

Chapter II. Isoperimetric Problems

A. Abstract Derivatives

2026-01-30

For any real-valued function^[al] $\Phi: V \rightarrow \mathbb{R}$ defined on a vector space V , let

$$\Phi'[\hat{x}; h] = \lim_{\lambda \rightarrow 0^+} \frac{\Phi[\hat{x} + \lambda h] - \Phi[\hat{x}]}{\lambda}, \quad h \in V.$$

This is the directional derivative of Φ at the point \hat{x} , in the direction h . The concept makes no reference at all to a topology on V ; we bring this issue in later.

Examples. Note that when $V = \mathbb{R}^n$ and Φ is smooth, $\Phi'[\hat{x}; h] = \nabla\Phi(\hat{x}) \bullet h$. And when $V = PWS[a, b]$ and Λ is the usual variational integral, with $L = L(t, x, v)$ of class C^1 , we have

$$\Lambda'[\hat{x}; h] = \int_a^b \left(\hat{L}_x(r)h(r) + \hat{L}_v(r)\dot{h}(r) \right) dr, \quad h \in PWS[a, b].$$

When $\hat{x} \in V$ is a point at which $\Phi'[\hat{x}; h]$ is defined for every h and the map $h \mapsto \Phi'[\hat{x}; h]$ is linear, we use the notation $D\Phi[\hat{x}]$ for this map. We'll manipulate it like any other matrix or linear operator A , writing Ah instead of $A(h)$. So $\Phi'[\hat{x}; h] = D\Phi[\hat{x}]h$.

It's safe to call $D\Phi[\hat{x}]$ the Gâteaux derivative of Φ at \hat{x} .

Digression. The terminology of Gâteaux derivatives is not completely standardized. Some authors require only $\Phi'[\hat{x}; -h] = -\Phi'[\hat{x}; h]$ for each h instead of demanding linearity, while others require not only linearity but also some mild form of continuity. These fine distinctions don't make a difference for us.

Various definitions of “differentiability” are available. The same linear map $D\Phi[\hat{x}]$ appears in all of them. The terminology (Gâteaux, Fréchet, etc.) highlights the trustworthiness of that same operator as an approximation for the underlying function near \hat{x} .

- Gâteaux differentiability describes reliable approximation independently for each given line through \hat{x} :

$$\forall h \in V, \quad \Phi[\hat{x} + \lambda h] = \Phi[\hat{x}] + \lambda D\Phi[\hat{x}]h + o(\lambda) \text{ as } \lambda \rightarrow 0.$$

- If V has a norm, we call Φ Fréchet differentiable at \hat{x} when the operator $D\Phi[\hat{x}]$ gives an approximation that is uniform in the direction, i.e., when

$$\Phi[\hat{x} + h] = \Phi[\hat{x}] + D\Phi[\hat{x}]h + o(\|h\|) \text{ as } \|h\| \rightarrow 0.$$

There are closely related considerations when we come to defining local minimizers in the Calculus of Variations. More on this later.

B. Local Surjectivity

2026-02-02

Theorem (Surjective Mapping). Given an open set U in \mathbb{R}^n and a C^1 mapping $G: U \rightarrow \mathbb{R}^n$, consider the Jacobian matrix at a point $u_0 \in U$:

$$DG(u_0) = \begin{bmatrix} \frac{\partial g_1}{\partial u_1} & \frac{\partial g_1}{\partial u_2} & \dots & \frac{\partial g_1}{\partial u_n} \\ \frac{\partial g_2}{\partial u_1} & \frac{\partial g_2}{\partial u_2} & \dots & \frac{\partial g_2}{\partial u_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial u_1} & \frac{\partial g_n}{\partial u_2} & \dots & \frac{\partial g_n}{\partial u_n} \end{bmatrix}_{u=u_0}.$$

If $DG(u_0)$ is invertible, then $G(u_0) \in \text{int } G(U)$.

Proof. Introduce $F: \mathbb{R}^n \times U \rightarrow \mathbb{R}^n$ by defining

$$F(x, u) = G(u) - x, \quad x \in \mathbb{R}^n, u \in U.$$

Let $x_0 = G(u_0)$. This F is C^1 and $D_u F(x_0, u_0) = DG(u_0)$ is invertible, so the Implicit Function Theorem provides an open set X containing x_0 and a C^1 function $\phi: X \rightarrow \mathbb{R}^n$ such that

- (i) $0 = F(x, \phi(x)) = G(\phi(x)) - x$, $x \in X$, and
- (ii) (a uniqueness condition we don't need).

Line (i) shows that every x in the open set X around x_0 lies in the range of G (indeed $x = G(\phi(x))$). That's the desired result. ////

Lemma. Given a real vector space V and linear operators $M_1, \dots, M_n: V \rightarrow \mathbb{R}$, TFAE:

- (a) The given operators are linearly dependent, i.e., there exist $c_1, c_2, \dots, c_n \in \mathbb{R}$, not all zero, such that

$$c_1 M_1 + c_2 M_2 + \dots + c_n M_n = 0.$$

(On the right, 0 denotes the zero operator on V .)

