
Chapter II. Isoperimetric Problems

A. Abstract Derivatives 2026-01-30

For any real-valued function[al] Φ:V → R defined on a vector space V , let

Φ′[x̂;h] = lim
λ→0+

Φ[x̂+ λh]− Φ[x̂]

λ
, h ∈ V.

This is the directional derivative of Φ at the point x̂, in the direction h. The concept
makes no reference at all to a topology on V ; we bring this issue in later.

Examples. Note that when V = Rn and Φ is smooth, Φ′[x;h] = ∇Φ(x) • h. And
when V = PWS[a, b] and Λ is the usual variational integral, with L = L(t, x, v) of
class C1, we have

Λ′[x̂;h] =

∫ b

a

(
L̂x(r)h(r) + L̂v(r)ḣ(r)

)
dr, h ∈ PWS[a, b].

When x̂ ∈ V is a point at which Φ′[x̂;h] is defined for every h and the map
h 7→ Φ′[x̂;h] is linear, we use the notation DΦ[x̂] for this map. We’ll manipulate it
like any other matrix or linear operator A, writing Ah instead of A(h). So Φ′[x̂;h] =
DΦ[x̂]h.

It’s safe to call DΦ[x̂] the Gâteaux derivative of Φ at x̂.

Digression. The terminology of Gâteaux derivatives is not completely standardized.
Some authors require only Φ′[x̂;−h] = −Φ′[x̂;h] for each h instead of demanding
linearity, while others require not only linearity but also some mild form of continuity.
These fine distinctions don’t make a difference for us.

Various definitions of “differentiability” are available. The same linear map
DΦ[x̂] appears in all of them. The terminology (Gâteaux, Fréchet, etc.) highlights
the trustworthiness of that same operator as an approximation for the underlying
function near x̂.

• Gâteaux differentiability describes reliable approximation independently for each
given line through x̂:

∀h ∈ V, Φ[x̂+ λh] = Φ[x̂] + λDΦ[x̂]h+ o(λ) as λ→ 0.

• If V has a norm, we call Φ Fréchet differentiable at x̂ when the operator DΦ[x̂]
gives an approximation that is uniform in the direction, i.e., when

Φ[x̂+ h] = Φ[x̂] +DΦ[x̂]h+ o(‖h‖) as ‖h‖ → 0.

There are closely related considerations when we come to defining local minimizers
in the Calculus of Variations. More on this later.
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2 PHILIP D. LOEWEN

B. Local Surjectivity 2026-02-02

Theorem (Surjective Mapping). Given an open set U in Rn and a C1 mapping
G:U → Rn, consider the Jacobian matrix at a point u0 ∈ U :

DG(u0) =



∂g1
∂u1

∂g1
∂u2

· · · ∂g1
∂un

∂g2
∂u1

∂g2
∂u2

· · · ∂g2
∂un

...
...

. . .
...

∂gn
∂u1

∂gn
∂u2

· · · ∂gn
∂un


u=u0

.

If DG(u0) is invertible, then G(u0) ∈ intG(U).

Proof. Introduce F :Rn × U → Rn by defining

F (x, u) = G(u)− x, x ∈ Rn, u ∈ U.

Let x0 = G(u0). This F is C1 and DuF (x0, u0) = DG(u0) is invertible, so the
Implicit Function Theorem provides an open set X containing x0 and a C1 function
φ:X → Rn such that

(i) 0 = F (x, φ(x)) = G(φ(x))− x, x ∈ X, and

(ii) (a uniqueness condition we don’t need).

Line (i) shows that every x in the open set X around x0 lies in the range of G (indeed
x = G(φ(x))). That’s the desired result. ////

Lemma. Given a real vector space V and linear operators M1, . . . ,Mn:V → R,
TFAE:

(a) The given operators are linearly dependent, i.e., there exist c1, c2, . . . , cn ∈ R,
not all zero, such that

c1M1 + c2M2 + . . .+ cnMn = 0.

(On the right, 0 denotes the zero operator on V .)

