at the junction points will be an extremal in the
sense of (IEL).

Remark. Note that (IEL) is the same for the function −L as it is for L, so it must
hold also for any maximizer in the setup of the Basic Problem. So an extremal arc in
the COV is analogous to a “critical point” in ordinary calculus: the set of extremal
arcs includes every arc that provides a (directional) local minimum or maximum, and
there are situations in which an extremal arc is neither a minimum nor a maximum.

Extremality Promotes Regularity. Having assumed L ∈ C1, we can rely the con-
tinuity of the function Lv, to ensure that the composite function t 7→ Lv(t, x(t), ẋ(t))
is piecewise continuous for each arc x ∈ PWS[a, b]. Of course if ẋ(t) has a jump dis-
continuity, then the composite function might jump too: to illustrate the possibility,
imagine L = 1

2v
2: here Lv = v so Lv(t, x(t), ẋ(t)) = ẋ(t) and jumps in ẋ translate

directly in to jumps of Lv along the trajectory. Condition (WE1) above shows that
extremal arcs are somewhat special in this regard: plugging an extremal x̂ into Lv
yields a composite function L̂v(t) with only removable discontinuities. This is worth
pursuing; to warm up to the project, let us consider Lagrangians of two special forms.

Lemma. If y ∈ PWS[a, b] and limt→c ẏ(t) exists for some c ∈ (a, b), then ẏ(c) exists,
and its value equals the indicated limit. Thus, ẏ is continuous on an open interval
containing c.
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Chapter I. First Variations 11

Proof. Consider the defining limit for ẏ(c):

lim
t→c

y(t)− y(c)

t− c
.

For each t ∈ (a, b) with t 6= c, the Mean Value Theorem applies on the interval with
endpoints c and t: it gives a point θ(t) in this interval for which

y(t)− y(c)

t− c
= ẏ(θ(t)).

Now in the limit as t → c, we must have θ(t) → c also, with θ(t) 6= c for all t.
Consequently

lim
t→c

y(t)− y(c)

t− c
= lim
t→c

ẏ(θ(t)) = lim
t→c

ẏ(t).

By hypothesis, the limit on the right exists; hence the limit on the left does too. This
shows that ẏ is continuous at c. Since y ∈ PWS, the set of continuity points for ẏ is
open, so there must be a nondegenerate margin separating c from the nearest point
of discontinuity for ẏ. ////

Proposition. Suppose the functions f = f(t, x), g = g(t, x), and h = h(t, x) are
C1, with f(t, x) > 0. If one of

(a) L(t, x, v) = 1
2f(t, x)v2 + g(t, x)v + h(t, x), or

(b) L(t, x, v) = f(t, x)
√
g(t, x)2 + v2, with g(t, x) > 0,

then for any x̂ obeying (IEL), we have x̂ ∈ C2[a, b].

Proof. Let p̂(t) = L̂v(0
+)+

∫ t

a

L̂x(r) dr denote the function on the right side of (IEL).

Note that p̂ is continuous. For both styles of Lagrangian above, it’s possible to solve
for ˙̂x(t) in (IEL). Watch:

(a) Here Lv(t, x, v) = f(t, x)v + g(t, x). Along the arc x̂, (IEL) says

f(t, x̂(t)) ˙̂x(t) + g(t, x̂(t)) = p̂(t) e.a. t ∈ [a, b],

i.e.,

˙̂x(t) =
1

f(t, x̂(t))
[p̂(t)− g(t, x̂(t))] e.a. t ∈ [a, b]. (†)

(b) Here Lv(t, x, v) = f(t, x)
v√

g(t, x)2 + v2
. Along the arc x̂, (IEL) says

f(t, x̂(t))
˙̂x(t)√

g(t, x)2 + ˙̂x(t)2
= p̂(t) e.a. t ∈ [a, b].

This implies that |p̂(t)| < |f(t, x̂(t))| for all t. Rearrangement gives

˙̂x(t) =
p̂(t)g(t, x̂(t))√
f(t, x̂(t))2 − p̂(t)2

e.a. t ∈ [a, b]. (‡)
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12 PHILIP D. LOEWEN

Now in both (†) and (‡), the function of t on the right side is defined at all points
of [a, b] and continuous on (a, b). It follows from the Mean Value Theorem that the

derivative ˙̂x() inherits these properties. This makes the function L̂x(t) = Lx(t, x̂(t), ˙̂x(t))

continuous on [a, b]. This function equals ˙̂p(t), so p̂ belongs to C1[a, b]. This makes
the RHS in (†) (or (‡), as appropriate) C1 also. Therefore the function on the left,

namely, ˙̂x(t), also lies in C1[a, b]. That is, x̂ ∈ C2[a, b], as required. ////

This proposition invites generalization, as we will see later. Before that, let us
explore some situations where it can be used directly.