- (b) For each choice of $h_1, h_2, \dots, h_n \in V$, the $n \times n$ matrix below is not invertible:

$$\begin{bmatrix} M_1 h_1 & M_2 h_1 & M_3 h_1 & \dots & M_n h_1 \\ M_1 h_2 & M_2 h_2 & M_3 h_2 & \dots & M_n h_2 \\ M_1 h_3 & M_2 h_3 & M_3 h_3 & \dots & M_n h_3 \\ \vdots & & \ddots & & \vdots \\ M_1 h_n & M_2 h_n & M_3 h_n & \dots & M_n h_n \end{bmatrix}.$$

Proof. (a \Rightarrow b) For a collection of constants as described in (a), and any elements h_1, \dots, h_n of V , observe that

$$\begin{bmatrix} M_1 h_1 & M_2 h_1 & M_3 h_1 & \cdots & M_n h_1 \\ M_1 h_2 & M_2 h_2 & M_3 h_2 & \cdots & M_n h_2 \\ M_1 h_3 & M_2 h_3 & M_3 h_3 & \cdots & M_n h_3 \\ \vdots & & \ddots & & \vdots \\ M_1 h_n & M_2 h_n & M_3 h_n & \cdots & M_n h_n \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

In detail, row j of the indicated product equals

$$c_1 M_1 h_j + c_2 M_2 h_j + \cdots + c_n M_n h_j = (c_1 M_1 + c_2 M_2 + \cdots + c_n M_n) h_j = 0.$$

Since the column vector on the left side of this product is nonzero, the matrix involved must be singular.

(b \Rightarrow a) Let's use induction, recalling that a matrix is invertible if and only if its determinant is nonzero.

The case $n = 1$ is obvious, and it is enough to launch the generic proof.

Let's show case $n = 2$ explicitly to make the ideas clear. So assume

$$0 = \left| \begin{bmatrix} M_1 h_1 & M_2 h_1 \\ M_1 h_2 & M_2 h_2 \end{bmatrix} \right| = (M_1 h_1)(M_2 h_2) - (M_2 h_1)(M_1 h_2) \quad \forall h_1, h_2 \in V.$$

The result is obvious if M_2 is itself the zero operator, since the choices $c_1 = 0$ and $c_2 = 1$ give the conclusion in that case. In the complementary case, there must exist some $h_2 \in V$ for which $M_2 h_2 \neq 0$. Use this h_2 to define $c_1 = M_2 h_2$ and $c_2 = -M_1 h_2$. Then $c_1 \neq 0$ and the identity above becomes

$$0 = c_1(M_1 h_1) + c_2(M_2 h_1) = (c_1 M_1 + c_2 M_2)h_1 \quad \forall h_1 \in V.$$

This is the desired result.

Now if the result is known for all dimensions up to and including $n - 1$, imagine expanding the determinant in the statement by minors, along the first row:

$$0 = (M_1 h_1) \Delta_1 + (M_2 h_2) \Delta_2 + \cdots + (M_n h_1) \Delta_n.$$

Here each Δ_j is $(-1)^{j+1}$ times the determinant of a certain $(n - 1) \times (n - 1)$ submatrix. Note that each Δ_j involves only the $n - 1$ inputs h_2, \dots, h_n . Now suppose $\Delta_1 = 0$ for every possible combination of h_2, \dots, h_n . Then by the $(n-1)$ -dimensional case of our result (known to be true, by our induction hypothesis), the operators M_2, \dots, M_n must be linearly dependent. Of course that makes the larger set M_1, \dots, M_n linearly dependent also, so the result holds. In the complementary case, there must exist some choice of h_2, \dots, h_n for which $\Delta_1 \neq 0$. Use this particular choice to define $c_j = \Delta_j$ for each j , and then revisit the identity above:

$$\begin{aligned} 0 &= c_1(M_1 h_1) + c_2(M_2 h_1) \Delta_2 + \cdots + c_n(M_n h_1) \\ &= (c_1 M_1 + c_2 M_2 + \cdots + c_n M_n)h_1, \quad h_1 \in V. \end{aligned}$$

This is the desired result. (Note that $c_1 \neq 0$.)

////

C. Lagrange Multipliers

2026-02-04

Now suppose V is a real vector space on which we have real-valued function[al]s $\Phi, \Gamma_1, \dots, \Gamma_m$, and constants $\gamma_1, \dots, \gamma_m$. Consider the constrained optimization problem

$$\min_{x \in V} \{\Phi[x] : \Gamma_j[x] = \gamma_j, j = 1, \dots, m\}.$$

Suppose \hat{x} solves this. Let's show why the operators $D\Phi[\hat{x}], D\Gamma_1[\hat{x}], \dots, D\Gamma_m[\hat{x}]$ must be linearly dependent.

