UBC Mathematics 402(101)—Assignment 2 Due by Canvas upload by 18:00 PT on Saturday 23 Sep 2023

1. (a) Find the unique admissible extremal \hat{x} in the problem

$$\min\left\{\int_{1}^{2} \left[2x^{2}(t) + t^{2}\dot{x}^{2}(t)\right] dt : x(1) = 1, \ x(2) = 5\right\}.$$

(Hint: The Euler equation has two solutions of the form t^p .)

- (b) Prove that \hat{x} is the global solution to this problem.
- 2. Consider the following functional with a quadratic integrand:

$$\Lambda[y] = \int_0^{3\pi/2} \left(\dot{y}(t)^2 - y(t)^2 \right) \, dt.$$

- (a) Find an arc h with h(0) = 0, $h(3\pi/2) = 0$, and $\Lambda[h] < 0$.
- (b) Find all extremals (if any) for Λ compatible with the endpoint conditions y(0) = 0, $y(3\pi/2) = 0$.
- (c) Display a sequence of arcs $y_k \in C^1[0, 3\pi/2]$, each satisfying $y_k(0) = 0$, $y_k(3\pi/2) = 0$, such that

$$\Lambda[y_k] \to -\infty \quad \text{as} \quad k \to \infty.$$

(d) Continuing with Λ as given, consider the problem of minimizing $\Lambda[x]$ over all $x \in C^1[0, 3\pi/2]$ subject to new endpoint conditions,

$$x(0) = 0,$$
 $x(3\pi/2) = B,$

where B is some given constant. Find all admissible extremals, and then show that none of them gives even a directional local minimizer. That is, show that for any admissible extremal z there is an admissible variation h for which the 1-variable function

$$\phi(\lambda) = \Lambda[z + \lambda h]$$

does not have a local minimum at the point $\lambda = 0$.

3. Given $k, \ell: \mathbb{R} \xrightarrow{C^1} \mathbb{R}$, define $\Phi: C^1[a, b] \to \mathbb{R}$ as follows:

$$\Phi[x] = k(x(a)) + \ell(x(b)), \qquad x \in C^1[a, b].$$

- (a) Show that for every \hat{x} in $C^1[a, b]$, the derivative operator $D\Phi[\hat{x}]: C^1[a, b] \to \mathbb{R}$ is well-defined and linear.
- (b) Use the abstract theory discussed in class to complete the following statement of first-order necessary conditions in terms of k and ℓ , and then to prove it:

If an arc $\hat{x} \in C^1[a, b]$ gives a DLM for Φ , then

[&]quot;hw02" ©Philip D. Loewen, 16 Sep 2023, page 1.

(c) Let $\Lambda[x] = \int_{a}^{b} L(t, x(t), \dot{x}(t)) dt$, where $L \in C^{1}$. Suppose $\hat{x} \in C^{1}[a, b]$ gives a DLM for $\Lambda + \Phi$. Prove that \hat{x} satisfies not only (IEL), but also the endpoint conditions

$$\widehat{L}_v(a) = k'(\widehat{x}(a)), \quad -\widehat{L}_v(b) = \ell'(\widehat{x}(b)).$$

4. Consider the following problem:

$$\min\left\{\int_0^1 \left[tx^2(t) + t^2x(t)\right] dt : x \in PWS[0,1], \ x(0) = A, \ x(1) = B\right\}.$$

Show that a solution can only exist for certain values of A and B. Find these values, and the unique candidate for the minimizing arc. Then use your ingenuity to prove that this arc truly provides a *unique global minimum*.

[Clue: Call the arc you find \hat{x} , and show that $\Lambda[x] - \Lambda[\hat{x}] > 0$ is true for every arc $x \neq \hat{x}$ satisfying the endpoint conditions.]