E. Low-Hanging Fruit 2026-01-19

Building Intuition. Consider L(t, x, v) = v2 − x2 and [a, b] = [0, π]. As noted
above, every x in PWS[0, π] satisfying (IEL) is actually a C2 solution of (DEL), i.e.

ẍ+ x = 0.

Therefore x(t) = c1 cos(t)+c2 sin(t) for some constants c1, c2. Imposing the endpoint
conditions x(0) = 0 = x(π) requires c1 = 0 but leaves c2 unrestricted, i.e., x(t) =
c2 sin(t) is an admissible extremal for any real constant c2. Calculation gives

Λ[c2 sin] = c22

∫ π

0

[
cos2 t− sin2 t

]
dt = c22

∫ π

0

cos(2t) dt = 0.

Geometrically, the function sin generates a one-dimensional vector subspace of PWS[0, π]
on which every “point” (arc) is an extremal, and Λ has a constant value.
(Mental picture: Could this resemble the variable quadratic Q:R3 → R defined by
Q(x, y, z) = cy2 + kz2? Here ∇Q(x, y, z) = 〈0, 2cy, 2kz〉, and each point of the form
(x, 0, 0) makes ∇Q = 0 and gives Q(x, 0, 0) = 0. The signs of c and k will determine
whether the 0-values for Q on the x-axis are maxima, or minima, or neither . . . and
first-order methods don’t detect those fine details.)

A Null Lagrangian. Let L(t, x, v) = 2txv+ x2. Here Lx = 2tv+ 2x and Lv = 2tx,
so (DEL) says

d

dt
(2tx(t)) = 2tẋ(t) + 2x(t)

i.e., 2x(t) + 2tẋ(t) = 2tẋ(t) + 2x(t)

i.e., 0 = 0.

This means every C2 function x is an extremal for L. What’s going on here? Answer:
For any arc x,

L(t, x, ẋ) = x(t)2 + t (2x(t)ẋ(t)) =
d

dt

[
tx(t)2

]
.

Therefore

Λ[x] =

∫ b

a

d

dt

[
tx(t)2

]
dt =

[
tx(t)2

]b
a

= bx(b)2 − ax(a)2.

The functional Λ is constant on every affine subspace of PWS[a, b] defined by con-
straints of the form x(a) = A, x(b) = B. So of course its derivative is 0, and that’s
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Chapter I. First Variations 13

what (DEL) expresses.
(Idea for later: Exploit this somehow. Look for situations where the adding a constant
to Λ makes no difference, but this can be done by adding interesting combinations
of terms to the integrand L. Could this ever be advantagous?)

State-Independence. Suppose L = L(t, v) is independent of x.

Here (IEL) reduces to a first-order ODE for x̂, involving an unknown constant:

Lv(t, ˙̂x(t)) = c, e.a. t.

When it is possible to isolate ˙̂x(t) in this identity, the arc x̂ can be found by direct
integration.

Consider three subcases, where L = L(v) is also independent of t:

L = v2, L =
√

1 + v2, L =
( [
v2 − 1

]+)2
.

In these three cases, every extremal x̂ is globally optimal relative to its endpoints.
To see this, let c = Lv( ˙̂x) and define

f(v) = L(v)− cv.

The special choices of L above are such that f ′(v) = Lv(v) − c is nondecreasing in

each case, with f ′( ˙̂x(t)) = 0. Therefore f ′(v) ≤ 0 for v < ˙̂x(t) and f ′(v) ≥ 0 for

v > ˙̂x(t). Thus ˙̂x(t) gives a global minimum for f . That is,

f(v) ≥ f( ˙̂x(t)) ∀v ∈ R, ∀t ∈ [a, b]. (∗)

Now every arc x obeying the BC’s has
∫ b
a
cẋ(t) dt = c [x(b)− x(a)] = c [B −A], so∫ b

a

f(ẋ(t)) dt ≥
∫ b

a

f( ˙̂x(t)) dt∫ b

a

L(ẋ(t)) dt− c [B −A] ≥
∫ b

a

L( ˙̂x(t)) dt− c [B −A]

Λ[x] ≥ Λ[x̂].

Special Notes: • For L =
√

1 + v2, this proves that the arc of shortest length from
(a,A) to (b, B) is the straight line. The technical definition of the term “arc”
here leaves room for some improvement in this well-known conclusion.