The Lemma above is key. Pick arbitrary y, h_1, \dots, h_m in V and define $G: \mathbb{R}^{1+m} \rightarrow \mathbb{R}^{1+m}$ via

$$G(r_0, r_1, \dots, r_m) = \begin{bmatrix} \Phi[\hat{x} + r_0y + r_1h_1 + \dots + r_mh_m] \\ \Gamma_1[\hat{x} + r_0y + r_1h_1 + \dots + r_mh_m] \\ \vdots \\ \Gamma_m[\hat{x} + r_0y + r_1h_1 + \dots + r_mh_m] \end{bmatrix}.$$

Now $G(0) = (\Phi[\hat{x}], \gamma_1, \dots, \gamma_m)$. This is the limit of the sequence $(\Phi[\hat{x}] - 1/k, \gamma_1, \dots, \gamma_m)$, $k = 1, 2, \dots$, and every point in this sequence lies outside the range of G . (Proof: Once the constraints are satisfied, it's impossible to push the value of the first component lower than $\Phi[\hat{x}]$.) So in particular, $G(0)$ is not an interior point of $G(V)$. Thanks to the Local Surjection Theorem, the following matrix must fail to be invertible:

$$DG(0) = \begin{bmatrix} D\Phi[\hat{x}]y & D\Phi[\hat{x}]h_1 & D\Phi[\hat{x}]h_2 & \dots & D\Phi[\hat{x}]h_m \\ D\Gamma_1[\hat{x}]y & D\Gamma_1[\hat{x}]h_1 & D\Gamma_1[\hat{x}]h_2 & \dots & D\Gamma_1[\hat{x}]h_m \\ \vdots & & & & \\ D\Gamma_m[\hat{x}]y & D\Gamma_m[\hat{x}]h_1 & D\Gamma_m[\hat{x}]h_2 & \dots & D\Gamma_m[\hat{x}]h_m \end{bmatrix}.$$

This happens for every choice of y, h_1, \dots, h_m in V , so by the Lemma above, the $m + 1$ operators $D\Phi[\hat{x}], D\Gamma_1[\hat{x}], \dots, D\Gamma_m[\hat{x}]$ must be linearly dependent.

(How much smoothness do we need? To apply the Local Surjection Theorem requires the map $(r_0, \dots, r_m) \mapsto \Gamma_j[\hat{x} + r_0y + \sum_j r_jh_j]$ to be C^1 near the origin of \mathbb{R}^{1+m} , for every choice of y, h_1, \dots, h_m .)

Linear dependence requires existence of c_0, c_1, \dots, c_m , not all zero, such that

$$\begin{aligned} 0 &= c_0 D\Phi[\hat{x}] + c_1 D\Gamma_1[\hat{x}] + \dots + c_m D\Gamma_m[\hat{x}] \\ &= D \left(c_0 \Phi + c_1 \Gamma_1 + \dots + c_m \Gamma_m \right) [\hat{x}]. \end{aligned}$$

The objective functional Φ is special, so its coefficient gets special attention. If $c_0 \neq 0$, we divide by it in the identity above and define $\lambda_j = c_j/c_0$ for each j . If $c_0 = 0$, we skip the division and define $\lambda_j = c_j$ for each j . The formal statement below condenses this two-way split.

Theorem (Lagrange Multipliers). *If \hat{x} achieves the minimum in the constrained problem above, then there exist $\lambda_0 \in \{0, 1\}$ and $\lambda \in \mathbb{R}^m$, not both zero, such that*

$$0 = D \left(\lambda_0 \Phi + \lambda_1 \Gamma_1 + \cdots + \lambda_m \Gamma_m \right) [\hat{x}].$$

Remarks. 1. Taking both $\lambda_0 = 0$ and $\lambda = 0$ in the conclusion above yields the correct-but-trivial statement $0 = 0$ for each and every \hat{x} , so it is essential to stipulate “not both zero” to give the theorem any chance to be useful.

2. The possibility that $\lambda_0 = 0$ must be allowed to obtain a correct statement, but it usually signals a situation where there is something unusual about the problem formulation or the constraint structure. This situation is called “abnormal.” In exploring a new problem, it’s typical to start with a short exploration of the abnormal case: often this is easily shown to be a dead end, which guarantees that the normal situation will capture the desired solution. Examples appear below.

Example (Rayleigh Quotient). Suppose $V = \mathbb{R}^n$ and a symmetric matrix $A \in \mathbb{R}^{n \times n}$ is given. Here is a problem with just one constraint (so $m = 1$):

$$\min_{x \in \mathbb{R}^n} \left\{ x^T A x : |x|^2 = 1 \right\}.$$

Here $\Phi[x] = x^T A x$, $\Gamma[x] = |x|^2 = x^T I x$, $\gamma = 1$. For any $x, y \in \mathbb{R}^n$,

$$\begin{aligned} \Phi(x + y) - \Phi(x) &= (x + y)^T A (x + y) - x^T A x \\ &= (x^T A x + y^T A x + x^T A y + y^T A y) - x^T A x \\ &= 2x^T A y + y^T A y. \end{aligned}$$

So for any $h \in \mathbb{R}^n$,

$$\Phi'[x; h] = \lim_{r \rightarrow 0^+} \frac{\Phi[x + rh] - \Phi[x]}{r} = \lim_{r \rightarrow 0^+} (2x^T A h + rh^T A h) = 2x^T A h.$$

This is indeed a scalar-valued linear function of h , so (as an operator) $D\Phi[x] = 2x^T A$. For the special case $A = I$ we get $D\Gamma[x] = 2x^T$.