(b) For each choice of h1, h2, . . . , hn ∈ V , the n× n matrix below is not invertible:
M1h1 M2h1 M3h1 · · · Mnh1
M1h2 M2h2 M3h2 · · · Mnh2
M1h3 M2h3 M3h3 · · · Mnh3

...
. . .

...
M1hn M2hn M3hn · · · Mnhn

 .
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Chapter II. Isoperimetric Problems 3

Proof. (a⇒b) For a collection of constants as described in (a), and any elements
h1, . . . , hn of V , observe that

M1h1 M2h1 M3h1 · · · Mnh1
M1h2 M2h2 M3h2 · · · Mnh2
M1h3 M2h3 M3h3 · · · Mnh3

...
. . .

...
M1hn M2hn M3hn · · · Mnhn



c1
c2
c3
...
cn

 =


0
0
0
...
0

 .
In detail, row j of the indicated product equals

c1M1hj + c2M2hj + · · ·+ cnMnhj = (c1M1 + c2M2 + · · ·+ cnMn)hj = 0.

Since the column vector on the left side of this product is nonzero, the matrix
involved must be singular.

(b⇒a) Let’s use induction, recalling that a matrix is invertible if and only if its
determinant is nonzero.

The case n = 1 is obvious, and it is enough to launch the generic proof.

Let’s show case n = 2 explicitly to make the ideas clear. So assume

0 =

∣∣∣∣[M1h1 M2h1
M1h2 M2h2

]∣∣∣∣ = (M1h1)(M2h2)− (M2h1)(M1h2) ∀h1, h2 ∈ V.

The result is obvious if M2 is itself the zero operator, since the choices c1 = 0
and c2 = 1 give the conclusion in that case. In the complementary case, there
must exist some h2 ∈ V for which M2h2 6= 0. Use this h2 to define c1 = M2h2
and c2 = −M1h2. Then c1 6= 0 and the identity above becomes

0 = c1(M1h1) + c2(M2h1) = (c1M1 + c2M2)h1 ∀h1 ∈ V.

This is the desired result.

Now if the result is known for all dimensions up to and including n− 1, imagine
expanding the determinant in the statement by minors, along the first row:

0 = (M1h1)∆1 + (M2h2)∆2 + · · ·+ (Mnh1)∆n.

Here each ∆j is (−1)j+1 times the determinant of a certain (n − 1) × (n − 1)
submatrix. Note that each ∆j involves only the n − 1 inputs h2, . . . , hn. Now
suppose ∆1 = 0 for every possible combination of h2, . . . , hn. Then by the (n−1)-
dimensional case of our result (known to be true, by our induction hypothesis),
the operators M2, . . . ,Mn must be linearly dependent. Of course that makes
the larger set M1, . . . ,Mn linearly dependent also, so the result holds. In the
complementary case, there must exist some choice of h2, . . . , hn for which ∆1 6= 0.
Use this particular choice to define cj = ∆j for each j, and then revisit the
identity above:

0 = c1(M1h1) + c2(M2h1)∆2 + · · ·+ cn(Mnh1)

= (c1M1 + c2M2 + · · ·+ cnMn)h1, h1 ∈ V.

This is the desired result. (Note that c1 6= 0.) ////
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C. Lagrange Multipliers 2026-02-04

Now suppose V is a real vector space on which we have real-valued function[al]s
Φ,Γ1, . . . ,Γm, and constants γ1 . . . , γm. Consider the constrained optimization prob-
lem

min
x∈V
{Φ[x] : Γj [x] = γj , j = 1, . . . ,m} .

Suppose x̂ solves this. Let’s show why the operators DΦ[x̂], DΓ1[x̂], . . . , DΓm[x̂] must
be linearly dependent.