• The function L =
( [
v2 − 1

]+)2
has a large collection of absolute minimiz-

ers. Any arc x̂ for which
∣∣∣ ˙̂x(t)

∣∣∣ ≤ 1 for all t will be globally optimal relative

to its endpoints. This implies that there will be infinitely many different
global minimizers in any instance of the basic problem where the average
slope (B−A)/(b−a) lies in (−1, 1). For average slopes outside this interval,
the unique linear function that is admissible will give the minimum.
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14 PHILIP D. LOEWEN

2026-01-21

A First Integral. Start with an arbitrary x̂ of class C2, and use the add-subtract
trick to build an identity involving familiar elements:

d

dt
L(t, x̂(t), ˙̂x(t))

= L̂t(t) + L̂x(t) ˙̂x(t) + L̂v(t)¨̂x(t) +

[(
d

dt
L̂v(t)

)
˙̂x(t)−

(
d

dt
L̂v(t)

)
˙̂x(t)

]
= L̂t(t) + ˙̂x(t)

[
L̂x(t)− d

dt
L̂v(t)

]
+
d

dt

(
L̂v(t) ˙̂x(t)

)
.

Rearrange this to get

d

dt

[
L(t, x̂(t), ˙̂x(t))− L̂v(t) ˙̂x(t)

]
= L̂t(t) + ˙̂x(t)

[
L̂x(t)− d

dt
L̂v(t)

]
.

Now if the generic C2 arc x̂ happens to satisfy (DEL), we deduce

d

dt

[
L(t, x̂(t), ˙̂x(t))− ˙̂x(t)L̂v(t)

]
= L̂t(t). (WE2)

The label comes from the connection to the “second Weierstrass-Erdmann corner
condition”, to be detailed later.

Back in the generic case, let us suppose that L = L(x, v) has no explicit depen-
dence on t. This makes Lt = 0, and the result above reduces to

d

dt

[
L(t, x̂(t), ˙̂x(t))− ˙̂x(t)L̂v(t)

]
= ˙̂x(t)

[
L̂x(t)− d

dt
L̂v(t)

]
. (∗)

Two complementary viewpoints arise:

(i) On any open interval where x̂ is a C2 extremal for L, the right side is 0, so
the bracketed expression on the left must be constant.

(ii) On any open interval where the bracketed expression on the left is constant

and ˙̂x(t) 6= 0, the arc x̂ must be an extremal for L.

Application. In Hamilton’s Principle of Least Action (from Physics) for a point
particle of mass m, a typical Lagrangian is L(x, v) = 1

2mv
2 − V (x). Here V is the

potential energy, a time-invariant function of position. We calculate Lv = mv, and
simplify the function above:(

1
2mv

2 − V (x)
)
− v(mv) = −

(
1
2mv

2 + V (x)
)
.

That’s the negative of the particle’s total energy, so the work above shows that any
extremal trajectory conserves energy. That’s reassuring. Note also that Lv = mv
is the particle’s (linear) momentum. This explains the choice of letter p in recent
developments. ////
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Chapter I. First Variations 15

Caution. Consider L(x, v) = 1
2mv

2 − 1
2kx

2. As shown above, every extremal arc x̂
obeys

1
2m

˙̂x(t)2 + 1
2kx̂(t)2 = const.

However, this identity also holds for any constant function x̂, and many constant
functions are not extremals. (In detail, an arc x̂ obeys (IEL) iff

m¨̂x(t) + kx̂(t) = 0,

and the only constant solution of this equation is x̂(t) = 0.) ////

Example: A Famous Class of Problems. Lots of practical integrands have the
form L(x, v) = f(x)

√
1 + αv2 for some smooth function f and constant α 6= 0. (For

example, the case α = 1 produces the factor
√

1 + v2, which is associated with arc
length in the (t, x)-plane.) Calculation gives

Lv(x, v) = f(x)
αv√

1 + αv2

Lvv(x, v) = f(x)

[
α
√

1 + αv2 − αv αv√
1+αv2

1 + αv2

]
=

αf(x)

(1 + αv2)3/2
.

For any x where f(x) 6= 0, the mapping v 7→ Lvv(x, v) will have constant sign for all
v in its domain. As noted above, this means that no arc compatible with IEL can
have a corner point at this level, and therefore any extremal must actually be C2 on
an open interval around any instant where it passes through level x. So any extremal
will be C2 on any open interval in which it gives nonzero values to the coefficient
function f .