Now if \hat{x} gives the minimum, there exist $\lambda_0 \in \{0, 1\}$ and $\lambda \in \mathbb{R}$, not both zero, such that

$$0 = D(\lambda_0 \Phi + \lambda \Gamma)[\hat{x}] = 2\lambda_0 \hat{x}^T A + 2\lambda \hat{x}^T.$$

Take transposes (remember $A = A^T$) and cancel 2’s to show that

$$\lambda_0 A \hat{x} + \lambda \hat{x} = 0.$$

Could $\lambda_0 = 0$ work? No, because “not both zero” then requires $\lambda \neq 0$, which entails $\hat{x} = 0$, and that is incompatible with the constraint. So the problem is normal and

we take $\lambda_0 = 1$. This shows that \hat{x} is an eigenvector of A , with eigenvalue $-\lambda$. The constraint requires $|\hat{x}| = 1$. Consequently

$$\Phi[\hat{x}] = (\hat{x})^T A \hat{x} = (\hat{x})^T (-\lambda \hat{x}) = -\lambda.$$

Geometrically, the Lagrange Multiplier Rule focusses the search for minimizers in this problem to unit eigenvectors for A . The absolute minimum for Φ on the unit sphere is achieved by the smallest eigenvalue. Every eigenvector for A is compatible with some solution of the Lagrange Multiplier setup, but the ones for other eigenvalues do not give the minimum. The largest eigenvalue gives the *maximum*. If there are eigenvalues strictly between the smallest and the largest, each of their eigenvectors gives neither a min nor a max.

////

Practice. Let A be a symmetric matrix of shape $n \times n$ and let \hat{u} be any eigenvector of A . Show that the minimum of $x^T A x$ on the slice of the unit sphere $|x|^2 = 1$ defined by the orthogonality condition $\hat{u}^T x = 0$ is again an eigenvalue of A .

Practice. Let A be a symmetric matrix of shape $n \times n$ and let $\hat{u}_1, \dots, \hat{u}_k$ be linearly independent eigenvectors of A ; assume $k < n$. Show that the minimum of $x^T A x$ on the slice of the unit sphere $|x|^2 = 1$ defined by the orthogonality condition $\hat{u}_j^T x = 0$ for $j = 1, 2, \dots, k$ is again an eigenvalue of A .

Example. Here is an abnormal problem in \mathbb{R}^2 :

$$\min \left\{ \phi(s, t) = t e^s : 0 = g(s, t) \stackrel{\text{def}}{=} s^2 + t^2 \right\}.$$

The only point where $g = 0$ is $\hat{x} = (0, 0)$, so it must be the point that gives the minimum. Lagrange says there must be some λ_0, λ (not both zero) such that

$$\begin{aligned} (0, 0) &= \nabla(\lambda_0 \phi + \lambda g)(\hat{x}) \\ &= \lambda_0(0, 1) + \lambda(0, 0) = (0, \lambda_0). \end{aligned}$$

This is correct when $\lambda_0 = 0$ (any λ then works), but it never holds with $\lambda_0 = 1$. ////

D. Applications in the Calculus of Variations

2026-02-06

The standard isoperimetric problem

$$\begin{aligned} \min \{ \Lambda[x] := \int_a^b L(t, x(t), \dot{x}(t)) dt : x \in PWS[a, b], x(a) = A, x(b) = B, \\ \int_a^b G_j(t, x(t), \dot{x}(t)) dt = \gamma_j, j = 1, 2, \dots, m \} \end{aligned}$$

fits the pattern described abstractly above. We need only recognize the vector space X , affine subset S , subspace V , and functional Γ as follows:

$$\begin{aligned} S &= \{x \in PWS[a, b] : x(a) = A, x(b) = B\}, \\ V &= V_{II} = \{y \in PWS[a, b] : y(a) = 0 = y(b)\}, \\ \Gamma[x] &= \int_a^b G(t, x(t), \dot{x}(t)) dt. \end{aligned}$$

The smoothness conditions on Λ and Γ will hold whenever the corresponding integrands L and G are of class C^1 . The extremality theorem stated above concerns the operator

$$(\lambda_0\Lambda + \sum_{j=1}^m \lambda_j\Gamma_j)[x] = \int_a^b \left(\lambda_0 L(t, x(t), \dot{x}(t)) + \sum_{j=1}^m \lambda_j G_j(t, x(t), \dot{x}(t)) \right) dt.$$

Conclusion (3), that $D(\lambda_0\Lambda + \sum_j \lambda_j\Gamma_j)[\hat{x}] = 0$, is equivalent to the statement that the arc \hat{x} obeys IEL for the integrand

$$\tilde{L}(t, x, v) = \lambda_0 L(t, x, v) + \sum \lambda_j G_j(t, x, v).$$

The direct translation of the abstract theorem into the present context is as follows:

Theorem. *Suppose \hat{x} solves the isoperimetric variational problem stated above. If both L and G are C^1 , then there must be constants $\lambda_0 \in \{0, 1\}$ and $\lambda \in \mathbb{R}$, not both zero, such that for some c ,*

$$\lambda_0 \hat{L}_v(t) + \lambda \hat{G}_v(t) = c + \int_a^t \left(\lambda_0 \hat{L}_x(r) + \lambda \hat{G}_x(r) \right) dr \quad t \in [a, b].$$

Remarks. 1. On regularity: Weierstrass/Hilbert applies to extremals for a given Lagrangian. Thus it applies if you use $\tilde{L} = \lambda_0 L + \lambda_1 G_1 + \dots + \lambda_m G_m$.