The Lemma above is key. Pick arbitrary y, h1, . . . , hm in V and defineG:R1+m →
R1+m via

G(r0, r1, . . . , rm) =


Φ[x̂+ r0y + r1h1 + · · ·+ rmhm]
Γ1[x̂+ r0y + r1h1 + · · ·+ rmhm]

...
Γm[x̂+ r0y + r1h1 + · · ·+ rmhm]

 .
NowG(0) = (Φ[x̂], γ1, . . . , γm). This is the limit of the sequence (Φ[x̂]−1/k, γ1, . . . , γm),
k = 1, 2, . . ., and every point in this sequence lies outside the range of G. (Proof:
Once the constraints are satisfied, it’s impossible to push the value of the first compo-
nent lower than Φ[x̂].) So in particular, G(0) is not an interior point of G(V ). Thanks
to the Local Surjection Theorem, the following matrix must fail to be invertible:

DG(0) =


DΦ[x̂]y DΦ[x̂]h1 DΦ[x̂]h2 · · · DΦ[x̂]hm
DΓ1[x̂]y DΓ1[x̂]h1 DΓ1[x̂]h2 · · · DΓ1[x̂]hm

...
DΓm[x̂]y DΓm[x̂]h1 DΓm[x̂]h2 · · · DΓm[x̂]hm

 .
This happens for every choice of y, h1, . . . , hm in V , so by the Lemma above, the
m+ 1 operators DΦ[x̂], DΓ1[x̂], . . ., DΓm[x̂] must be linearly dependent.

(How much smoothness do we need? To apply the Local Surjection Theorem
requires the map (r0, . . . , rm) 7→ Γj [x̂ + r0y +

∑
j rjhj ] to be C1 near the origin of

R1+m, for every choice of y, h1, . . . , hm.)

Linear dependence requires existence of c0, c1, . . . , cm, not all zero, such that

0 = c0DΦ[x̂] + c1DΓ1[x̂] + · · ·+ cmDΓm[x̂]

= D

(
c0Φ + c1Γ1 + · · ·+ cmΓm

)
[x̂].

The objective functional Φ is special, so its coefficient gets special attention. If c0 6= 0,
we divide by it in the identity above and define λj = cj/c0 for each j. If c0 = 0,
we skip the division and define λj = cj for each j. The formal statement below
condenses this two-way split.
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Chapter II. Isoperimetric Problems 5

Theorem (Lagrange Multipliers). If x̂ achieves the minimum in the constrained
problem above, then there exist λ0 ∈ {0, 1} and λ ∈ Rm, not both zero, such that

0 = D

(
λ0Φ + λ1Γ1 + · · ·+ λmΓm

)
[x̂].

Remarks. 1. Taking both λ0 = 0 and λ = 0 in the conclusion above yields the
correct-but-trivial statement 0 = 0 for each and every x̂, so it is essential to
stipulate “not both zero” to give the theorem any chance to be useful.

2. The possibility that λ0 = 0 must be allowed to obtain a correct statement, but it
usually signals a situation where there is something unusual about the problem
formulation or the constraint structure. This situation is called “abnormal.” In
exploring a new problem, it’s typical to start with a short exploration of the
abnormal case: often this is easily shown to be a dead end, which guarantees
that the normal situation will capture the desired solution. Examples appear
below.

Example (Rayleigh Quotient). Suppose V = Rn and a symmetric matrix A ∈
Rn×n is given. Here is a problem with just one constraint (so m = 1):

min
x∈Rn

{
xTAx : |x|2 = 1

}
.

Here Φ[x] = xTAx, Γ[x] = |x|2 = xT Ix, γ = 1. For any x, y ∈ Rn,

Φ(x+ y)− Φ(x) = (x+ y)TA(x+ y)− xTAx
=
(
xTAx+ yTAx+ xTAy + yTAy

)
− xTAx

= 2xTAy + yTAy.

So for any h ∈ Rn,

Φ′[x;h] = lim
r→0+

Φ[x+ rh]− Φ[x]

r
= lim
r→0+

(
2xTAh+ rhTAh

)
= 2xTAh.

This is indeed a scalar-valued linear function of h, so (as an operator) DΦ[x] = 2xTA.
For the special case A = I we get DΓ[x] = 2xT .

Now if x̂ gives the minimum, there exist λ0 ∈ {0, 1} and λ ∈ R, not both zero, such
that

0 = D(λ0Φ + λΓ)[x̂] = 2λ0x̂
TA+ 2λx̂T .