Now suppose x is an extremal for L. To learn a little about the qualitative
behaviour of x, manipulate (DEL). In condensed notation,

Lx =
d

dt
Lv = Lvxẋ+ Lvvẍ

f ′(x)
√

1 + αẋ2 =

(
f ′(x)

αẋ√
1 + αẋ2

)
ẋ+

(
αf(x)

(1 + αẋ2)
3/2

)
ẍ

f ′(x)
(
1 + αẋ2

)2
= f ′(x)αẋ2

(
1 + αẋ2

)
+ αf(x)ẍ

(1 + αẋ2)f ′(x) = αf(x)ẍ

ẍ = (1 + αẋ2)
f ′(x)

αf(x)
.

This form is probably inconvenient to solve for x, but it does contain useful convexity
information. On any open interval where the extremal x gives nonzero values to
f(x(t)), the factor (1 + αẋ2)/(αf(x)) will have constant sign. Hence the sign of ẍ(t)
will either match or oppose the sign of f ′(x(t)) throughout the entire interval.

To actually find extremals, condition (WE2) is useful. Calculation gives

L(x, v)− Lv(x, v)v = f(x)

[√
1 + αv2 − αv2√

1 + αv2

]
=

f(x)√
1 + αv2

.
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16 PHILIP D. LOEWEN

This is constant along extremals. Now the constant value 0 is a valid possibility, but
it requires the extremal to have the form x(t) = x0 for a constant x0 that satisfies not
only f(x0) = 0 but also, thanks to (DEL), f ′(x0) = 0. In most practical situations
it’s easy to check that no such values of x0 exist.

When the constant value of L−Lv v is nonzero, it is convenient to name it 1/k.
Then a typical extremal will have

kf(x(t)) =
√

1 + αẋ(t)2

αẋ(t)2 = k2f(x(t))2 − 1

Now
√
ẋ2 = |ẋ|, so some care is needed with the next step.

Assume from now on that α ∈ {−1,+1}, so that 1/α = α. Consider an open
interval on which the sign of ẋ is constant at σ, with σ ∈ {−1,+1} so that also
1/σ = σ. Then our calculation continues unambiguously with

ẋ(t)2 = αk2f(x(t))2 − α

σẋ(t) =
√
αk2f(x(t))2 − α.

This ODE is separable: the standard algebraic solution is to trust Leibniz notation,
split the differential, and integrate both sides:

dx

dt
= σ

√
αk2f(x)2 − α ⇐⇒

∫
dx√

αk2f(x)2 − α
= σt+ C(σ).

Different choices for f lead to different integration possibilities on the left, and dif-
ferent levels of difficulty in reversing the relation that emerges to recover an explicit
functional form for x = x(t).

It is entirely possible for an extremal to be nonmonotonic, so it may be necessary
to concatenate segments on which σ changes sign. This will introduce a corner point
if the slopes of the segments differ at the junction, and we know that corners are only
possible at instants where f(x(t)) = 0. The only way for a nonmonotonic extremal
x to change between decreasing and increasing at an instant t∗ where f(x(t∗)) 6= 0,
must be to do so smoothly, i.e., with ẋ(t∗) = 0. In typical examples, enforcing this
allows for a convenient reconciliation between the constants of integration C(−1) and
C(+1) arising above.

For any extremal in this development,
√

1 + αẋ(t)2 = kf(x(t)) implies

L(x(t), ẋ(t)) = f(x(t)) [kf(x(t))] = kf(x(t))2.

This may simplify the evaluation of Λ[x] in particular problems.

2026-01-23

Example. For the brachistochrone, we have L(t, x, v) =
√

1+v2

x−x0
, with x0 = −v

2
0

2g ≤ 0.

This is independent of t and fits the pattern above in the region x > x0, with α = 1
and f(x) = 1√

x−x0
. Choose the convenient constant k =

√
2R for some R > 0 to get

dx√
2R
x−x0

− 1
= σ dt.
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Chapter I. First Variations 17

Subsitute x− x0 = 2R sin2
(
θ
2

)
, dx = 2R sin

(
θ
2

)
cos
(
θ
2

)
dθ to get

σt =

∫ 2R sin
(
θ
2

)
cos
(
θ
2

)
dθ[

1

sin2
(
θ
2

) − sin2
(
θ
2

)
sin2
(
θ
2

)]1/2
=

∫
2R sin2

(
θ

2

)
dθ

=

∫
R (1− cos θ) dθ

= R(θ − sin θ) + C.

Now if we don’t back-substitute to get x = x(t), but rather keep the parametric form,
we arrive at

σt = R(θ − sin θ) + C = Rθ −R sin θ + C,

x = R(1− cos θ) + x0 = R−R cos θ + x0.