2. On the natural boundary conditions: Adding $\ell(x(a), x(b))$ to Λ and $g_j(x(a), x(b))$ to Γ_j is fully compatible with the developments above. In a problem where both endpoints are unconstrained, the minimizing \hat{x} will be an extremal for \tilde{L} as defined above, and also the endpoint function

$$\tilde{\ell}(x, y) = \lambda_0 \ell(x, y) + \sum_j \lambda_j g_j(x, y)$$

will make

$$(p(a), -p(b)) = \nabla \tilde{\ell}(\hat{x}(a), \hat{x}(b)), \quad \text{where } p(t) = \hat{L}_v(t) \text{ e.a. } t \in [a, b].$$

An Abnormal Situation. In the isoperimetric problem

$$\min \left\{ \int_0^1 t^2 \dot{x}(t)^2 dt : x(0) = 0, x(1) = 1, \int_0^1 \sqrt{1 + \dot{x}(t)^2} dt = \sqrt{2} \right\},$$

every arc providing a global minimum must have corresponding constants $\lambda_0 \in \{0, 1\}$ and $\lambda \in \mathbb{R}$, not both zero, such that \hat{x} obeys (IEL) for

$$\tilde{L} = \lambda_0 t^2 v^2 + \lambda \sqrt{1 + v^2}.$$

That is, since $\tilde{L}_x = 0$, some constant c obeys

$$c = \hat{L}_v(t) = 2\lambda_0 t^2 \dot{\hat{x}}(t) + \lambda \frac{\dot{\hat{x}}(t)}{\sqrt{1 + \dot{\hat{x}}(t)^2}}.$$

Closer inspection of the constraints reveals there is only one admissible arc, namely $\hat{x}(t) = t$. This arc must certainly give the minimum, and substitution in the relation above gives

$$2\lambda_0 t^2 + \frac{\lambda}{\sqrt{2}} = c \quad \forall t \in [0, 1].$$

This forces $\lambda_0 = 0$: the only form in which the conclusion of the theorem holds is the abnormal one. ////

F. The Catenary

We consider a flexible chain of length γ hanging between points (a, A) and (b, B) in a vertical plane. The shape of the chain will minimize the potential energy. Assuming constant linear density ρ , a segment of length ds will have mass $dm = \rho ds$ and gravitational potential energy $dU = (dm)(g)(x) = \rho g x \sqrt{dt^2 + dx^2}$. This leads to the problem

$$\begin{aligned} \text{minimize} \quad & \Lambda[x] = \int_a^b x \sqrt{1 + \dot{x}(t)^2} dt \\ \text{over all} \quad & x \in PWS[a, b] \\ \text{subject to} \quad & \Gamma[x] = \int_a^b \sqrt{1 + \dot{x}(t)^2} dt = \gamma, \\ & x(a) = A, \quad x(b) = B. \end{aligned}$$

2026-02-09

We look for admissible arcs that are extremal for $\tilde{L} = (\lambda_0 x + \lambda) \sqrt{1 + v^2}$, with $\lambda_0 \in \{0, 1\}$ and λ not both zero. Now if $\lambda_0 = 0$, we know extremals for $\sqrt{1 + v^2}$ are straight lines. The straight line from (a, A) to (b, B) will be admissible exactly when its length exactly matches the available length, i.e., when

$$\gamma = \sqrt{(B - A)^2 + (b - a)^2}.$$

There is no meaningful choice available in this situation, but it is a valid optimum in a well-defined instance of the problem. Of course if the available length obeys $\gamma < \sqrt{(B - A)^2 + (b - a)^2}$ then there are no admissible arcs, so the problem has no solution. If the reverse inequality holds (strictly), there is a legitimate choice to make, and we will need $\lambda_0 = 1$ to do it. So we focus on $\tilde{L} = (x + \lambda) \sqrt{1 + v^2}$. This has the special form $f(x) \sqrt{1 + v^2}$ considered in general some lectures ago. For an extremal $x()$, there must be a constant k such that

$$k(x(t) + \lambda) = \sqrt{1 + \dot{x}(t)^2}$$

Clearly $k = 0$ is not compatible, so the continuous function $x(t) + \lambda$ cannot change sign. It follows that $L_{vv}(t, x(t), v)$ never changes sign, so $x \in C^2$. Standard manipulations lead to

$$\dot{x}(t)^2 = k^2(x(t) + \lambda)^2 - 1.$$

On any interval where the sign of \dot{x} is $\sigma \in \{-1, 1\}$,

$$\frac{dx}{\sqrt{k^2(x + \lambda)^2 - 1}} = \sigma dt.$$

Substitute $u = k(x + \lambda)$, $du = k dx$, to get

$$\begin{aligned} \frac{1}{k} \int \frac{du}{\sqrt{u^2 - 1}} &= \sigma t + \frac{C(\sigma)}{k} \\ \frac{1}{k} \log \left| u + \sqrt{u^2 - 1} \right| &= \sigma t + \frac{C(\sigma)}{k} \\ \log \left| u + \sqrt{u^2 - 1} \right| &= \sigma kt + C(\sigma). \end{aligned}$$