Take transposes (remember A = AT ) and cancel 2’s to show that

λ0Ax̂+ λx̂ = 0.

Could λ0 = 0 work? No, because “not both zero” then requires λ 6= 0, which entails
x̂ = 0, and that is incompatible with the constraint. So the problem is normal and
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6 PHILIP D. LOEWEN

we take λ0 = 1. This shows that x̂ is an eigenvector of A, with eigenvalue −λ. The
constraint requires |x̂| = 1. Consequently

Φ[x̂] = (x̂)TAx̂ = (x̂)T (−λx̂) = −λ.

Geometrically, the Lagrange Multiplier Rule focusses the search for minimizers in this
problem to unit eigenvectors for A. The absolute minimum for Φ on the unit sphere
is achieved by the smallest eigenvalue. Every eigenvector for A is compatible with
some solution of the Lagrange Multiplier setup, but the ones for other eigenvalues
do not give the minimum. The largest eigenvalue gives the maximum. If there are
eigenvalues strictly between the smallest and the largest, each of their eigenvectors
gives neither a min nor a max. ////

Practice. Let A be a symmetric matrix of shape n× n and let û be any eigenvector
of A. Show that the minimum of xTAx on the slice of the unit sphere |x|2 = 1 defined
by the orthogonality condition ûTx = 0 is again an eigenvalue of A.

Practice. Let A be a symmetric matrix of shape n×n and let û1, . . . , ûk be linearly
independent eigenvectors of A; assume k < n. Show that the minimum of xTAx on
the slice of the unit sphere |x|2 = 1 defined by the orthogonality condition ûTj x = 0
for j = 1, 2, . . . , k is again an eigenvalue of A.

Example. Here is an abnormal problem in R2:

min
{
φ(s, t) = tes : 0 = g(s, t)

def
= s2 + t2

}
.

The only point where g = 0 is x̂ = (0, 0), so it must be the point that gives the
minimum. Lagrange says there must be some λ0, λ (not both zero) such that

(0, 0) = ∇ (λ0φ+ λg) (x̂)

= λ0(0, 1) + λ(0, 0) = (0, λ0).

This is correct when λ0 = 0 (any λ then works), but it never holds with λ0 = 1. ////

D. Applications in the Calculus of Variations 2026-02-06

The standard isoperimetric problem

min{Λ[x] :=

∫ b

a

L(t, x(t), ẋ(t)) dt :x ∈ PWS[a, b], x(a) = A, x(b) = B,∫ b

a

Gj(t, x(t), ẋ(t)) dt = γj , j = 1, 2, . . . ,m}

fits the pattern described abstractly above. We need only recognize the vector space
X, affine subset S, subspace V , and functional Γ as follows:

S = {x ∈ PWS[a, b] : x(a) = A, x(b) = B} ,
V = VII = {y ∈ PWS[a, b] : y(a) = 0 = y(b)} ,

Γ[x] =

∫ b

a

G(t, x(t), ẋ(t)) dt.
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Chapter II. Isoperimetric Problems 7

The smoothness conditions on Λ and Γ will hold whenever the corresponding inte-
grands L and G are of class C1. The extremality theorem stated above concerns the
operator

(λ0Λ +
m∑
j=1

λjΓj)[x] =

∫ b

a

λ0L(t, x(t), ẋ(t)) +
m∑
j=1

λjGj(t, x(t), ẋ(t))

 dt.

Conclusion (3), that D(λ0Λ +
∑
j λjΓj)[x̂] = 0, is equivalent to the statement that

the arc x̂ obeys IEL for the integrand

L̃(t, x, v) = λ0L(t, x, v) +
∑

λjGj(t, x, v).

The direct translation of the abstract theorem into the present context is as follows:

Theorem. Suppose x̂ solves the isoperimetric variational problem stated above. If
both L and G are C1, then there must be constants λ0 ∈ {0, 1} and λ ∈ R, not both
zero, such that for some c,

λ0L̂v(t) + λĜv(t) = c+

∫ t

a

(
λ0L̂x(r) + λĜx(r)

)
dr t ∈ [a, b].