Note that the constant of integration C can in principle vary from one interval of
constant σ to another, but the resulting trajectory must be C2. It follows (details
suppressed) that a parametric expression capturing both possible outcomes above
has the form

t = R(θ − sin θ) + C = Rθ −R sin θ + C,

x = R(1− cos θ) + x0 = R−R cos θ + x0.

These parametric equations describe a cycloid — the path of a point on the perimeter
of a circle with radius R that rolls without slipping along the horizontal line where
x = x0 in the (t, x)-plane. Recall that we are pointing the x-axis downward in this
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18 PHILIP D. LOEWEN

setup, so the picture looks a bit like this (here we have x0 = 0, R = 1, C = 0):

Figure 1: The parametric curve t = θ − sin θ, x = 1− cos θ

Given the horizonal interval [0, b], the launch point (t, x) = (0, 0), the vertical shift pa-
rameter x0, and the target point (b, B) (with B > 0), the unique admissible extremal
will be the cycloid determined by choosing the parameter interval [θ0, θ1] ⊆ [0, 2π),
the radius R, and the horizontal offset C to satisfy the four equations

0 = t(θ0) = Rθ0 −R sin θ0 + C,

0 = x(θ0) = R−R cos θ0 + x0,

b = t(θ1) = Rθ1 −R sin θ1 + C,

B = x(θ1) = R−R cos θ1 + x0.

The special case where x0 = 0 lies just out of scope for our theory, but we can
optimistically investigate it anyway. In this case the second equation requires θ0 = 0,
and then the first equation gives C = 0, so it remains only to solve for θ1 and R in

b = t(θ1) = Rθ1 −R sin θ1,

B = x(θ1) = R−R cos θ1.

(The problem with x0 = 0 is that the initial point (t, x) = (0, 0) lies on the boundary
of the region where the function L is defined, and our theory relies on C2 regularity
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Chapter I. First Variations 19

of L on an open set that contains all the competing arcs. Further, and possible worse,
we have in general that

dx

dt
=
dx/dθ

dθ/dt
=

R sin θ

R(1− cos θ)
.

This tends to +∞ as θ → 0+, so the cycloid lies outside the set PWS when the
parameter interval has θ0 = 0.)

F. Vector-Valued Arcs

With careful interpretation of the notation, all our main results so far “just work” for
instances of the basic problem with vector-valued unknown functions. Let PWS([a, b];Rn) =
PWS[a, b] × · · · × PWS[a, b] (n times). Given L: [a, b] × Rn × Rn → R, intepret
Lx(t, x, v) = ∇xL(t, x, v) as the n-component vector gradient of L with respect to
the components of x; do likewise for Lv = ∇vL(t, x, v).

Basic Problem. A real interval [a, b] is given, along with a C1 function L: [a, b] ×
Rn × Rn → R and points A,B ∈ Rn.

min

{
Λ[x] =

∫ b

a

L(t, x(t), ẋ(t)) dt : x(a) = A, x(b) = B

}
.

Theorem. Suppose the arc x̂ ∈ PWS ([a, b],Rn) achieves the minimum in (P). Then

(a) There is a constant c ∈ Rn such that

(IEL) L̂v(t) = c+

∫ t

a

L̂x(r) dr, e.a.t ∈ [a, b].

(b) So L̂v is a function in C1
(
[a, b]; (Rn)

∗)
satisfying

(DEL)
d

dt
L̂v(t) = L̂x(t) ∀t ∈ [a, b].

(c) If x̂ ∈ C2([a, b],Rn) and L ∈ C2, then

(WE2)
d

dt

[
L̂(t)− L̂v(t) ˙̂x(t)

]
= L̂t(t), ∀t ∈ [a, b].

Here (DEL) is an equation between vectors of length n. Writing out the compo-
nent equations gives a system of n ODE’s in n unknown functions. However, (WE2)
is just a single scalar differential equation . . . certain to be inadequate to provide a
unique solution when n ≥ 2.

Kepler’s Problem. For central-force motion in polar coordinates, a particle of mass
m, generalized position (r, θ), and generalized velocity (ṙ, θ̇), has kinetic and potential
energies given by

KE: T = 1
2mv

2 = 1
2m
(
ṙ2 + r2θ̇2

)
,

PE: V = −Km
r
.
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The Principle of Least Action says that real objects move along paths in space that
minimize (at least over small time intervals) the “Action Integral” below, in which
the input arcs have the R2-valued form x(t) = (r(t), θ(t)):

A[x] =

∫ b

a

(T − V ) dt =

∫ b

a

m

(
1
2 ṙ(t)

2 + 1
2r(t)

2θ̇(t)2 +
K

r(t)

)
dt.