Take a chance on $u(t) > 1$, in which case

$$u + \sqrt{u^2 - 1} = e^{\sigma kt + C(\sigma)}.$$

This implies

$$\begin{aligned} u^2 - 1 &= \left(e^{\sigma kt + C(\sigma)} - u \right)^2 = e^{2(\sigma kt + C(\sigma))} - 2ue^{\sigma kt + C(\sigma)} + u^2 \\ 2ue^{\sigma kt + C(\sigma)} &= e^{2(\sigma kt + C(\sigma))} + 1 \\ u &= \frac{e^{\sigma kt + C(\sigma)} + e^{-\sigma kt - C(\sigma)}}{2} \end{aligned}$$

Note

$$\dot{u} = \frac{\sigma k e^{\sigma kt + C(\sigma)} - \sigma k e^{-\sigma kt - C(\sigma)}}{2}.$$

To make a smooth connection from an interval with $\sigma = +1$ to an interval with $\sigma = -1$ at some instant t , that transition point will have to make $\dot{u}(t) = 0$ in two ways:

$$\begin{aligned} 0 &= e^{kt+C(1)} - e^{-kt-C(1)} \implies kt + C(1) = 0 \\ 0 &= -e^{-kt+C(-1)} + e^{kt-C(-1)} \implies kt - C(-1) = 0 \end{aligned}$$

To reconcile these requires $C(-1) = -C(1)$. Now write $C = C(1)$ and summarize:

$$\begin{aligned} \dot{u} > 0 &\implies u = \frac{e^{kt+C} + e^{-kt-C}}{2}, \\ \dot{u} < 0 &\implies u = \frac{e^{-kt-C} + e^{kt+C}}{2}. \end{aligned}$$

Excellent: both expressions on the right are identical. So the single form below covers both cases at once:

$$u(t) = k(x(t) + \lambda) = \frac{e^{kt+C} + e^{-kt-C}}{2} = \cosh(kt + C).$$

We know x is convex (since $f(x) = x + \lambda$ is increasing, and we showed this in the general discussion), so we must have $k > 0$.

Now we have $x(t) = k^{-1} \cosh(kt + C) - \lambda$, with the three constants $k > 0$, C , and λ still to determine. The endpoint conditions give two equations, and the third comes from the arc length constraint. For the latter, we note that $\dot{x}(t) = \sinh(kt + C)$ and insist upon

$$\begin{aligned} \gamma &= \int_a^b \sqrt{1 + \sinh^2(kt + C)} dt = \int_a^b \sqrt{\cosh^2(kt + C)} dt \\ &= k^{-1} \sinh(kt + C) \Big|_a^b = k^{-1} \sinh(kb + C) - k^{-1} \sinh(ka + C). \end{aligned}$$

Rearranging the two endpoint equations by keeping one as-is and using the difference instead of the second leads to these 3 equations for the 3 unknowns k , C , and λ :

$$\begin{aligned} (1) \quad &B - A = k^{-1} \cosh(kb + C) - k^{-1} \cosh(ka + C) \\ (2) \quad &\gamma = k^{-1} \sinh(kb + C) - k^{-1} \sinh(ka + C) \\ (3) \quad &\lambda = k^{-1} \cosh(ka + C) - A \quad \left[= k^{-1} \cosh(kb + C) - B \right] \end{aligned}$$

In this form, the constant λ does not appear in equations (1)–(2), so we can solve this pair of equations for k and C , and then recover λ from (3). Typically this calls for an approximate solution from the computer.

(Newton's Method for solving $F(p) = 0$ in \mathbb{R}^n for a given function $F: \mathbb{R}^n \rightarrow \mathbb{R}^n$ is an effective choice.)

Let's try the case where $A = B$. This makes $B - A = 0$ in (1), leading to $\cosh(kb + C) = \cosh(ka + C)$. Since \cosh is even, $k > 0$, and $a < b$, we must have

$$ka + C = -(kb + C), \quad \text{i.e.,} \quad 2C = -k(b + a), \quad \text{i.e.,} \quad C = -\frac{k(b + a)}{2}.$$

This reduces the remaining equations to

$$\begin{aligned} (2) \quad &\gamma = k^{-1} \sinh(\frac{1}{2}k(b - a)) - k^{-1} \sinh(\frac{1}{2}k(a - b)) = 2k^{-1} \sinh(\frac{1}{2}k(b - a)) \\ (3) \quad &\lambda = k^{-1} \cosh(\frac{1}{2}k(b - a)) - A \end{aligned}$$

Given $\gamma > 0$, solve (2) for k , then use

$$x(t) = k^{-1} [\cosh(kt) - \cosh((\frac{1}{2}k(b - a)))] + A, \quad a \leq t \leq b.$$

