UBC Mathematics 402(101)—Assignment 2

Due by Canvas upload by 18:00 PT on Saturday 23 Sep 2023

1. (a) Find the unique admissible extremal \widehat{x} in the problem

$$
\min \left\{\int_{1}^{2}\left[2 x^{2}(t)+t^{2} \dot{x}^{2}(t)\right] d t: x(1)=1, x(2)=5\right\}
$$

(Hint: The Euler equation has two solutions of the form t^{p}.)
(b) Prove that \widehat{x} is the global solution to this problem.
2. Consider the following functional with a quadratic integrand:

$$
\Lambda[y]=\int_{0}^{3 \pi / 2}\left(\dot{y}(t)^{2}-y(t)^{2}\right) d t
$$

(a) Find an arc h with $h(0)=0, h(3 \pi / 2)=0$, and $\Lambda[h]<0$.
(b) Find all extremals (if any) for Λ compatible with the endpoint conditions $y(0)=0, y(3 \pi / 2)=0$.
(c) Display a sequence of arcs $y_{k} \in C^{1}[0,3 \pi / 2]$, each satisfying $y_{k}(0)=0, y_{k}(3 \pi / 2)=0$, such that

$$
\Lambda\left[y_{k}\right] \rightarrow-\infty \quad \text { as } \quad k \rightarrow \infty .
$$

(d) Continuing with Λ as given, consider the problem of minimizing $\Lambda[x]$ over all $x \in C^{1}[0,3 \pi / 2]$ subject to new endpoint conditions,

$$
x(0)=0, \quad x(3 \pi / 2)=B,
$$

where B is some given constant. Find all admissible extremals, and then show that none of them gives even a directional local minimizer. That is, show that for any admissible extremal z there is an admissible variation h for which the 1 -variable function

$$
\phi(\lambda)=\Lambda[z+\lambda h]
$$

does not have a local minimum at the point $\lambda=0$.
3. Given $k, \ell: \mathbb{R} \xrightarrow{C^{1}} \mathbb{R}$, define $\Phi: C^{1}[a, b] \rightarrow \mathbb{R}$ as follows:

$$
\Phi[x]=k(x(a))+\ell(x(b)), \quad x \in C^{1}[a, b] .
$$

(a) Show that for every \widehat{x} in $C^{1}[a, b]$, the derivative operator $D \Phi[\widehat{x}]: C^{1}[a, b] \rightarrow \mathbb{R}$ is well-defined and linear.
(b) Use the abstract theory discussed in class to complete the following statement of first-order necessary conditions in terms of k and ℓ, and then to prove it:

$$
\text { If an arc } \widehat{x} \in C^{1}[a, b] \text { gives a } D L M \text { for } \Phi \text {, then } \ldots .
$$

(c) Let $\Lambda[x]=\int_{a}^{b} L(t, x(t), \dot{x}(t)) d t$, where $L \in C^{1}$. Suppose $\widehat{x} \in C^{1}[a, b]$ gives a DLM for $\Lambda+\Phi$. Prove that \widehat{x} satisfies not only (IEL), but also the endpoint conditions

$$
\widehat{L}_{v}(a)=k^{\prime}(\widehat{x}(a)), \quad-\widehat{L}_{v}(b)=\ell^{\prime}(\widehat{x}(b)) .
$$

4. Consider the following problem:

$$
\min \left\{\int_{0}^{1}\left[t x^{2}(t)+t^{2} x(t)\right] d t: x \in P W S[0,1], x(0)=A, x(1)=B\right\} .
$$

Show that a solution can only exist for certain values of A and B. Find these values, and the unique candidate for the minimizing arc. Then use your ingenuity to prove that this arc truly provides a unique global minimum.
[Clue: Call the arc you find \widehat{x}, and show that $\Lambda[x]-\Lambda[\widehat{x}]>0$ is true for every arc $x \neq \widehat{x}$ satisfying the endpoint conditions.]