Ignoring the constant m > 0, write x = (r, θ) ∈ R2 and v = (u, ω) ∈ R2. Then the
integrand above is built by evaluating this function along arcs in R2:

L(t, x, v) = 1
2u

2 + 1
2r

2ω2 +
K

r
.

Note that Lt(t, x, v) = 0,

Lx(t, x, v) =
[
∂L

∂r

∂L

∂θ

]
=
[
rω2 − K

r2
0
]
,

Lv(t, x, v) =
[
∂L

∂u

∂L

∂ω

]
= [u r2ω ] .

Any action-minimizing trajectory x(t) = (r(t), θ(t)) must satisfy (DEL), namely,

d

dt
[ ṙ r2θ̇ ] =

[
rθ̇2 − K

r2
0
]
.

This leads to the system of 2 second-order equations in 2 variables,

r̈(t) = rθ̇2 − K

r2
, r2θ̇ = const.

The second equation shows conservation of angular momentum (and leads to Kepler’s
Second Law). Combining it with the first leads to Kepler’s other two laws of planetary
motion . . . Physics courses show how. In this problem we have Lt = 0, so (WE2)
implies that the following quantity is constant:

L̂(t)− L̂v(t) ˙̂x(t) =

(
1
2 ṙ

2 + 1
2r

2θ̇2 +
K

r

)
− [ ṙ r2θ̇ ]

[
ṙ
θ̇

]
= − 1

2 ṙ
2 − 1

2r
2θ̇2 +

K

r
= −(T + V ).

Again the conservation of total energy arises from a variational principle. ////

G. Implicit Functions 2026-01-26

Let F :Rm → Rn be given, and focus on some point z0 ∈ Rm. To say F is
differentiable at z0 means that there is a linear mapping Φ:Rm → Rn satisfying

F (z) ≈ F (z0) + Φ(z − z0) + o(|z − z0|) as z → z0.

In detail, this means that

lim
z→z0

F (z)− [F (z0) + Φ(z − z0)]

|z − z0|
= 0.
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(This is a limit in Rn, the space where F takes its values.) This is equivalent to the
componentwise criterion

lim
z→z0

ei • F (z)− ei • [F (z0) + Φ(z − z0)]

|z − z0|
= 0, i = 1, 2, . . . , n.

Suppose the situation above is in force. Then for any ej ∈ Rm, the special choice
z = z0 + λej with λ > 0 gives

0 = lim
λ→0+

Fi(z0 + λej)− [Fi(z0) + ei • Φ(λej)]

λ

= lim
λ→0+

Fj(z0 + λej)− Fj(z0)

λ
− ei • Φ(ej)

j = 1, 2, . . . ,m.

So if we regard elements of Rm and Rn as column vectors (with shapes m × 1 and
n×1, respectively), then the linear operator Φ can be recognized as a matrix of shape
n×m. We must have

Φij =
∂Fi
∂zj

∣∣∣∣
z=z0

.

This n×m matrix Φ is the Jacobian matrix for F at z0, typically denoted DF (z0).

Notes. 1. In case n = 1, where F :Rm → R, the matrix DF (z0) will have shape
1×m:

DF (z0) =

[
∂F

∂z1

∂F

∂z2
· · · ∂F

∂zm

]
.

As such, DF (z0):Rm → R works correctly by matrix multiplication. Usually we
use DF (z0)T as the gradient of F at z0.

2. The limit calculation above is not reversible. This is because the reasoning above
enforces the limit condition only as the variable point z approaches the base point
z0 along straight line paths, whereas the approximation statement that defines
differentiability must hold for modes of approach that are more general. As an
example, consider the behaviour near the origin for the function F :R2 → R
defined by

F (x, y) =

{
1, if y = x2 and x 6= 0,
0, otherwise.

The matrix of partial derivatives is DF (0, 0) = [0 0], but F is not even contin-
uous at the origin, so it most certainly cannot be differentiable there.

Knowing a little more about the behaviour of relevant partial derivatives is enough
to establish differentiability. Here is a practical fact related to this.

Theorem. Suppose Ω ⊆ Rm is open and F : Ω → Rn. If each of the partial deriva-
tives ∂Fi

∂zj
is defined and continuous on Ω, then F is differentiable at each point of Ω.