Remarks. 1. On regularity: Weierstrass/Hilbert applies to extremals for a given

Lagrangian. Thus it applies if you use L̃ = λ0L+ λ1G1 + . . .+ λmGm.

2. On the natural boundary conditions: Adding `(x(a), x(b)) to Λ and gj(x(a), x(b))
to Γj is fully compatible with the developments above. In a problem where both

endpoints are unconstrained, the minimizing x̂ will be an extremal for L̃ as
defined above, and also the endpoint function

˜̀(x, y) = λ0`(x, y) +
∑
j

λjgj(x, y)

will make

(p(a),−p(b)) = ∇˜̀(x̂(a), x̂(b)), where p(t) =
̂̃
Lv(t) e.a.t ∈ [a, b].

An Abnormal Situation. In the isoperimetric problem

min

{∫ 1

0

t2ẋ(t)2 dt : x(0) = 0, x(1) = 1,

∫ 1

0

√
1 + ẋ(t)2 dt =

√
2

}
,

every arc providing a global minimum must have corresponding constants λ0 ∈ {0, 1}
and λ ∈ R, not both zero, such that x̂ obeys (IEL) for

L̃ = λ0t
2v2 + λ

√
1 + v2.
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That is, since L̃x = 0, some constant c obeys

c = L̂v(t) = 2λ0t
2 ˙̂x(t) + λ

˙̂x(t)√
1 + ˙̂x(t)2

.

Closer inspection of the constraints reveals there is only one admissible arc, namely
x̂(t) = t. This arc must certainly give the minimum, and substitution in the relation
above gives

2λ0t
2 +

λ√
2

= c ∀t ∈ [0, 1].

This forces λ0 = 0: the only form in which the conclusion of the theorem holds is the
abnormal one. ////

F. The Catenary

We consider a flexible chain of length γ hanging between points (a,A) and (b, B)
in a vertical plane. The shape of the chain will minimize the potential energy. As-
suming constant linear density ρ, a segment of length ds will have mass dm = ρ ds
and gravitational potential energy dU = (dm)(g)(x) = ρgx

√
dt2 + dx2. This leads to

the problem

minimize Λ[x] =

∫ b

a

x
√

1 + ẋ(t)2 dt

over all x ∈ PWS[a, b]

subject to Γ[x] =

∫ b

a

√
1 + ẋ(t)2 dt = γ,

x(a) = A, x(b) = B.

2026-02-09

We look for admissible arcs that are extremal for L̃ = (λ0x + λ)
√

1 + v2, with
λ0 ∈ {0, 1} and λ not both zero. Now if λ0 = 0, we know extremals for

√
1 + v2 are

straight lines. The straight line from (a,A) to (b, B) will be admissible exactly when
its length exactly matches the available length, i.e., when

γ =
√

(B −A)2 + (b− a)2.

There is no meaningful choice available in this situation, but it is a valid optimum
in a well-defined instance of the problem. Of course if the available length obeys
γ <

√
(B −A)2 + (b− a)2 then there are no admissible arcs, so the problem has

no solution. If the reverse inequality holds (strictly), there is a legitimate choice to

make, and we will need λ0 = 1 to do it. So we focus on L̃ = (x + λ)
√

1 + v2. This
has the special form f(x)

√
1 + v2 considered in general some lectures ago. For an

extremal x(), there must be a constant k such that

k(x(t) + λ) =
√

1 + ẋ(t)2
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Clearly k = 0 is not compatible, so the continuous function x(t) + λ cannot change
sign. It follows that Lvv(t, x(t), v) never changes sign, so x ∈ C2. Standard manipu-
lations lead to

ẋ(t)2 = k2(x(t) + λ)2 − 1.

On any interval where the sign of ẋ is σ ∈ {−1, 1},

dx√
k2(x+ λ)2 − 1

= σ dt.

