

UBC Mathematics 402(201)—Assignment 2
Due by PDF upload to Canvas no later than 23:59, Friday 23 January 2026

1. (a) Find the unique admissible extremal \hat{x} in the problem

$$\min \left\{ \int_1^2 [2x^2(t) + t^2 \dot{x}^2(t)] dt : x(1) = 1, x(2) = 5 \right\}.$$

(Hint: The Euler equation has two solutions of the form t^p .)

(b) Prove that \hat{x} is the global solution to this problem.

2. Find all extremals of

$$\int (t^2 + x^2(t))^{1/2} (1 + \dot{x}^2(t))^{1/2} dt.$$

(Hint: Switch to polar coordinates (r, θ) . Then choose wisely between the interpretation where $r = r(\theta)$ and the alternative where $\theta = \theta(r)$. Of course, final answers should be expressed in the same variables as the original problem.)

3. Let $V_{II} = \{x \in C^1[0, 1] : x(0) = 0 = x(1)\}$. Define $\Lambda: V_{II} \rightarrow \mathbb{R}$ by

$$\Lambda[x] = -\dot{x}(0)^3 + \int_0^1 \dot{x}(t)^2 dt.$$

(a) Given any $\hat{x} \in V_{II}$ and $h \in V_{II}$, define $\phi(\lambda) = \Lambda[\hat{x} + \lambda h]$. Evaluate $\phi'(0)$ and $\phi''(0)$ in terms of \hat{x} and h .
 (b) Consider the arc $\hat{x} = 0$. Use the information in (a) to show that for any nonzero $h \in V_{II}$, the function ϕ has a strict local minimum at the point $\lambda = 0$. (That is, show that $\hat{x} = 0$ is a directional local minimizer for Λ .)
 (c) Construct a sequence of arcs y_n in V_{II} with $\Lambda[y_n] < \Lambda[0]$ for all n , even though

$$\max_{t \in [0, 1]} |y_n(t)| \rightarrow 0 \quad \text{and} \quad \max_{t \in [0, 1]} |\dot{y}_n(t)| \rightarrow 0 \quad \text{as } n \rightarrow \infty.$$

Hence $\hat{x} = 0$ is a directional local minimizer, but not a “weak local minimizer”.

[Clue: Try arranging \dot{y}_n so that the integral is very small, but $\dot{y}_n(0) = 1/n$.]

4. Consider this extension of the Basic Problem, in which the interval $[a, b]$ is given, but the endpoint values of the competing arcs x are free to vary:

$$\begin{aligned} & \text{minimize } \Lambda[x] = k(x(a)) + \ell(x(b)) + \int_a^b L(t, x(t), \dot{x}(t)) dt \\ & \text{over all } x \in PWS[a, b]. \end{aligned}$$

(Assume the given functions $k = k(x)$, $\ell = \ell(x)$, and $L = L(t, x, v)$ are all C^1 .)

Suppose $\hat{x} \in PWS[a, b]$ gives the minimum in this problem. Prove that \hat{x} satisfies not only (IEL), but also the endpoint conditions

$$\hat{L}_v(a^+) = k'(\hat{x}(a)), \quad \hat{L}_v(b^-) = -\ell'(\hat{x}(b)).$$

5. Consider the problem of minimizing Λ over $PWS[0, 1]$ (no endpoint restrictions!), given

$$\Lambda[x] = \int_0^1 \left[\frac{1}{2} \dot{x}^2(t) + x(t) \dot{x}(t) + \dot{x}(t) + x(t) \right] dt.$$

- (a) Find the unique extremal satisfying the natural boundary conditions: call it z .
- (b) Show that $\inf \{\Lambda[x] : x \in PWS[0, 1]\} = -\infty$. Deduce that no global minimum exists, so the arc z just found cannot be a global minimizer.
- (c) Show that z cannot even be a [weak] local minimizer, by proving that the function of two variables defined as follows does not have a local minimum at the origin: $f(m, b) = \Lambda[x(\cdot; m, b)]$, where $x(t; m, b) = z(t) + mt + b$.