That is, for each z ∈ Ω the Jacobian matrix DF (z) defined above obeys

0 = lim
z′→z

F (z′)− [F (z) +DF (z)(z′ − z)]
|z′ − z|

.
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To build intuition for the next step, consider a system of n linear equations
involving m variables, with m ≥ n. Matrix notation could be

Az = b,

with the matrix A of shape n×m being short and wide. Let d = m−n be the excess
of the number of variables over the number of equations: informally we might expect
to use the n equations to express (“solve for”) n of the components of z in terms
of the remaining d variables. To be specific, let’s reorganize the components so that

the variables we want to eliminate are clustered at the bottom. So we split z =
[
x
u

]
with x ∈ Rd and u ∈ Rn, and we partition A into the block matrix [P M ], where P
has shape n× d and M has shape n× n. This lets us write our system in the block
notation

b = Az = [P M ]

[
x

u

]
= Px+Mu.

Now solving for u in terms of x leads to

u = M−1(b− Px).

And here we see the essential requirement: the square block matrix M must be
invertible to support this manipulation.

The Implicit Function Theorem provides a faithful extension of the linear situa-
tion above to a not-necessaritly linear version. Instead of the linear system Az−b = 0,
we imagine a more general equation F (z) = 0. (Practice: Write out the reduction of
the statement to follow for the specific function F (z) = Az − b.)

Theorem (Implicit Function Theorem). Given are an open set Ω in Rd+n and
a mapping F : Ω → Rn. Assume all the partial derivatives appearing in DF (z) are
defined and continuous on Ω. Let z0 = (x0, u0) ∈ Rd × Rn be a point of Ω where
F (z0) = 0, and split the n × (d + n) matrix DF (x0, u0) into blocks [DxF DuF ],
with P of size n × d and M of size n × n. If DuF (z0) is invertible, then there exist
open sets X ⊆ Rd with x0 ∈ X and U ⊆ Rn with u0 ∈ U such that . . .

(i) For each x ∈ X, there is exactly one point u ∈ U where F (x, u) = 0 (call this
point φ(x)); and

(ii) The function φ:X → U defined in (i) is C1, and

Dφ(x) = −DuF (x, φ(x))−1DxF (x, φ(x)), x ∈ X.

H. Smoothness of Extremals 2026-01-28

Shortly after we derived (IEL), the Integral form of the Euler Lagrange Equation,
we recorded two special families of Lagrangians L = L(t, x, v) for which any solution
of (IEL) in the large space PWS[a, b] must actually lie in the subspace C2[a, b]. The
Implicit Function Theorem powerfully extends these findings.
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Theorem (Weierstrass/Hilbert). Suppose L : [a, b] × Rn × Rn → R is C2 and

x̂ ∈ PWS[a, b] satisfies (IEL). Let t0 ∈ (a, b) be a point where ˙̂x is continuous. If

Lvv(t0, x̂(t0), ˙̂x(t0)) is invertible,

then there is an open interval containing t0 on which x̂ ∈ C2.

Proof. Extremality entails

L̂v(t) = c+

∫ t

a

L̂x(r) dr =: p̂(t), e.a. t ∈ [a, b]. (IEL)

Define F : [a, b]× Rn → Rn by

F (t, v) := Lv(t, x̂(t), v)− p̂(t).
Since t0 is a continuity point for ˙̂x, and the number of corner points for x̂ is finite (by
definition of the set PWS[a, b]), there must be some open interval (α0, β0) such that
t0 ∈ (α0, β0) ⊆ [a, b] and x̂ ∈ C1(α0, β0). This implies that p̂ ∈ C1(α0, β0). Define

v0 = ˙̂x(t0): then F (t0, v0) = 0 and the point (t0, v0) has an open neighbourhood Ω
in (a, b) × Rn on which F is C1. Apply the Implicit Function Theorem: it gives an
open interval X = (α, β) containing t0, an open set U around v0, and a C1 function
φ: (α, β)→ U such that both

(i) F (t, φ(t)) = 0, t ∈ (α, β), and

(ii) if F (t, u) = 0 for t ∈ (α, β) and u ∈ U , then u = φ(t).

Since ˙̂x(t0) = v0, and t0 is a point of continuity for ˙̂x, there is an open interval around

t0 on which we have ˙̂x(t) ∈ U . Also F (t, ˙̂x(t)) = 0, by construction. So on this open

interval, facts (i)–(ii) give ˙̂x(t) = φ(t). In particular, ˙̂x is C1 there, and x̂ itself is C2.
////

Corollary. Suppose L ∈ C2 everywhere and (t0, x0) ∈ (a, b)× Rn is a point where

Lvv(t0, x0, v) > 0 ∀v ∈ Rn.
Then every extremal x̂ for which x0 = x̂(t0) must be of class C2 on some open interval
containing t0. In particular, if Lvv(t, x, v) > 0 for all (t, x, v) ∈ [a, b]×Rn×Rn, then
every extremal for L will lie in C2[a, b].