Substitute u = k(x+ λ), du = k dx, to get

1

k

∫
du√
u2 − 1

= σt+
C(σ)

k

1

k
log
∣∣∣u+

√
u2 − 1

∣∣∣ = σt+
C(σ)

k

log
∣∣∣u+

√
u2 − 1

∣∣∣ = σkt+ C(σ).

Take a chance on u(t) > 1, in which case

u+
√
u2 − 1 = eσkt+C(σ).

This implies

u2 − 1 =
(
eσkt+C(σ) − u

)2
= e2(σkt+C(σ)) − 2ueσkt+C(σ) + u2

2ueσkt+C(σ) = e2(σkt+C(σ)) + 1

u =
eσkt+C(σ) + e−σkt−C(σ)

2

Note

u̇ =
σkeσkt+C(σ) − σke−σkt−C(σ)

2
.

To make a smooth connection from an interval with σ = +1 to an interval with
σ = −1 at some instant t, that transition point will have to make u̇(t) = 0 in two
ways:

0 = ekt+C(1) − e−kt−C(1) =⇒ kt+ C(1) = 0

0 = −e−kt+C(−1) + ekt−C(−1) =⇒ kt− C(−1) = 0

To reconcile these requires C(−1) = −C(1). Now write C = C(1) and summarize:

u̇ > 0 =⇒ u =
ekt+C + e−kt−C

2
,

u̇ < 0 =⇒ u =
e−kt−C + ekt+C

2
.
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10 PHILIP D. LOEWEN

Excellent: both expressions on the right are identical. So the single form below covers
both cases at once:

u(t) = k(x(t) + λ) =
ekt+C + e−kt−C

2
= cosh(kt+ C).

We know x is convex (since f(x) = x + λ is increasing, and we showed this in the
general discussion), so we must have k > 0.

Now we have x(t) = k−1 cosh(kt + C) − λ, with the three constants k > 0, C,
and λ still to determine. The endpoint conditions give two equations, and the third
comes from the arc length constraint. For the latter, we note that ẋ(t) = sinh(kt+C)
and insist upon

γ =

∫ b

a

√
1 + sinh2(kt+ C) dt =

∫ b

a

√
cosh2(kt+ C) dt

= k−1 sinh(kt+ C)
∣∣b
a

= k−1 sinh(kb+ C)− k−1 sinh(ka+ C).

Rearranging the two endpoint equations by keeping one as-is and using the difference
instead of the second leads to these 3 equations for the 3 unknowns k, C, and λ:

(1) B −A = k−1 cosh(kb+ C)− k−1 cosh(ka+ C)

(2) γ = k−1 sinh(kb+ C)− k−1 sinh(ka+ C)

(3) λ = k−1 cosh(ka+ C)−A
[

= k−1 cosh(kb+ C)−B
]

In this form, the constant λ does not appear in equations (1)–(2), so we can solve
this pair of equations for k and C, and then recover λ from (3). Typically this calls
for an approximate solution from the computer.

(Newton’s Method for solving F (p) = 0 in Rn for a given function F :Rn → Rn
is an effective choice.)

Let’s try the case where A = B. This makes B − A = 0 in (1), leading to
cosh(kb+ C) = cosh(ka+ C). Since cosh is even, k > 0, and a < b, we must have

ka+ C = −(kb+ C), i.e., 2C = −k(b+ a), i.e., C = −k(b+ a)

2
.

This reduces the remaining equations to

(2) γ = k−1 sinh( 1
2k(b− a))− k−1 sinh( 1

2k(a− b)) = 2k−1 sinh( 1
2k(b− a))

(3) λ = k−1 cosh( 1
2k(b− a))−A

Given γ > 0, solve (2) for k, then use

x(t) = k−1
[

cosh(kt)− cosh(( 1
2k(b− a))

]
+A, a ≤ t ≤ b.
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In the even more special case where A = B and b = −a > 0, we get

(2) γ = 2k−1 sinh(kb)

(3) λ = k−1 cosh(kb)−A

Given γ > 0, solve (2) for k, then use

x(t) = k−1 [ cosh(kt)− cosh(kb)] +A, −b ≤ t ≤ b.