In the even more special case where $A = B$ and $b = -a > 0$, we get

$$(2) \quad \gamma = 2k^{-1} \sinh(kb)$$

$$(3) \quad \lambda = k^{-1} \cosh(kb) - A$$

Given $\gamma > 0$, solve (2) for k , then use

$$x(t) = k^{-1} [\cosh(kt) - \cosh(kb)] + A, \quad -b \leq t \leq b.$$

Note that the function $k \mapsto 2k^{-1} \sinh(kb)$ on the right side in (2) is even, increasing in the interval $k \geq 0$, and has the limit $2b$ as $k \rightarrow 0^+$. As anticipated above, there is no solution if $\gamma < 2b$ and some kind of degenerate solution when $\gamma = 2b$.

Note that the version of (2) arising in the symmetric case can be rearranged as

$$\frac{\gamma}{2b} = \frac{\sinh(kb)}{kb} = \frac{\sinh(z)}{z}, \quad z = kb.$$

Thus a systematic method for inverting the function $z^{-1} \sinh(z)$ is all we would need to settle the symmetric case for any real $b > 0$.

G. Wishful Thinking

2026-02-11

“In the fields of observation, chance only favours the mind which is prepared . . .”
— Louis Pasteur, 1854

Let X be a real vector space, with a subset S . Suppose functionals $\Lambda, \Gamma: S \rightarrow \mathbb{R}$ are given, together with a constant γ , and we face the optimization problem

$$\min_{x \in S} \{\Lambda[x] : \Gamma[x] = \gamma\}. \quad (P)$$

Here are two lines of reasoning that produce results that resemble the Lagrange Multiplier Rule. Their limitations are subtle, but important.

Optimistic Alternative 1.

Theorem. Suppose $\hat{x} \in S$ is admissible in (P). If there is some $\lambda \in \mathbb{R}$ such that

$$x = \hat{x} \text{ minimizes } \Lambda[x] + \lambda \Gamma[x] \quad (*)$$

then \hat{x} gives a minimum in (P).

Proof. For any $x \in S$ obeying $\Gamma[x] = \gamma$, line (*) gives the central inequality below:

$$\begin{aligned} \Lambda[x] &= \Lambda[x] + \lambda(\Gamma[x] - \gamma) \\ &= (\Lambda[x] + \lambda \Gamma[x]) - \lambda \gamma \\ &\geq (\Lambda[\hat{x}] + \lambda \Gamma[\hat{x}]) - \lambda \gamma \\ &= \Lambda[x] + \lambda(\Gamma[x] - \gamma) \\ &= \Lambda[\hat{x}]. \end{aligned}$$

This is the desired result. ////

Implementation. If the set S is a shifted copy of some vector space X , and both Λ and Γ are Gâteaux differentiable on S , then every \hat{x} satisfying $(*)$ will be found among solutions of

$$0 = D(\Lambda + \lambda\Gamma)[\hat{x}] \quad \text{on } X. \quad (**)$$

So we look for points \hat{x} in S and constants $\lambda \in \mathbb{R}$ for which $\Gamma[\hat{x}] = \gamma$ and $(**)$ holds. If we find one that actually minimizes $\tilde{\Lambda} = \Lambda + \lambda\Gamma$, it is guaranteed to be a minimizer for (P) .

Limitations. The Theorem above provides a simple test that, if passed, guarantees that an admissible point \hat{x} solves the given problem. But *there is no guarantee that the test will identify every solution*. The next example illustrates how the procedure just outlined can break down, leaving its user with a page filled with calculations having no obvious relevance to anything.

Example. Consider this problem with $S = X = \mathbb{R}^2$, where typical points have the form $x = (s, t)$:

$$\min \left\{ \ell(s, t) \stackrel{\text{def}}{=} s + t : 1 = g(s, t) \stackrel{\text{def}}{=} st, s > 0 \right\}.$$

The suggested procedure is to look for feasible points (s, t) where some λ makes $\nabla \tilde{\ell} = 0$ for $\tilde{\ell} = \ell + \lambda g = s + t + \lambda st$. Here

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \nabla \tilde{\ell}(s, t) = \begin{bmatrix} 1 + \lambda t \\ 1 + \lambda s \end{bmatrix} \iff \lambda s = \lambda t = -1.$$

Clearly $\lambda = 0$ can't work, so we focus on points where $s = t$. Then the constraint forces $1 = st = s^2$, so $s = 1$, and our unique point of interest is $\hat{x} = (1, 1)$, with corresponding multiplier $\lambda = -1$. It's easy to see geometrically, or by substituting $s = 1/t$ and using calculus, that \hat{x} really is this problem's global solution. However, the theorem above won't confirm this because \hat{x} **does not minimize** the function

$$(s, t) \mapsto s + t + \lambda st = s + t - st.$$

It's a critical point, but the inputs $s = 1 + r$ and $t = 1 + \sigma r$ give

$$s + t - st = (1 + r) + (1 + \sigma r) - (1 + r + \sigma r + \sigma r^2) = 1 - \sigma r^2.$$