Notation. When n > 1, Lvv is a symmetric square matrix and the inequality Lvv > 0
means that this matrix is positive definite, i.e.,

wTLvvw > 0 ∀w ∈ Rn \ {0}.
Of course this implies that Lvvw 6= 0 for every w 6= 0, so it makes Lvv invertible.

Proof. Let (t0, x0) be the point in the statement, and let x̂ be an extremal for L such
that x0 = x̂(t0). Define G:Rn → Rn by G(v) = L(t0, x̂(t0), v). By extremality,

lim
t→t−0

L̂v(t) = lim
t→t+0

L̂v(t),

i.e., Lv(t0, x̂(t0), ˙̂x(t−0 )) = Lv(t0, x̂(t0), ˙̂x(t+0 )) (WE1)

i.e., DG( ˙̂x(t−0 )) = DG( ˙̂x(t+0 ))
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Let’s show that the map v 7→ DG(v) is one-to-one. If we succeed, the above equation

will give ˙̂x(t−0 ) = ˙̂x(t+0 ). That will show that t0 is a point of continuity for ˙̂x, and
then the Theorem will show that x̂ is C2 on an open set containing t0. Any t0 ∈ (a, b)
will work, so this will do the job.

2026-01-30

So consider any u,w ∈ Rn with u 6= w. Define f(t) = G(u+ t(w− u)) for t ∈ R.
This is a smooth, scalar-valued function of one variable, for which

f ′(t) = DG(u+ t(w − u))(w − u), f ′′(t) = (w − u) •D2G(u+ t(w − u))(w − u).

Now D2G(·) = Lvv(t0, x̂(t0), ·) is function whose values are symmetric n×n matrices,
and the assumption is that it returns a positive-definite matrix for every input point.
In particular, f ′′(t) > 0 for all t, and this implies that the function f ′ is increasing.
In particular, f ′(1) > f ′(0). But

f ′(1) = DG(w)(w − v), f ′(0) = DG(v)(w − v),

so knowing these values are different reveals that DG(w) 6= DG(v). That is, different
inputs give different outputs for the function DG: that’s the definition of one-to-one.

////

Remark. The development above is especially intuitive when n = 1. Knowing Lvv > 0
everywhere implies that Lv is a strictly increasing function of v, so jump discontinu-
ities in ˙̂x are impossible by (WE1). That makes x̂ ∈ C1 and sets up an appeal to the
Weierstrass/Hilbert Theorem to get x̂ ∈ C2.

Remark. It’s convenient to calculate with (DEL) and (WE2), so it’s nice to know
in advance that this is justified because the desired function x̂ is certain to be C2.
The best way to justify this in advance is to apply the Corollary above. So in every
problem and solution, evaluate Lvv early: if Lvv > 0 holds universally, say so (and
reap the benefits); if not, stay alert and watch for possible extremals with corners.

Example. min

{
Λ[x] =

∫ 1

−1

1
2 (x(t)− t)2ẋ(t)2 dt : x(−1) = 0, x(1) = 1

}
Here L(t, x, v) = 1

2 (x− t)2v2 has Lv = (x− t)2v and Lvv = (x− t)2. Now Lvv ≥ 0 for
all v, but this is not quite enough. At points (t, x) with x 6= t, we have Lvv(t, x, v) > 0
for all v, so corners are impossible. But points on the line x = t need closer attention.

Clearly Λ[x] ≥ 0 for all x ∈ PWS[−1, 1], so any arc that gives 0 for the integral
value will be a global minimizer. And there is an obvious choice:

x̂(t) =

{
0, for −1 ≤ t < 0,
t, for 0 ≤ t ≤ 1.

This has a corner at the point (t, x) = (0, 0), where indeed Lvv(0, 0, v) = 0 for all v.

Foreshadowing: For this Lagrangian, the expression L − Lvv = − 1
2 (t − x)2v2

returns the same value, namely 0, at essentially all points along x̂. We expect that
expression to be constant along C2 extremals (as derived above), but here it is still
working on a jagged extremal. Could the scope of equation (WE2) be larger than we
have anticipated so far? ////
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Example. Draw some pictures for L(t, x, v) = (v2 − 1)2. Note

L = v4−2v2+1, Lv = 4v3−4v = 4v(v−1)(v+1), Lvv = 12v2−4 = 12

(
v2 − 1

3

)
.

“01-var1” ©c Philip D. Loewen, 08 Feb 2026, page 25. 2026-02-08, 08:56.