Note that the function k 7→ 2k−1 sinh(kb) on the right side in (2) is even, increasing
in the interval k ≥ 0, and has the limit 2b as k → 0+. As anticipated above, there is
no solution if γ < 2b and some kind of degenerate solution when γ = 2b.

Note that the version of (2) arising in the symmetric case can be rearranged as

γ

2b
=

sinh(kb)

kb
=

sinh(z)

z
, z = kb.

Thus a systematic method for inverting the function z−1 sinh(z) is all we would need
to settle the symmetric case for any real b > 0.

G. Wishful Thinking 2026-02-11

“In the fields of observation, chance only favours the mind which is prepared . . .”
− Louis Pasteur, 1854

Let X be a real vector space, with a subset S. Suppose functionals Λ,Γ:S → R
are given, together with a constant γ, and we face the optimization problem

min
x∈S
{Λ[x] : Γ[x] = γ} . (P )

Here are two lines of reasoning that produce results that resemble the Lagrange
Multiplier Rule. Their limitations are subtle, but important.

Optimistic Alternative 1.

Theorem. Suppose x̂ ∈ S is admissible in (P ). If there is some λ ∈ R such that

x = x̂ minimizes Λ[x] + λΓ[x] (∗)

then x̂ gives a minimum in (P ).

Proof. For any x ∈ S obeying Γ[x] = γ, line (∗) gives the central inequality below:

Λ[x] = Λ[x] + λ(Γ[x]− γ)

= (Λ[x] + λΓ[x])− λγ
≥ (Λ[x̂] + λΓ[x̂])− λγ
= Λ[x] + λ(Γ[x]− γ)

= Λ[x̂].

This is the desired result. ////
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Implementation. If the set S is a shifted copy of some vector space X, and both
Λ and Γ are Gâteaux differentiable on S, then every x̂ satisfying (∗) will be found
among solutions of

0 = D(Λ + λΓ)[x̂] on X. (∗∗)

So we look for points x̂ in S and constants λ ∈ R for which Γ[x̂] = γ and (∗∗) holds.

If we find one that actually minimizes Λ̃ = Λ+λΓ, it is guaranteed to be a minimizer
for (P ).

Limitations. The Theorem above provides a simple test that, if passed, guarantees
that an admissible point x̂ solves the given problem. But there is no guarantee that
the test will identify every solution. The next example illustrates how the procedure
just outlined can break down, leaving its user with a page filled with calculations
having no obvious relevance to anything.

Example. Consider this problem with S = X = R2, where typical points have the
form x = (s, t):

min
{
`(s, t)

def
= s+ t : 1 = g(s, t)

def
= st, s > 0

}
.

The suggested procedure is to look for feasible points (s, t) where some λ makes

∇˜̀= 0 for ˜̀= `+ λg = s+ t+ λst. Here[
0
0

]
= ∇˜̀(s, t) =

[
1 + λt
1 + λs

]
⇐⇒ λs = λt = −1.

Clearly λ = 0 can’t work, so we focus on points where s = t. Then the constraint
forces 1 = st = s2, so s = 1, and our unique point of interest is x̂ = (1, 1), with
corresponding multiplier λ = −1. It’s easy to see geometrically, or by substituting
s = 1/t and using calculus, that x̂ really is this problem’s global solution. However,
the theorem above won’t confirm this because x̂ does not minimize the function

(s, t) 7→ s+ t+ λst = s+ t− st.

It’s a critical point, but the inputs s = 1 + r and t = 1 + σr give

s+ t− st = (1 + r) + (1 + σr)− (1 + r + σr + σr2) = 1− σr2.