Thus the point \hat{x} maximizes $\tilde{\ell}$ along the lines where $\sigma > 0$ and minimizes $\tilde{\ell}$ along the lines where $\sigma < 0$: \hat{x} is a *saddle point*, not a minimizer. So this simple problem has a solution, but the procedure outlined above won't suffice to find it. In fact, this process alone provides no firm reason for thinking the point \hat{x} is preferable to any other. ////

Optimistic Alternative 2. Extend the given problem (P) by defining the *value function*

$$V(\gamma) \stackrel{\text{def}}{=} \min \{ \Lambda[x] : \Gamma[x] = \gamma \}. \quad P(\gamma)$$

Imagine starting with a nominal problem in which $\gamma = \hat{\gamma}$ happens to have a minimizer \hat{x} , and we are interested in what would change if the nominal value of the constraint was allowed to deviate from $\hat{\gamma}$. The baseline situation is

$$\Lambda[\hat{x}] = V(\hat{\gamma}) = V(\Gamma[\hat{x}]) \quad (1)$$

Now fix any y in X , and put $\gamma = \Gamma[y]$ into the definition above. Then the minimization problem sets up a contest between all x that satisfy $\Gamma[x] = \Gamma[y]$. Clearly one of the choices for x compatible with the constraints is our starting function y itself, so $V(\gamma) \leq \Lambda[y]$. (The input y is admissible, but there is no particular reason to expect it to actually provide a minimum.) Recalling the choice of γ , we have

$$V(\Gamma[y]) = V(\gamma) \leq \Lambda[y], \quad \forall y \in X. \quad (2)$$

(The same reasoning applies to each fixed $y \in X$ independently, and that's expressed by the quantifiers in (2).)

Taken together, lines (1)–(2) imply

$$[0 =] \Lambda[\hat{x}] - V(\Gamma[\hat{x}]) \leq \Lambda[y] - V(\Gamma[y]), \quad \forall y \in X.$$

That is, the function $y \mapsto (\Lambda - V \circ \Gamma)[y]$ has an unconstrained minimum over X at the point $y = \hat{x}$. Therefore

$$0 = D(\Lambda - V \circ \Gamma)[\hat{x}] = D\Lambda[\hat{x}] - V'(\Gamma[\hat{x}])D\Gamma[\hat{x}].$$

Defining $\lambda = -V'(\hat{\gamma})$, we have the same conclusion derived carefully in previous sections: *If \hat{x} is a minimizer in problem $P(\hat{\gamma})$, then there exists some constant λ such that*

$$0 = D(\Lambda + \lambda\Gamma)[\hat{x}].$$

Limitations. The weak point in the reasoning above is the *implicit assumption* that the function V is differentiable at $\hat{\gamma}$. Independent effort using quite different methods is required to put a solid foundation under this approach. (Success is possible, however.)

Interpretation. In normal problems with a unique minimizer \hat{x} and a unique corresponding Lagrange multiplier λ , this alternative derivation suggests a new interpretation for the number λ . Namely, $-\lambda$ tells the rate of change of the objective value with respect to the constraint levels.

In Economics, problem $P(\gamma)$ might be faced by some business owner, whose goal is to minimize some financial loss (measured in dollars). Then the negative loss, $-V$, would be the owner's *profit*. Meanwhile, the number γ might represent the available amount of some commodity important in the business, perhaps in units of kg. Then $d(-V)/d\gamma$ tells the rate of change in the owner's profit as the available resource increases. Typically, having more resources drives profits up, so the multiplier $\lambda = d(-V)/d\gamma > 0$. The units of λ are *dollars per kilogram*, and the standard name for

it in economics is the *shadow price*. It tells the value of resource γ to the business owner interested in problem $P(\gamma)$. The owner will compare λ with the cost of γ on the open market. If the market price is below λ , the owner can buy some γ and increase their profit by more than they paid; if the market price is above λ , selling some γ in the market will reduce profit from the optimization, but that loss will be more than covered by the profit from selling the raw material.

Summary: Problem-Solving Steps. Given an isoperimetric problem of the form above, ...

1. Find all admissible extremals for *a linear combination of the constraint integrands G_j alone*. These are the problem's "abnormal extremals," since they satisfy the conclusions of the main theorem with $\lambda_0 = 0$. In most problems this set of arcs is empty, or reveals that the set of competing arcs is somehow degenerate.
2. Find all admissible \hat{x} that, together with some constant $\lambda \in \mathbb{R}^m$, satisfy IEL for $\tilde{L} = L + \sum_j \lambda_j G_j$.
3. If the problem has a solution, it is guaranteed to appear on the list of arcs identified in Steps 1 and 2. (We earned this knowledge through hard work in Sections B–C.)
4. For each pair (\hat{x}, λ) found in Step 2, take a chance: test whether the mapping $x \mapsto \Lambda + \lambda\Gamma$ is minimized over S by \hat{x} . If so, you win: \hat{x} gives the minimum in the stated problem. (If not, it is still possible that \hat{x} is a minimizer ... but unfortunately the super-easy proof of Wishful Thinking Option 1 is not powerful enough to detect that.)