Thus the point x̂ maximizes ˜̀ along the lines where σ > 0 and minimizes ˜̀ along
the lines where σ < 0: x̂ is a saddle point, not a minimizer. So this simple problem
has a solution, but the procedure outlined above won’t suffice to find it. In fact, this
process alone provides no firm reason for thinking the point x̂ is preferable to any
other. ////

Optimistic Alternative 2. Extend the given problem (P ) by defining the value
function

V (γ)
def
= min {Λ[x] : Γ[x] = γ} . P (γ)
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Chapter II. Isoperimetric Problems 13

Imagine starting with a nominal problem in which γ = γ̂ happens to have a minimizer
x̂, and we are interested in what would change if the nominal value of the constraint
was allowed to deviate from γ̂. The baseline situation is

Λ[x̂] = V (γ̂) = V (Γ[x̂]) (1)

Now fix any y in X, and put γ = Γ[y] into the definition above. Then the
minimization problem sets up a contest between all x that satisfy Γ[x] = Γ[y]. Clearly
one of the choices for x compatible with the constraints is our starting function y
itself, so V (γ) ≤ Λ[y]. (The input y is admissible, but there is no particular reason
to expect it to actually provide a minimum.) Recalling the choice of γ, we have

V (Γ[y]) = V (γ) ≤ Λ[y], ∀y ∈ X. (2)

(The same reasoning applies to each fixed y ∈ X independently, and that’s expressed
by the quantifiers in (2).)

Taken together, lines (1)–(2) imply

[0 = ] Λ[x̂]− V (Γ[x̂]) ≤ Λ[y]− V (Γ[y]), ∀y ∈ X.

That is, the function y 7→ (Λ − V ◦ Γ)[y] has an unconstrained minimum over X at
the point y = x̂. Therefore

0 = D(Λ− V ◦ Γ)[x̂] = DΛ[x̂]− V ′(Γ[x̂])DΓ[x̂].

Defining λ = −V ′(γ̂), we have the same conclusion derived carefully in previous
sections: If x̂ is a minimizer in problem P (γ̂), then there exists some constant λ such
that

0 = D(Λ + λΓ)[x̂].

Limitations. The weak point in the reasoning above is the implicit assumption that
the function V is differentiable at γ̂. Independent effort using quite different meth-
ods is required to put a solid foundation under this approach. (Success is possible,
however.)

Interpretation. In normal problems with a unique minimizer x̂ and a unique corre-
sponding Lagrange multiplier λ, this alternative derivation suggests a new interpre-
tation for the number λ. Namely, −λ tells the rate of change of the objective value
with respect to the constraint levels.

In Economics, problem P (γ) might be faced by some business owner, whose goal
is to minimize some financial loss (measured in dollars). Then the negative loss, −V ,
would be the owner’s profit . Meanwhile, the number γ might represent the available
amount of some commodity important in the business, perhaps in units of kg. Then
d(−V )/dγ tells the rate of change in the owner’s profit as the available resource
increases. Typically, having more resources drives profits up, so the multiplier λ =
d(−V )/dγ > 0. The units of λ are dollars per kilogram, and the standard name for
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it in economics is the shadow price. It tells the value of resource γ to the business
owner interested in problem P (γ). The owner will compare λ with the cost of γ on
the open market. If the market price is below λ, the owner can buy some γ and
increase their profit by more than they paid; if the market price is above λ, selling
some γ in the market will reduce profit from the optimization, but that loss will be
more than covered by the profit from selling the raw material.

Summary: Problem-Solving Steps. Given an isoperimetric problem of the form
above, . . .

1. Find all admissible extremals for a linear combination of the constraint inte-
grands Gj alone. These are the problem’s “abnormal extremals,” since they
satisfy the conclusions of the main theorem with λ0 = 0. In most problems
this set of arcs is empty, or reveals that the set if competing arcs is somehow
degenerate.

2. Find all admissible x̂ that, together with some constant λ ∈ Rm, satisfy IEL for
L̃ = L+

∑
j λjGj .

3. If the problem has a solution, it is guaranteed to appear on the list of arcs
identified in Steps 1 and 2. (We earned this knowledge through hard work in
Sections B–C.)

4. For each pair (x̂, λ) found in Step 2, take a chance: test whether the mapping
x 7→ Λ + λΓ is minimized over S by x̂. If so, you win: x̂ gives the minimum
in the stated problem. (If not, it is still possible that x̂ is a minimizer . . . but
unfortunately the super-easy proof of Wishful Thinking Option 1 is not powerful
enough to detect that.)
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